教案的评价标准应该明确,包括教学目标的达成度、教学活动的效果等方面的评估。教案要注意综合素质教育,培养学生的综合能力。以下是小编为大家精心整理的教案范文,供参考和借鉴。每个教案都包含了教学目标、教学内容、教学过程、教学方法、教学手段和教学评价等要素,通过这些范文可以帮助教师更好地把握教学重点和难点,提升教学质量。大家一起来看看吧。
分数乘分数教案设计篇一
一、导入。
教师提问:
“如果你家中有一些暂时不用的钱,将怎么办?”让几个学生说一说,当有学生说要把暂时不用的钱存入银行时,接着提问:
“为什么要把钱存入银行呢?”多让几个学生发表意见。
教师肯定学生的回答,再指出:把暂时不用的钱存入银行有两个好处:一是国家可以把这些钱集中起来,用在建设上,所以说储蓄可以支援国家建设;二是参加储蓄的人用钱更加安全和有计划,还可以得到利息,所以说储蓄对个人也有好处。
“你们知道利息是怎样计算的吗?”
教师:今天我们就来学习一些有关利息的知识。
板书课题:“利息”
二、新课。
出示例题:小丽1月1日把100元钱存入银行,存定期一年。到1月1日,小丽不仅可以取回存入的100元,还可以得到银行多付给的5.67元,共105.67元。
先请学生读题,然后教师再说明:题目中有“存定期一年”表示什么呢?一般来讲。储蓄主要分定期存款、活期存款、大额存款等方式。所谓活期存款是指储户可以随时提取的一种储蓄方式,定期存款是有一定期限的一种存款方式。现在银行的定期存款有三个月、六个月、一年、二年、三年、五年、八年的等等。小丽存的是“定期―年”,即小丽在银行存的100元在一般情况下要在银行存一年;如果有特殊情况也可以提前提取。
教师:在银行储蓄要弄清三个概念:本金、利息和利率。小丽在银行存入100元,也就是说她的本金是100元。板书:“存入银行的钱叫做本金”
存款到期时,小丽到银行取回105.67元,银行多付给小丽5.67元,这是100元定期一年的存款所得到的利息。板书:“取款时银行多付的钱叫做利息”
这5.67元的'利息是根据什么给小丽的呢?是银行的工作人员根据利率计算出来的。板书:“利率就是利息与本金的比值”这是由银行规定的。利率有按年计算的,也有按月计算的。小丽存的是定期一年的存款,年利率是5.67%,也就是说如果存100元,在银行存一年可得100元的5.67%的利息,即5.67元的利息,再加上本金100元共105.67元。
根据国家经济的发展变化,银行存款的利率有时会有所调整。10月中国工商银行公布的定期整存整取一年期的年利率是5.67%,二年期的年利率是5.94%.三年期的年利率是6.21%。五年期的年利率是6.66%。
按照上面的利率,如果小丽存300元钱定期存款二年,到期时她应得利息多少。
元?提问:
“二年期的定期整存整取的年利率是5.94%是什么意思?”(到期取款时每100元可得5.94元的利息。)“小丽的本金是300元,到期时她每一年应得利息多少元?”(300元的5.94%。)学生口述,教师板书:300×5.94%。
“二年应得利息多少元?”学生口述,教师接着板书:×2。
小丽的存款到期时可以得到的利息是35.64元。
“小丽的存款到期时,她可以取出本金和利息一共多少元?”(335.64元。)如果有条件可以让学生看一看活期储蓄、定期储蓄的存款和取款的凭条。
三、巩固练习。
做第2页“做一做”中的题目和练习一的第2题。先让学生独立做,然后再共同订正。
四、作业。
练习一的第1题。
分数乘分数教案设计篇二
教学内容:本课时的教学内容是百分数及百分数的应用。
教学目标:
知识与技能。
进一步理解百分数的意义,巩固求百分率的方法,掌握百分数与分数、小数的互化方法。
能应用百分数的相关知识,解决简单的实际问题。
过程与方法。
通过小组合作学习,交流探究等活动,增强合作学习的意识。
经历回顾、梳理、反思所学知识的过程,加深对复习内容的理解。
情感、态度与价值观。
在学习活动中,激发探究欲望,养成善于回顾和反思的学习习惯。
体验数学与生活的密切联系,增强应用数学知识解决实际问题的意识。
难点:掌握关于“增加百分之几”和“减少百分之几“的实际问题的解题方法。
