分数除以整数教学设计人教版(优秀14篇)

格式:DOC 上传日期:2023-11-20 06:17:22
分数除以整数教学设计人教版(优秀14篇)
时间:2023-11-20 06:17:22     小编:MJ笔神

总结是对过去的一种回顾,可以帮助我们更好地面对未来的挑战。写总结时要注意客观公正,避免主观情绪或偏见的干扰。这些范文可能涵盖了一些你之前从未接触过或思考过的内容。

分数除以整数教学设计人教版篇一

1,借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

2,掌握一个数除以分数的计算方法,并能正确计算。

教学重点。

教学难点。

教学时数。

1课时。

教学过程。

一,创设一个“分一分”的活动。

1,出示:第27页的情境图。

从整数除以整数到整数除以分数,借助除法的意义和图形语言,体会“除以一个数”与“乘这个数的倒数”之间的关系。

2,创设自主的探索空间,让学生通过观察、比较与思考,发现知识的。

内在联系,让学生更好地理解分数除法的意义的机会,更主要的是教会学生一种学习的方法。(即分数除法的意义可联系整数除法的意义进行学习)。

二,画一画。

1,让学生画图个观察,分析图中反映的数量关系。

2,学生体会分数除法的意义和算法。

三,填一填,想一想。

让学生观察、比较、从而发现问题中蕴藏的规律。(进一步理解分数除法的意义)。

四,试一试。

学生巩固对除法计算的理解,重点引导学生先约分再乘,这样算比较简便。

五,练一练。

1,第28页第2题,利用分数除法解方程,既应用了分数除法的计算方法,又为今后用方程解决问题进行铺垫。

2,第28页第3题,利用分数除法知识解决实际问题,给学生交流的空间。集体订正时让学生说说解题的思路。

分数除以整数教学设计人教版篇二

教学重点。

教学难点。

引导学生总结分数乘整数的计算法则.。

教学过程。

一、设疑激趣。

(一)下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)。

(二)计算下面各题,说说怎样算?

++=++=。

同学之间交流想法:++==33=。

3这个算式表示什么?为什么可以这样计算?

教师板书:++=3=。

二、自主探索。

(一)出示例1。

小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

1.读题,说说块是什么意思?

2.根据已有的知识经验,自己列式计算。

三、交流、质疑。

(一)学生汇报,并说一说你是怎样想的?

方法1:++===(块)。

方法2:3=++====(块)。

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的.。

区别:一种方法是加法,另一种方法是乘法.。

教师板书:++=3。

(三)为什么可以用乘法计算?

加法表示3个相加,因为加数相同,写成乘法更简便.。

(四)3表示什么?怎样计算?

表示3个的和是多少?

++====,用分子2乘3的积做分子,分母不变.。

(五)提示:为计算方便,能约分的要先约分,然后再乘.。

四、归纳、概括:

(一)结合=3=和++=3=,说一说一个分数乘整数表示什么?

求几个相同加数的和的简便运算.。

(二)分数乘整数怎样计算?

用分子和分母相乘的积做分子,分母不变。

五、巩固、发展。

(一)巩固意义。

1.改写算式。

+++=()()。

+++++++=()()。

2.只列式不计算:3个是多少?5个是多少?

(二)巩固法则。

1.计算(说一说怎样算)。

462148。

思考:为什么先约分再相乘比较简便?

2.应用题。

(三)对比练习。

1.一条路,每天修千米,4天修多少千米?

2.一条路,每天修全路的,4天修全路的几分之几?

六、课后作业。

(一)的3倍是多少?的10倍是多少?

(二)一个正方形的边长是米,它的周长是多少米?

(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?

七、板书设计。

分数乘整数。

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.。

例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:++===(块)。

用乘法算:3=++====(块)。

答:3人一共吃了块.。

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.。

分数除以整数教学设计人教版篇三

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

教学重点。

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

教学难点。

引导学生总结分数乘整数的计算法则。

教学过程。

一、设疑激趣。

(一)下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)。

(二)计算下面各题,说说怎样算?