教学设计:通过复习,系统、全面的整理了本学期所学的百分数知识,帮助学生构建合理的知识体系,使学生更好地理解和掌握所学概念、意义和解题方法,进一步培养学生的数感,提高学生的解题能力。本节课对百分数及百分数的应用的相关知识做了系统的复习,只要体现在以下两点:
1、突出核心知识,围绕重点展开复习和训练。
本课时的复习紧紧围绕百分数的认识及应用百分数解决实际问题这两方面内容,引导学生通过回顾、交流,进一步巩固对百分数的认识和运用百分数解决实际问题的方法,以“抓重点,带相关”的复习方式展开训练,提高学生的解题能力。
2、注重知识间的内在联系。
加强知识间的内在联系,帮助学生构建合理的知识体系,本节课通过对比血虚,进一步明确了百分数的意义和百分数应用题的解题思路,提高了学生的审题能力,使学生能够根据不同的要求,灵活选择不同的解题方法。
3、数形结合,为以后的学习打下基础。
分数乘分数教案设计篇三
分数的基本性质:分数的分子和分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
概念:分数的分子和分母同时扩大或缩小相同的倍数(这儿讲的倍数除0外),分数的大小不变。
分数是指整体的一部分,或更一般地,任何数量相等的部分;是一个整数a和一个正整数b的不等于整数的'比。
约分:把一个分数的分子、分母同时除以公因数,分数的值不变。约分的依据:分数的基本性质。
利用约分可以化简分数,当直接约分有困难时,可以将分子分母分解质因数后约分。
通分:根据分数的基本性质,把几个异分母分数化成与原来分数相等的同分母的分数的过程。
分数乘分数教案设计篇四
_____________________________________。
2.桶里装有一些油,用去了60%,恰好是48千克,原来桶里装有多少千克的油?
_____________________________________。
3.一条绳子长48米,剪去全长的75%,还剩多少米?
_____________________________________。
4.一条绳子,剪去全长的.75%,还剩下12米,原来绳子长多少米?
_____________________________________。
5.生产车间上个月制造零件1280个,本月比上月超产15%,本月制造零件多少个?
_____________________________________。
6.生产车间本月制造零件1472个,比上个月超产15%,上个月制造零件多少个?
_____________________________________。
7.小丽身高126厘米,正好是父亲身高的70%,父亲身高多少厘米?
_____________________________________。
_____________________________________。
_____________________________________。
_____________________________________。
分数乘分数教案设计篇五
在本次校举行的公开课活动中,我听了高年级刘老师的一节数学课,听过这节课后。
我认为优点体现在:
二、小组参与的力度大,充分调动了学生学习的积极性,使学生的“手、眼、口”都得到了锻炼。
不足之处是:
我认为有以下两点值得去深思:
一、有没有把课堂还给学生?
二、如何“还”?
很大一部分教师,也想把课堂还给学生,可是如何“还”?完全放手行吗?学生不是理想化的学生,因为学生之间毕竟存在着很大的差异,不要指望他们什么都会,如果“收、还”不当,还会适得其反,只有“收、还”得当,才会事半功倍。
说起容易做起难,要做到以上两点绝非易事,不仅需要提高教师自身的业务水平,更要深入地了解学生、钻研教材。
分数乘分数教案设计篇六
2.理解算理,使学生学会计算定期存款的利息.。
3.初步掌握去银行存钱的本领.。
教学重点。
1.储蓄知识相关概念的建立.。
2.一年以上定期存款利息的计算.。
教学难点。
“年利率”概念的理解.。
教学过程。
一、谈话导入。
教师:过年开心吗?过年时最开心的事是什么?你们是如何处理压岁钱的呢?
教师:压岁钱除了一部分消费外,剩下的存入银行,这样做利国利民.。
二、新授教学。
(一)建立相关储蓄知识概念.。
1.建立本金、利息、利率、利息税的概念.。
(1)教师提问:哪位同学能向大家介绍一下有关储蓄的知识.。
(2)教师板书:
存入银行的钱叫做本金.。
取款时银行多支付的钱叫做利息.。
利息与本金的比值叫做利率.。
2.出示一年期存单.。
(1)仔细观察,从这张存单上你可以知道些什么?
(2)我想知道到期后银行应付我多少利息?应如何计算?
3.出示二年期存单.。
(1)这张存单和第一张有什么不同之处?
(2)你有什么疑问?(利率为什么不一样?)。
4.出示国家最新公布的定期存款年利率表.。
(1)你发现表头写的是什么?
怎么理解什么是年利率呢?
你能结合表里的数据给同学们解释一下吗?
(2)小组汇报.。
(3)那什么是年利率呢?
(二)相关计算。
1.帮助张华填写存单.。
2.到期后,取钱时能都拿到吗?为什么?
教师介绍:自11月1日起,为了平衡收入,帮助低收入者和下岗职工,国家开始征收利息税,利率为20%.(进行税收教育)。
3.算一算应缴多少税?
4.实际,到期后可以取回多少钱?
(三)总结。
请你说一说如何计算“利息”?
三、课堂练习。
1.小华今年1月1日把积攒的零用钱500元存入银行,定期一年.准备到期后把利息。
2.赵华前年10月1日把800元存入银行,定期2年.如果年利率按11.7%计算,到今年10月1日取出时,他可以取出本金和税后利息共多少元钱?下列列式正确的是:
(1)800×11.7%。
(2)800×11.7%×2。
(3)800×(1+11.7%)。
(4)800+800×11.7%×2×(1-20%)。
四、巩固提高。
(一)填写一张存款单.。
1.预测你今年将得到多少压岁钱?你将如何处理?
2.以小组为单位,填写一张存单,并算一算到期后能取回多少钱?
五、课堂总结。
通过今天的学习,你有什么收获?
六、布置作业。
分数乘分数教案设计篇七
(二)能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。
(三)培养学生观察、分析和抽象概括的能力,渗透事物是相互联系,发展变化的辩证唯物主义观点。
教具:投影片,三张相同的长方形纸,一面为白色,另一面分别给。
学具:每位同学准备三张相同的长方形纸片。
(一)复习准备。
1.口答:(投影片)。
根据120÷30=4,不用计算直接说出结果:
(120×3)÷(30×3)=();(120÷10)÷(30÷10)=()。
2.说一说依据什么可以不用计算直接得出商的?
3.说出商不变的性质。
教师:除法有商不变性质,分数与除法又有关系,分数有没有类似的性质呢?下面就来研究这个问题。
(二)学习新课。
(1)教师取出一张长方形白纸,说明这为单位“1”,再取出同样的两张白纸,重叠放在一起请学生观察,问:三张纸重叠后完全重合,说明什么?(三个单位“1”同样大)教师把三张纸分贴在黑板上。
教师请同学取出自己准备的三张长方形纸,并比一比是不是同样大。
教师:请分别把它们平均分成2份;4份,6份(折出来),并分别给其中的1份,2份和3份涂上颜色或画上阴影。然后把涂了颜色的部分用分数表示出来。
学生口答后,老师把黑板上的纸片翻面,露出涂了色的一面,板书:
教师:请比较这三个分数的大小?
你根据什么说这三个分数相等?