++=++=。

说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。

同学之间交流想法:++==3××3=。

×3这个算式表示什么?为什么可以这样计算?

教师板书:++=×3=。

二、自主探索。

(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

1、读题,说说块是什么意思?

2、根据已有的知识经验,自己列式计算。

三、交流、质疑。

(一)学生汇报,并说一说你是怎样想的?

方法1:

方法2:

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的。

区别:一种方法是加法,另一种方法是乘法。

教师板书:

(三)为什么可以用乘法计算?

加法表示3个相加,因为加数相同,写成乘法更简便。

(四)×3表示什么?怎样计算?

表示3个的和是多少?

用分子2乘3的积做分子,分母不变。

(五)提示:为计算方便,能约分的要先约分,然后再乘。

四、归纳、概括:

(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?

求几个相同加数的和的简便运算。

(二)分数乘整数怎样计算?

用分子和分母相乘的积做分子,分母不变。

五、巩固、发展。

(一)巩固意义。

1、改写算式。

2、只列式不计算:3个是多少?5个是多少?

(二)巩固法则。

1、计算(说一说怎样算)。

思考:为什么先约分再相乘比较简便?

2、应用题。

(三)对比练习。

1、一条路,每天修千米,4天修多少千米?

2、一条路,每天修全路的,4天修全路的几分之几?

六、课后作业。

(一)的3倍是多少?的10倍是多少?

(二)一个正方形的边长是米,它的周长是多少米?

(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?

七、板书设计。

分数乘整数。

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

分数除以整数教学设计人教版篇四

(概括:整数乘法表示求几个相同加数的和的简便运算)。

(二)计算下面各题,说说怎样算?

++=++=。

同学之间交流想法:++==3××3=。

×3这个算式表示什么?为什么可以这样计算?

教师板书:++=×3=。

(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

1.读题,说说块是什么意思?

2.根据已有的知识经验,自己列式计算。

(一)学生汇报,并说一说你是怎样想的?

方法1:++===(块)。

方法2:×3=++====(块)。

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的.。

区别:一种方法是加法,另一种方法是乘法.。

教师板书:++=×3。

(三)为什么可以用乘法计算?

加法表示3个相加,因为加数相同,写成乘法更简便.。

(四)×3表示什么?怎样计算?

表示3个的和是多少?

++====,用分子2乘3的积做分子,分母不变.。

(五)提示:为计算方便,能约分的要先约分,然后再乘.。

(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?

求几个相同加数的和的简便运算.。

用分子和分母相乘的积做分子,分母不变。

(一)巩固意义。

1.改写算式。

+++=()×()。

+++++++=()×()。

2.只列式不计算:3个是多少?5个是多少?

(二)巩固法则。

1.计算(说一说怎样算)。

×4×6×21×4×8。

思考:为什么先约分再相乘比较简便?

2.应用题。

(三)对比练习。

1.一条路,每天修千米,4天修多少千米?

2.一条路,每天修全路的,4天修全路的几分之几?

(一)的3倍是多少?的10倍是多少?

(二)一个正方形的边长是米,它的周长是多少米?

(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.。

例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:++===(块)。

用乘法算:×3=++====(块)。

答:3人一共吃了块.。

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.。

1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为教学重点服务服务,使学生顺利掌握“分数乘整数的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。

2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。

分数除以整数教学设计人教版篇五

在折一折、涂一涂、算一算等活动中理解分数除以整数的实际意义;探索并理解分数除以整数的计算方法,能正确地进行计算。

(二)过程与方法。

结合具体的问题情境,经历分数除法计算方法的探究、推导过程,运用转化的思想领会计算方法的由来。

(三)情感态度和价值观。

在数学学习过程中培养分析能力、知识的迁移能力、推理能力。

二、教学重难点。

教学重点:探究并得出分数除以整数的计算方法,能比较熟练地进行计算。教学难点:对分数除以整数的算理的理解。

三、教学准备。

多媒体课件,折纸。

四、教学过程。

(一)引入操作情境,尝试计算教学教材第30页例1。

教师:把一张纸的平均分成2份,每份是这张纸的几分之几?