学生口答后老师用等号连结上面三个分数。
(3)请根据上面的研究,说一说你发现了什么规律?请概括地说一说。
学生口述分数基本性质的内容,老师把板书补充完整。
教师:想一想,如何用整数除法中商不变的性质说明分数基本性质?(举例说明)。
用学生自己的例题说明后,用投影片再说明:
2.把一个分数化成大小相等,而分子或分母是指定数的分数。
(2)口答练习:(学生口答,老师板书。)。
教师:利用分数基本性质,可以把分数化成大小相等而分子或分母是指定数的分数。
分数基本性质是在分数大小不变的前提下研究分子、分母的变化规律。所以在教学过程中,抓住“变化”作为主线,设计思考题引导学生观察、对比、分析,使学生在变化中找出规律、概括出分数的基本性质。安排例2,是让学生运用规律使分数产生变化。这样,从两方面方面加深学生对分数基本性质的理解。
在学生掌握了分数基本性质后,安排他们举例讨论,以沟通分数基本性质和商不变性质之间的内在联系,便于学生能把新旧知识融为一体。
在整个学习过程中都是学生活动为主,这样有利于培养学生观察、分析和抽象概括的能力。
新课教学分为两部分。
第一部分学习分数基本性质。分三层,通过学生活动,学生从直观上认识到分子、分母不相同的分数有可能相等;研究分子、分母的变化规律;概括分数基本性质,并用商不变性质来说明。
第二部分是应用分数基本性质,使分数按要求进行变化。分两层,根据分母需要,确定分子、分母需要扩大或缩小的倍数;根据分子需要,确定分子、分母需要扩大或缩小的倍数。
分数乘分数教案设计篇八
1.认识单位“1”,理解分数的意义及分母、分子的含义。
2.培养学生的观察、分析、抽象、概括等思维能力。
3.通过层层设疑,不断强化学生的质疑意识,提高学生的质疑能力。
教学重点:建立单位“1”的概念。
课前准备:通过各种途径去查找、了解分数是怎样产生的。
教学过程。
一.创设情景。
再请同学们看两个例子。
1、出示2个实例(课件)。
(2)用米尺来测量木板的长度,能用整米数来表示吗?
许多例子都可以告诉我们,在生产和生活中,有时我们通过计算或是测量都是不能得到整数结果的,为了适应客观实际的需要,而产生了新的数——也就是分数(出示)。开始,人们只认识一些简单的分数,如二分之一、三分之一等。经过很长时间后,才产生像现在这样完善的分数的知识。同学们知道吗?我国还是世界上发明和使用分数比较早的国家之一。
其实分数对于同学们来说不会太陌生,我们已经对分数有了初步的认识。
2、揭示课题:今天这节课我们在分数初步认识的基础上探究分数的意义。
二、互动探究。
(一)复习把一个物体或一个计量单位平均分。
首先让我们一起来回忆一下:
1.用课件展示。(3个例子)。
(1)把一块饼平均分成2份,每份是它的二分之一。
(2)把一张正方形的纸平均4份。
(3)把一条线段平均分成5份,
2.小结:以前我们学习了把一个物体或一个计量单位平均分成若干份,表示这样的一份或几份,都可以用分数表示。
(二)学习把一个整体平均分。
1.想一想:
在现实生活中是不是只能把一个物体进行平均分?请举例。
师小结:在现实生活中不仅能把一个物体进行平均分,还可以把许多物体看作一个整体来平均分。
2.思考:
这里有一堆苹果,你能拿出它的1/4吗?你是怎样想的?
把什么看作一个整体?怎么分的?能完整的叙述一下吗?
把这些苹果看作一个整体,平均分成4份,每份的一个苹果就是这些苹果的1/4。
3.讨论:
把6只熊猫平均分,有几种分法?每份用什么分数表示?
(1)汇报分的情况。
(2)说说你们是怎样想的?注意叙述完整。
把什么看作一个整体?怎么分的?
还可以怎样分呢?
1.观察:刚才用来平均分的物体与以前的有什么不同呢?
以前是把一个物体平均分,刚才是把许多物体看作一个整体来平均分。
2.启发:
像这样平均分的一个物体、一个计量单位或一个整体我们都可以用自然数1来表示,通常把它叫做单位“1”。我们所看到的1个饼、1张纸、4个苹果、6只熊猫都可以看作单位“1”。
那么在生活中,我们还可以把哪些看作单位“1”呢?
3.我们已经了解了什么是单位“1”,下面请同学们讨论一下:什么叫做分数?
(1)汇报。
(2)出示分数的意义,看有没有不明白的地方。
出示:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
师:单位“1”为什么要用引号?
“1”不仅表示一个物体,一个图形,一个计量单位,也可以表示由许多物体组成的`一个整体。这个“1”很特殊,所以我们给它加上引号,把它称为单位“1”。
你认为在这句话中,还有哪些字或词比较重要?
(四)分数各部份的名称及意义。
我们知道了分数的意义,下面来看看分数的组成。
出示:小红旗。
指名回答用什么分数来表示?说说想法。
4/9这个分数,指名说出分数各部份的名称。
结合图上的例子,说说各部份所表示的意义。
课件展示。
三、巩固发展。
1、看图:
(1)(做一做)谁能说说3/5的意义?这里的单位“1”指的是什么?
(2)分母3分别表示什么?分子2分别表示什么?
2、练习:
(1)练习十八1、2、题(课件出示)。
(2)判断:
(1)4/7是把单位“1”分成7份,表示这样4份的数。
(2)男生人数占全班人数的,是把全班人数看作单位“1”。
(3)把一堆苹果平均分成6份,表示这样5份的数是6/5。
(3)把全班48个同学平均分成6组,每组8个同学。
3个同学是这个小组人数的几分之几?
3个同学是全班人数的几分之几?
讨论:同样是3个同学,为什么分别用3/8和3/48来表示。
四、总结。
这节课我们学习了什么?它的内容是什么?我们在用分数的时候需要注意些什么呢?
分数乘分数教案设计篇九
教学准备:
教学目标:
1、复习、整理本单元的知识,在练习中进一步加强分数的加减法的熟练性。
2、通过多种形式的`练习,巩固分数加减法,在游戏、应用中体验数学的趣味性。
基本教学过程:
一、基本练习。
1、说分数和小数的意义。
0.40.80.7。
2、同分母分数加减法。
3、简单的异分母加减法练习。
4、练习五的第1题(分数加减法的混合运算)。
这里重点练习分数的通分和运算顺序。
二、垃圾分类。
1、看图,理解图意。
2、提问:
废纸类与玻璃类共占几分之几?
看图表,根据图中的数据,你能提出哪些数学问题?
3、小组内提问,并组内进行解答,
4、全班汇报,集中交流。
三、解方程。
在复习解方程的过程中,进行分数加减法的练习。
四、找数字游戏。
猜一猜,这些数字可能是什么?与同学进行交流。
先进行分数和小数的互化练习,然后确定数字的范围。
教学反思:
五、分析统计图,回答问题。
1、根据统计图中的数据,回答:
读2本和3本书的学生数占全班人数的几分之几?
你还能提出哪些数学问题?组内自己解决自己提出的问题。
六、想一想,算一算。
先自己算一算,想一想:
你发现了什么规律?
用刚才发现的方法,不用计算,你能直接得出-的结果吗?
七、小结。
八、实践活动:建造“分数墙”
分数乘分数教案设计篇十
前一段时间,我们已经学习了分数乘法,那么,谁能告诉老师分数乘法怎样计算的?说得真好。下面,我们就一起来口算几道题:
(出示)4/71/3203/43/8162/33/2。
2、(复习倒数)其中当计算完2/33/2时提问:
看到这个答案,你想说什么?(乘积是1的两个数互为什么数(互为倒数))。
说得不错,下面就请同学们说说下面各数的倒数分别是什么?