教师:你会列式吗?(启发学生列出算式。)。

教师:你会计算吗?请你试一试,然后在组内交流一下你的想法。预设结果:

1.把平均分成2份,就是把4个平均分成2份,1份就是2个,就是;用算式表示是:。

2.把平均分成2份,每份就是的,就是;用算式表示是:。

【设计意图】该阶段的学生已经有一定的自主探究能力,所以采用先让学生尝试的方法,有意识地唤醒学生对旧知的回忆,让学生从已有的知识经验入手,把自己和同伴的真实想法进行交流,充分体现学生的认知基础,有助于理解分数除以整数的算理。

(二)借助直观,实现沟通。

涂上阴影,然后再把阴影部分平均分成2份。)。

预设:学生可能会做出如下两种图示:

教师引导学生交流:这两种图示分别对应着上面哪种算法?指导学生阅读教材第30页,将“图”和“式”对照起来进行分析和说理。

结合图(1),引导学生说理:把x平均分成2份,就是把4个平均分成2份,1份就是2个,就是。

结合图(2),引导学生说理:把x平均分成2份,每份就是的,就是。

教师:同学们说得很好!把一个数平均分成几份,实际上就是求这个数的几分之一是多少。也就是说,分数除法和分数乘法有着密切的联系,分数除法可以转化为分数乘法来计算。

【设计意图】分数除法计算方法的探索与理解,历来是教学的一个难点。结合分数的意义和直观图来沟通分数除法和分数乘法的联系,是得出分数除以整数一般算法的关键步骤,也是理解算理的基础。根据小学生的思维特点,采用手脑并用、数形结合的策略,在教师的指导下进行有效的操作,有意识地将“图”和“式”对照起来进行分析和说理,帮助学生建立图形语言和数字语言的联系,有效地降低难点。通过操作,直观地体会分数除以整数的实际意义。在恰当的时机,引导学生进行文本阅读,整体感知算法的推导过程。

(三)体验冲突,发现一般规律。

教师:把一张纸的平均分成3份,每份是这张纸的几分之几呢?

请你折一折、画一画,自己看图写出计算结果。想一想,你会选择哪一种折法呢?

教师:你会用刚才的方法说明计算结果吗?

预设:通过前面的操作和交流,学生应该能领悟到分子不能被除数整除该选择哪种图示,并能说清:把平均分成3份,每份就是的,即。

教师引导学生折一折、画一画,或者根据教材第30页图示进行填空,写出计算结果。教师:通过刚才的折纸操作和上面的算式,你发现了什么规律?预设结果:

1.分数除以整数,如果分子能被除数整除,那么计算方法是分子除以除数的商作为分子,分母不变;如果分子不能被除数整除,那么转化为求这个数的几分之一来计算。

2.把一个数平均分成几份,就是求这个数的几分之一是多少,也就是都可以转化成乘法来计算,相比这种方法适用的范围更广。

教师:同学们说得很好!看来分数除法可以转化为以前我们学过的分数乘法来计算。

【设计意图】通过交流,诱导学生经历由特殊到一般的探索过程,从中悟出分数除以整数的算理:把一个数平均分成几份,就是求这个数的几分之一是多少。初步体会新旧知识之间、方法之间的转化与统一,比较自然地渗透转化的思想。

(四)应用规律,尝试练习。

教师:请你独立思考并完成教材第30页“做一做”。

【设计意图】对关键步骤进行针对性训练,使学生进一步理解分数除以整数的实际意义,即:把一个数平均分成几份,就是求这个数的几分之一。进一步体会把分数除法转化为乘法具有普适性。