(出示)3/8412/9。
3、把100千克的一桶油平均分成2分,每份是100千克的()/(),求100千克的1/2,列式为___。
把24千克的一袋面粉平均分成3份,每份是24千克的()/(),求24千克的1/3,列式为:_____。
同学们学得真不错,今天,潘老师就要带着大家用这些我们已经掌握的知识去学习新知识,解决新问题。
(一)教学例1。
1、教学第一种算法。
例1:量杯里有4/5升果汁,平均分给2个小朋友喝,每人可以喝多少升?
读题。
提问:怎样列式?(4/52)。
怎样计算呢?
(1)4/5表示什么意思?(是把1升平均分成5份,取其中的4份),(边说边出示图)。
从图中你能看出每份是多少米?(板书:2/5升)。
那么2/5升是怎样算出的呢?
4个1/5平均分成2份,可以用4/5的分子除以2,而分母不变,就得到结果是2/5。(板书算式)。
(2)补充例证。
如果现在把4/5升果汁,平均分给4个小朋友喝,每人可以喝多少升?
(3)观察比较。
提问:(1)这两道除法算式都是什么数除以什么数?(分数除以整数板书课题)。
(4)通过刚才这两道题的计算,你们有没有发现,分数除以整数可以怎样计算?(边说边指示)。
2、教学第二种算法。
(1)还有别的计算方法吗?(把4/5平均分成2份,求每份是多少?也就是求4/5的1/2是多少?可以用乘法来计算。)(板书)。
(2)问:从这个算式可以看出,一个分数除以整数还可以怎样计算。
通过这两种交流,使学生知道分数除以整数的方法是多样的,又能初步理解分数除以整数可以转化为分数乘以这个整数的`倒数的思路。
(3)让学生做试一试的题(自主选择计算方法)。
计算好了以后,再请学生说说你的思路是怎么样的。
使学生进一步明确,分数除以整数,可以转化为分数乘这个数的倒数。
(4)你能用简炼的语言概括一下这种方法吗?
教师板书:分数除以整数,等于分数除以整数的倒数。
(5)你认为这个计算方法有什么重要的地方需要提醒大家。
教师用红笔标注。
老师也为同学们准备了一套星级赛题,你们有信心挑战吗?
一星题:
1、课本56页的练一练第1题。
做此题的目的使学生明确当遇到分子能整除时比较简便。
可以选用这样的方法。
二星题:
2、这里还有6道题,哪些同学愿意到前面来解答的?
练一练第2、3题。
让学生能根据题目灵活选择计算方法。
做好以后进行集体讲解和订正。
三星题:
8/94=8/91/4=2/92/73=2/73=6/7。
8/94=8/91/4=2/93/73=3/71/3=1/7。
师:因此,我们同学在计算时,首先要看清题目,选择正确的计算方法,计算要细心。
四星题:
4、练习十一第2题。
本题的题目关键要让学生进行比较,分数乘法和除法的区别。
五星题:
1、如果a是一个不等于0的自然数,13a等于多少。
问:你能用具体的数来检验这个结果吗?
2、()/()3=5/187/()=()/24。
本课我们学习了什么内容?