(五)巩固练习,熟练算法。

1.教师:请你完成教材第34页练习七第。

1、2题。

先尝试独立填空,然后组织交流,让学生明白分数除法和分数乘法的互逆关系。

2.教师:请你完成教材第34页练习七第4题。

左边的三个算式的分子都是3的倍数,所以可以用分子除以3,也可以转化为乘法;右边一组的分子都不是3的倍数,只能用一般算法。通过进一步的比较和练习,体会算法的灵活性和一般方法的普适性。

3.教师:下面让我们一起来解决一个实际问题,请你完成教材第34页练习七第3题。

引导学生可以画图来验证自己的计算结果,也可转化为小数来验证自己的计算结果,培养学生的反思意识。

(六)全课总结,交流收获。

教师:今天我们共同学习了什么知识?你有什么收获?

分数除以整数教学设计人教版篇六

《分数乘整数》是苏教版小学数学第十一册第三单元的内容。这节的内容是在已学整数乘法的意义和分数加法计算的基础上进行教学的。分数乘整数的意义和整数乘法的意义相同,只是这里变成了分数。对今后求几个加数的和的简便运算用乘法来解决。注重培养学生的计算能力。

学情分析。

学生已学过整数乘法的意义,约分和分数加法计算。学生可以利用分数加法来推导出分数乘整数时只需把分子和整数相乘的积做分子,分母不变。

学生在刚学习分数乘法时,可能会有时想不到先约分,在课堂教学时要注意加以强调。

教学目标。

1、使学生理解分数乘整数的意义。

2、培养学生的合作探究意识和良好的逻辑思维能力。

3、让学生在学习中获得成功的体验。

教学重点和难点。

重点:理解分数乘整数的意义。

难点:掌握分数乘整数的计算法则。

教学过程。

1、让学生动手做绸花,加深了学生对求几个相同加数的和的简便运算用乘法来算。

2、让学生操作涂彩纸表示绸带,加强学生对分数意义的推算。

3、理解分数乘法的意义,认识分数乘法算式,加深理解两个因数相乘,交换因数的位置积不变。

4、小结。

分数除以整数教学设计人教版篇七

这节课的教学目标是分数除法的意义以及分数除以整数的算理和计算方法。本节课为使学生理解分数除法的意义,我先对整数除法进行了复习。从整数除法迁移到分数除法,在例题教学中,通过让学生画一画,折一折,在具体操作中理解分数除以整数。在理解分数除以整数的算理时,我创设了折纸的操作活动,让学生大胆猜想,在学生猜想后,我放手让孩子用自己的方法来验证,然后全班交流。学生操作时,先要求学生在草稿本上画一画,再让学生折纸,在折纸时学生出现两种折纸的方法。

一种竖着折,即平均分成两份;一种横着着,即转化为求这张纸五分之四的二分之一。在共同交流的同时,我有意识的选择竖着折的这种先讲,让学生明白为什么是分子除以2;再问学生有没有不同的,再请学生上前讲,通过学生的讲解和我的引导让学生理解了为什么可以乘以除数的倒数。

在用不同方法解决了问题后,让学生选择自己喜欢的一种并说明理由。然后出现除数3的这种,按第一种方法做,行不通;按第二种方法能够顺利解决。进一步让学生明白除以一个数等于乘以它的倒数。学生感知第二种方法是最优的选择。

虽然本节课学生明白了意义,知道了算理,达成了目标,但本课仍存在着明显的不足之处:如在学生自主探究与合作交流时以及学生展评时没有给学生更多的表达空间,总结方法及优化时应放手让学生去多说,学生在计算时出现错误时,让学生具体说说错误的原因,不要急于进行下一阶段内容。这是我在今后的课堂教学中应该注意的问题。

将本文的word文档下载到电脑,方便收藏和打印。

分数除以整数教学设计人教版篇八

教学目标:

1、使学生理解一个数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算,并培养学生的推理归纳能力。

2、使学生在探索整数除以分数、分数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。

3、培养学生迁移、概括的能力。

教学重点:

掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算。

教学难点:

理解分数除法的意义,体会数学知识之间的内在联系。

教学准备:

展台。

教学过程:

一、创设情境,激趣导入。

谈话:同学们,你们喜欢布艺手工劳动吗,会做什么呀?看我们布艺小组同学做的书信袋,既环保又实用,多么有创意。

二、自主探索,获取新知。

1、说说你了解到的信息,能提出什么问题?学生找出信息,提出问题。

2、红点问题一:2米布可以做多少个小书信袋?引导学生自己观察。

师:要求2米布可以做多少个小书信袋,就是求2米里面有多少个1/5米。怎样列算式?

师:这个算式表示的意义就是:2里面有几个1/5。

小组讨论,如何计算呢?引导学生用线段图帮助理解。师展示分析过程。“1”里面有5个1/5,2里面就有(2×5)个。也就是10个1/5。也就是2÷1/5=2×5=10(个)。所以结果等于10。

师:那么,5和1/5有什么关系呢?

4、红点问题二:2米布能做几个大书信袋?小组讨论交流,得出结果。2÷2/5=2×5/2=5(个)。

从而我们也可以得出:2除以2/5也就是2乘2/5的倒数。

5、绿点问题。

让学生独立解决,集体交流算式的意义和算法。

小组讨论,归纳总结:一个数除以分数,等于这个数乘分数的倒数。

三、自主练习。

1、自主练习第1题。

练习时,要培养学生认真仔细的学习习惯。教师可适当补充类似的练习,以逐步提高学生的计算水平。

2、自主练习第2题。

让学生独立做在练习本上,然后集体订正。练习时,要让学生解答完第1小题后,讨论数量关系,在明确“燃烧总量除以时间等于每小时的燃烧量”的基础上,再来解答第2小题。这样便于学生通过练习,全面巩固知识。

四、全课小结。

1、今天我们学习了什么新知识?

2、一个数除以分数的计算法则是什么?

3、计算一个数除以分数应注意什么?

分数除以整数教学设计人教版篇九

我在去年暑假听了数学特级教师刘德武老师的《分数乘整数》这节课,很有感受,把刘老师的思路加以整理,创新的教学设计为:

一、引入,明确今后主要的学习内容。鼓励学生相信自己能学好。

二、口算,感受分数乘整数的含义。

1、读出算式,并口算出结果:

1/5+2/5=1/4+1/4=2/6+3/6+1/6=1/16+3/16=2/9+2/9=2/9+2/9+2/9+2/9+2/9+2/9=2/9+2/9......2/9(30个)。

2、感受分数乘整数的意义。

30个2/9相加读起来太麻烦了,(让学生读时,很多学生都笑了。)有没有简单的表示方法?(学生会想到用乘法表示成2/9×30)然后让学生说一说2/9×30表示的含义。让学生再说一些分数乘整数的算式,教师板书,然后从中选则一些让学生说一说意义。

三、尝试计算,归纳方法。

1、尝试计算。

让学生试着计算2/9×4=、说一说计算方法,允许有不同的方法。(这是课的一个重点)再计算2/9×5=,然后让学生自己思考分数乘整数的计算方法。

2、自己选择练习。

自己选则的内容,学生计算的积极性会更高,让学生从上面学生说出的算式中选择两道题进行计算。

3、概括分数成整数的计算方法。

让学生自己归纳计算方法,并尝试用字母表示这个计算方法如:b/a×c=b×c/a。

总之,给学生发现的机会,他们能自己做的我们不告诉他们。如1、他们会发现几个相同分数相加用乘法比较简便,能发现分数乘整数的意义。2、他们能自己计算分数乘整数的式题。3、他们会自己概括出分数乘整数的计算方法。这些方面我们都要给学生机会。

同时我感觉到,这节课是六年级数学的第一课,在教学时还要注意以下几点:

一、给孩子鼓劲儿,让孩子看到希望。

告诉他们“我们这一学期数学课主要学习的都是有关分数的.知识,六个单元中有四个单元都是有关分数的知识。这部分知识和以前联系不大,只要从现在开始,加油,都能把这部分知识学好!”老师也要满怀信心的对待每一个孩子,给不同层次的孩子以机会,真正在课堂上关注他们,让他们学得幸福,感受到成功,感受到付出之后的快乐,相信自己能越来越好!