分数乘分数教案设计篇十一
1、通过教学,使学生掌握分数加减混合运算的顺序和计算方法,能正确地进行分数加减混合运算计算。
2、在探究知识的过程中,培养学生知识迁移、类推的能力和归纳、概括的能力。
3、培养学生细心认真计算,并能用简明灵活的方法解决问题的`习惯。
教学重难点。
重点:分数加减混合运算的顺序和计算方法。
难点:按运算顺序灵活选用计算方法正确计算。
教学过程。
一、情景引入,复习回忆。
课件出示:
1、计算。
2、解方程。
独立完成后指生回答。
3、出示湖北云梦风景图片及云梦森林公园地貌情况统计图。
师:现在老师要带你们去看一处美丽的景区(出示图片),这是湖北省的云梦森林公园景色,那里崇山峻岭,风景优美,森林里到处有高大的乔木林、低矮的灌木林,还有大片的草地。
这是云梦森林公园地貌情况统计表(出示表格),从这张统计表中你发现了哪些数学信息?还有谁来说?(先请2位学生说,再一起读一遍。)。
生:乔木林占公园面积的1/2,灌木林占公园面积的3/10,草地占公园面积的1/5。
师:我们把这些信息绘制成一个扇形统计图,黑板画扇形,根据这些信息你能口头提出一些数学问题,并选择其中的一个问题在本子解答。(反馈,根据学生回答教师板书算式。)。
2、提出问题:
师:森林部分比草地部分多占公园面积的几分之几呢?你会列式吗?还有其他方法吗?(1/2+3/10—1/51/2-1/5+3/103/10-1/5+1/2)。
3、引出课题。
比较:这些算式与刚才的有什么不同?(引出课题:分数加减混合运算)。
二、自主探索,获取新知。
1、例1(1):不带括号的分数加减混合运算。
师:怎样计算这几个算式呢?,你能用学过的知识选其中两种进行计算吗?
(1)尝试计算。
(2)反馈评讲。
反馈:a、说说解题思路先算什么?(指名说,同桌说)。
b、观察这三种计算方法的运算顺序你有什么发现?(根据学生的回答进行比较归纳得出不带括号的分数加减混合运算的顺序是从左往右依次计算。)。
c、计算中要注意什么?
(3)老师强调书写格式及注意事项:用递等式计算,等号一律对齐,分数线在同一条直线上;注意最后的结果要化成最简分数。
2、例1(2):带括号的分数加减混合运算。
过度语:森林多会给环境带来什么好处呢?这云梦公园地处长江中下游,雨水特别充足(下雨动态图)。这么丰富的降水量都转化成什么呢?我们一起来看(出示的表格)一起读一读:“森林和周边裸露地面降水量转化情况统计对比”。
师:仔细读这个表格说说你看懂了什么?(先让学生解读表格,再引导学生理解表格意思。)。
(2)提出问题:
再来看看周边裸露地面的降水量转化情况:地表水11/20、其他2/5,那么裸露地面储存的地下水占降水量的几分之几?先想一想怎样解答,再做在本子上。
(3)尝试解决。
(4)反馈评讲(课件上出示两种方法)。
请板演的学生说说解题思路。再比较两种方法:你有什么发现?
强调带小括号的分数加减混合运算顺序。(最后强调答案)。
(5)渗透情感教育。
发现这种情况,你想说什么?(渗透环保意识)。
小结:你说的非常好,我们同学们在平时的生活中要行动起来,一起绿化环境,保护水资源。
3、归纳分数加减混合运算的顺序。
师:通过刚才的学习,说说分数加减混合运算的顺序怎样?
独立思考后,小组内交流。
师:今天学习的知识在书本第117到118页,请大家打开书看一看。
三、巩固应用。
过度语:同学们掌握了分数的加减混合运算顺序,现在老师要考考你们。
1、用递等式计算。先说说下列各题的运算顺序,再计算。
2、用今天学会的知识来解决一些生活中的实际问题。
(1)擦黑板和擦玻璃的学生比扫地的学生多还是少?多几分之几?
师:其实据专家们的最新报导,小学生的睡眠时间最好能达到10小时,这样更有利于你们的生长发育,记得晚上一定要早睡。
四、全课小结。
通过今天的学习,你知道了什么?要注意什么?