二、别让孩子掉队,给接受能力稍慢的孩子吃一吃偏饭。

我们的老师都很敬业,这一点我从来都不怀疑,但是有时后我们的方法不够合适。就拿给学困生辅导来说吧,很多老师都要面临这个问题,不管是否课改,一些基本的东西都是要孩子会的。在给学困生补习的时候,要注意(1)及时,有些教师总是快考试的时候才想到要给差生辅导,那时侯内容太多,他们已经接受不了了。所以要及时给他们辅导。(2)要让他们自己说解题的思路,说做某一类题的时候应该注意什么,不要让他们光做题,不要让他们死记硬背一些东西,要让他们理解。

三、理解分数乘法含义、尝试计算。

从分数加法的口算引入,2/5+1/5=、3/7+2/7=,从2/9+2/9+2/9.......2/9(30个2/9相加)让学生感受到这样的算式非常罗嗦,不好读,而且不好计算。让学生自然想到用乘法算,2/9×30让学生自己说一说表示的含义,理解分数乘法的意义。

同时让学生说出另外一个分数乘以整数的算式,丛中选择一些算式让学生说一说表示的含义。然后试着计算2/9×4,鼓励学生自己想办法计算,可以用不同的方法。2/9×5,让学生独立计算,并试着用自己的话概括分数乘整数的计算方法。练习,从学生自己说出的算式中选择两道计算。

分数除以整数教学设计人教版篇十

在小数除以整数的教学中,我采用“先学后教,当堂训练”的教学模式,学生在知道了学习目标和自学指导后,开始自学课本上16页例1例2,并要求把课后的做一做完成。

自学完后,学生很快把课本上的题做完,并且大部分学生做的不错,板演的几位同学都能清晰的说出自己是怎么做的,下面同学也点头表示明白。本来以为这节课是难点,而在学生的自学、做题、解释、总结等环节中轻松的结束了。我自己当时都和惊讶,本来自己准备好多要讲的.东西都不知道从哪说起了。四十分钟的课短短二十分钟就结束了,接着学生就进入了当堂训练的环节中了。

本节课与以往相比,我有点英雄无用武之地的感觉,以前都是自己声嘶力竭的讲,自己累,学生也不认真听,现在学生成为学习的主体,而我成为一个指导后旁观者。这节课的重点是让学生明白小数除以整数的算理,也就是余下的2和24代表什么?本节课在学生的快速做题并且都做得不错的情况下,没来得及回顾。上完课我觉得这个地方可能学生没弄懂。

当我上到例3时,才彻底的了解到我低估了学生的自学能力,当我问到1.8除以1.2余下的6表示什么时,学生异口同声的说6个十分之一。在例1中的24个十分之一,学生已经很理解了。

“先学后教,当堂训练”教学模式让我感觉到了学生的学习能力也是很强的,期待以后的课中会给我们带来意想不到的惊喜。

分数除以整数教学设计人教版篇十一

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

教学重点。

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

教学难点。

引导学生总结分数乘整数的计算法则。

教学过程。

一、设疑激趣。

(一)下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)。

(二)计算下面各题,说说怎样算?

++=++=。

说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。

同学之间交流想法:++===。

×3这个算式表示什么?为什么可以这样计算?

教师板书:++=×3=。

为什么只把分子与整数相乘,分母10不和3相乘?

二、提出问题。

(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

1、读题,说说块是什么意思?

2、根据已有的知识经验,自己列式计算。

三、解决问题。

(一)学生汇报,并说一说你是怎样想的?

方法1:++===(块)。

方法2:×3=++====(块)。

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的`。

区别:一种方法是加法,另一种方法是乘法。

教师板书:++=×3。

(三)为什么可以用乘法计算?

加法表示3个相加,因为加数相同,写成乘法更简便。

(四)×3表示什么?怎样计算?

表示3个的和是多少?

用分子2乘3的积做分子,分母不变。

(五)提示:为计算方便,能约分的要先约分,然后再乘。

四、归纳、概括:

(一)结合=×3=和++=×3=,说明分数乘整数的意义与整数乘法的意义相同,都是表示求几个相同加数的和的简便运算。

(二)分数乘整数计算方法:用分子和整数相乘的积做分子,分母不变。能约分的先约分。

五、拓展应用。

(一)基本练习。

1、改写算式。

+++=()×()。

+++++++=()×()。

2、只列式不计算:3个是多少?5个是多少?

3、计算(说一说怎样算)。

×4×6×21×4×8。

思考:为什么先约分再相乘比较简便?

(二)综合练习。

应用题。

(三)拓展练习。

1、一条路,每天修千米,4天修多少千米?

2、一条路,每天修全路的,4天修全路的几分之几?

六、板书设计。

分数乘整数。

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

例1、小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:++===(块)。

用乘法算:×3=++====(块)。

答:3人一共吃了块。

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

分数除以整数教学设计人教版篇十二

班级姓名小组小组评价。

学习目标:

1、掌握分数乘分数的计算方法,并能运用计算方法熟练进行计算。

2、掌握分数乘分数的简便算法,掌握积与因数的关系,能灵活运用两者之间。

的关系进行正确判断。

3、激情投入,阳光战示,全力以赴,挑战自我。

重点:分数乘分数的简便算法。

难点:因数与积的关系。

使用说明与学法指导:

先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够结合具体情境理解分数乘分数的简便算法,掌握积与因数的关系,能灵活运用两者之间的关系进行正确判断。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。

一、自主学习:

1、自学课本p11页。

2、计算:

3、填空:

1)、×6表示();

×表示();

2)、一根绳子长81米,剪去,还剩这根绳的,还剩()米,这里是把()看作单位“1”。

二、合作探究:

思考:你想到了几种计算方法,有什么技巧?

小结:分数乘分数的简便算法:

例2、比较大小。

思考;你发现了什么规律?

小结:当一个因数大于1时,积()另一个因数(0除外);

当一个因数小于1时,积()另一个因数(0除外);

当一个因数等于1时,积()另一个因数;

三、学以致用:

1、直接写出得。

2、

3、我能辩对错。(对的打“”,错的打“”)。

1)、一个数乘真分数,积小于这个数。()。

2)、几个假分数相乘的积大于1,几个真分数相乘的积小于1。()。

3)、x××x()。

4)、分数乘法的意义与整数乘法的意义相同。()。

5)、如果a×=b×,那么a大于b。()。

4、解决问题:

1)、一根电线第一次用去米,第二次用去的是第一次的,第二次用去多少米?

分数除以整数教学设计人教版篇十三

一、教学目标:

1、理解一个数除以小数的计算方法,会计算除数是小数的除法。

2、掌握将除数是小数的除法转化成除数是整数的除法的推导过程。

二、教学重、难点。

重点:一个数除小数的计算方法。

难点:1、把除数转化为整数然后再除的方法。

2、确定商中小数点的位置。

预计教学时间:2节。

三、教学过程:

(一)基础训练。

【口算】。

2.8÷7=0.36÷12=5.05÷5=1.2÷4=。

2.6÷13=9.1÷7=10.2÷2=5.1÷3=。

(二)新知学习。

【典型例题】。

1、学习例5:

想:除数是小数怎么计算?