分数乘分数教案设计篇十二
《分数乘法(三)》是在学生学习分数乘法(一)、(二),掌握了整数乘分数的意义及计算方法的基础上进行教学的,通过教学使学生理解分数乘法的意义和计算方法,使学生通过动手折一折、画一画、算一算等方法学会分数乘分数的计算方法。
我在这节课的设计时听取了一些老师的意见反馈说孩子们画图困难于是我就想着让学生动手折一折,调动学生的参与意识用学生看得见、摸得着的形式来学习新知,再将知识迁移到画一画,最后抽象到算一算,在学生不断地尝试中发现算理。教学中我设计以学生的自主学习为主,小组讨论为辅,大胆猜想为依据,实例验证为手段,集体归纳为结果的方式来进行学习。在这个过程中,学生完全是学习的主人,而教师只是辅助性的导向,在学生遇到困惑时及时指引方向,包括练习的设计都充分体现了这一理念。即使这样在实际教学中还是存在很多突发问题故在这一节课后,我做了深刻的反思:
亮点:
一、本课主要是通过学生动手操作折一折的活动,并借助图形语言,理解分数乘分数的意义,探索分数乘分数的计算方法,进行正确计算。
二、理解分数乘分数的意义是这部分教学的难点,这一难点一旦突破,计算方法也将随之攻破。所以,我下大力气在学生的操作中,让学生充分的动手折一折、涂一涂,然后展开观察所涂部分与整张纸的关系。这样,通过图形语言,学生们体会到了分数乘分数的意义,感受到分数乘分数为什么是用“分子乘分子,分母乘分母”的方法。学生在折纸的过程中,还体验到:不管是3/4的1/4还是1/4的3/4,结果都相同的道理。
四、鼓励学生大胆的质疑与猜想,激发学生内在的求知动力。
在引导学生动手活动探究后,我又让学生大胆的质疑,孩子的'好奇心又一次被激起,他们又乐此不疲的投入到了运算方法的探究中去。整堂课下来,孩子们始终处在“操作――猜想――验证”的学习过程中,真正变成了学习的主人。
需要改进之处:
1、对学生的多样思维应加大评价力度。
孩子们在探究的过程中取得了一定的成绩。这里,我给予了肯定,但力度不够,可以看出评价一个孩子,要适时,适当,决不能敷衍,更不能抹杀,否则可能会压制孩子的思维积极性。这一点,在今后的教学中,我还有待加强。
2、课前对学生的估计过高,所以使一些事先设计好的练习,没来得及做完。这也提醒我,备课,不仅要备教材,备教案,更重要的还是要备好学生,这是上好一堂课的关键。
3、学生的学习兴趣和学习自信心有待激发。
分数乘分数教案设计篇十三
3.培养学生分析问题和解决问题的能力.。
教学重点。
明确分数乘、除法应用题的联系和区别.。
教学难点。
明确分数乘、除法应用题的联系和区别.。
教学过程。
一、启发谈话,激发兴趣.。
在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答。
二、学习新知。
(一)出示例8的4个小题.。
1.学校有20个足球,篮球比足球多,篮球有多少个?
2.学校有20个足球,足球比篮球多,篮球有多少个?
3.学校有20个足球,篮球比足球少,篮球有多少个?
4.学校有20个足球,足球比篮球少,篮球有多少个?
(二)学生试做.。
1.第一题。
解法(一)。
解法(二)。
2.第二题。
解:设篮球有个.。
解法(一)。
解法(二)。
解法(三)。
3.第三题。
解法(一)。
解法(二)。
4.第四题。
解:设篮球个.。
解法(一)。
解法(二)。
解法(三)。
(三)比较区别。
1.比较1、3题.。
教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有。
什么不同的地方?
(1)观察讨论.。
(2)全班交流.。
(3)师生归纳.。
这两道题都是把足球看作单位1,单位1的量是已知的,求篮球有多少个?
2.比较2、4题。
(1)观察讨论.。
(2)全班交流.。
(3)师生归纳.。
【本文地址:http://www.xuefen.com.cn/zuowen/13783347.html】