(1)小组讨论计算方法。

(2)独立完成。

(3)小结方法:可以把除数转化成整数。被除数和除数同时扩大相同的倍数,商不变。

2.学习例6,进一步体会小数除法的算理、算法。

(1)学生列出竖式,并说明意义。

(2)小组讨论算法。

(3)汇报:鼓励学生用自己的语言解释理由并进行交流。

【小结】怎样计算一个数除以小数?

(1)除数是小数的,可以把被除数与除数同时扩大相同倍数,把除数转化为整数再除。

(2)被除数位数不够,在末尾用“0”补足再除。

(三)巩固练习。

【基础练习】。

1.书p22做一做第一题。

2.书p22做一做第二题。

3.书p24第3题。

4.书p24第2题。

4、

【提高练习】。

5、书p24第4题。

6、书p24第5题。

7、书p25第6题。

8、书p25第8题。

能说一说其中的规律吗?

【拓展练习】。

9、书p25第7题。

10、书p25第9题。

(四)全课总结。

怎样计算小数除以整数?

(1)按整数除法的方法去除。

(2)商的小数点要和被除数的小数点对齐。

(3)整数部分不够除,商0,点上小数点。

(4)如果有余数,要添0再除。

(五)教学效果评价(小测题)。

1.计算下面各题。

26÷0.13=6.21÷0.03=210÷1.4=。

分数除以整数教学设计人教版篇十四

一、教学目标:

1、理解除数是小数的小数除法的方法。

2、掌握除数是小数的小数除法的方法。

二、教学重点:

掌握除数是小数的小数除法的方法。

难点:除数扩大几倍,被除数也要扩大几倍。

三、教学准备:多媒体:

四、教学过程:

a、准备题:

计算:0.45÷912.25÷5。

b、引入新课:

今天我们继续学习小数的除法。

c、讲授新课:

例6:一根钢筋长3.6米,如果把它截成0.4米长的小段。可以截成几段?

1、要求学生用自己想的方法独立完成。(有两种可能)。

a、3.6米=36分米0.4米=4分米。

36÷4=9(段)。

b、3.6÷0.4=9(段)。

2、说一说两题的解题思路。

3、你从以上两种方法计算中,你觉得这两种方法有什么共同点?

4、说一说除数是小数的除法,可以怎么算?

师生小结:除数是小数的除法,先转化成除数是整数的除法再计算。

例7:0.065÷0.05=。

1、除数是0.05,在计算中该怎么办?

2、学生独立计算,一生板演。

3、让学生说说解题过程。

4、讨论:商的小数点要和什么对齐?

d、巩固练习:

0.72÷0.40.096÷0.80.051÷0.03。

1、先说一说把每题除数转化整数的除法。

2、学生独立完成,教师巡视。

3、学生讲评,说一说错的原因。

e、课堂小结:

今天我们学习了什么内容?与除数是整数除法有什么不同?

f、强化练习:

1、p-32口算训练第二题,校对。

在口算过程中,因注意哪些方面?

2、p-32第三题第一排。

g、布置作业:p-32第三题余下三道。

课后小结:本课内容,我用不同的方式上了两次,第一节课我是按照教案上所写的过程上下来的。在第一个例题中用一种很强硬的方式让学生接受除数是小数的除法,转化成除数是整数的除法,但对为什么不转化成整数除法,学生还不是很清楚。第二个例题就对刚才的'结论进行应用。整节课下来,觉得学生的主动性体现的不够,教学不够开放。为此,在另一班的教学中,我进行了改动,出示第一个例题后,[内容来于淘-教_案-网]让学生用以前的知识尝试解决,得到除数是小数的除法可以转化,很多学生都认为转化成整数除法,接着,教师抛出第二个例题,让学生独立完成,指名不同做法的同学板演,通过讨论分析,知道除数是小数的除法,只要转化成除数是整数的触发就可以了,然后让学生说说转化的时候要注意什么。对这种方法进行强化。学生的主动性和探究能力得到了发展。学生学得也很有兴趣!

【本文地址:http://www.xuefen.com.cn/zuowen/13535555.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档