分数除以整数教学设计人教版(热门12篇)

格式:DOC 上传日期:2023-11-20 04:20:29
分数除以整数教学设计人教版(热门12篇)
时间:2023-11-20 04:20:29     小编:翰墨

多阅读名人传记,可以汲取他们的智慧和经验。要写一篇完美的总结,首先要有明确的目标和主题。下面是一些总结的范例,希望能够给大家提供一些写作的灵感。

分数除以整数教学设计人教版篇一

教学目的:1、让学生理解整数除以分数的计算方法,能正确的进行整数除以分数的计算。

2、通过计算方法的推导,培养学生的自主探究能力。并渗透转化的数学思想。

教学重点:能正确地计算整数除以分数。

教学难点:理解整数除以分数的计算方法。

教学过程:

1、一、创设情景,揭示课题。

14/15÷213/15÷267/10÷213/5÷24/5÷6。

2、回忆在过去学习数学中你学过哪些思考问题的方法?并举一个例子说一说你在解决哪个数学问题时用到转化的思想方法的。

3、创设情景。

5、引出课题:整数除以分数。

二、自主探究获取新知。

1、出示例题:一辆摩托车3/10小时行驶18千米,一小时能行驶多少千米?

2、读题。

师问:求一小时行多少千米怎样列式?为什么这样列式?

3、小小组合作探究。

18÷3/10的计算方法。

4、集体交流计算的方法。

5、总结方法。

三、功固提高,拓展延伸。

1、基本练习。

(1)12÷3/5=12×9÷6/7=9×()。

4÷2/3=4□()2÷2/9=2□()。

3÷1/4=()□()10÷5/3=()□()。

(2)计算:8÷2/312÷5/6。

独立计算,指名板演,集体订正。

师:计算整数除以分数时你想提醒大家注意些什么?

2、综合练习。

(1)夺红旗比赛做p37n1、n3。

(2)做一做、比一比。

做p37n2。

师:通过刚才的计算,你知道知道整数除以分数与整数乘分数计算方法有什么不同?

(3)做情景题。

四、总结反思,发展能力。

这节课你又学到了知识?请回忆一下我们是怎样得出整数除以分数的计算方法的?

整数除以分数我们已经会做了,那么分数除以分数你会做吗?课后试一试。

msn(中国大学网)。

分数除以整数教学设计人教版篇二

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

教学重点。

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

教学难点。

引导学生总结分数乘整数的计算法则。

教学过程。

一、设疑激趣。

(一)下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)。

(二)计算下面各题,说说怎样算?

++=++=。

说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。

同学之间交流想法:++==3××3=。

×3这个算式表示什么?为什么可以这样计算?

教师板书:++=×3=。

二、自主探索。

(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

1、读题,说说块是什么意思?

2、根据已有的知识经验,自己列式计算。

三、交流、质疑。

(一)学生汇报,并说一说你是怎样想的?

方法1:

方法2:

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的。

区别:一种方法是加法,另一种方法是乘法。

教师板书:

(三)为什么可以用乘法计算?

加法表示3个相加,因为加数相同,写成乘法更简便。

(四)×3表示什么?怎样计算?

表示3个的和是多少?

用分子2乘3的积做分子,分母不变。

(五)提示:为计算方便,能约分的要先约分,然后再乘。

四、归纳、概括:

(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?

求几个相同加数的和的简便运算。

(二)分数乘整数怎样计算?

用分子和分母相乘的积做分子,分母不变。

五、巩固、发展。

(一)巩固意义。

1、改写算式。

2、只列式不计算:3个是多少?5个是多少?

(二)巩固法则。

1、计算(说一说怎样算)。

思考:为什么先约分再相乘比较简便?

2、应用题。

(三)对比练习。

1、一条路,每天修千米,4天修多少千米?

2、一条路,每天修全路的,4天修全路的几分之几?

六、课后作业。

(一)的3倍是多少?的10倍是多少?

(二)一个正方形的边长是米,它的周长是多少米?

(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?

七、板书设计。

分数乘整数。

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

分数除以整数教学设计人教版篇三

(概括:整数乘法表示求几个相同加数的和的简便运算)。

(二)计算下面各题,说说怎样算?

++=++=。

同学之间交流想法:++==3××3=。

×3这个算式表示什么?为什么可以这样计算?

教师板书:++=×3=。

(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

1.读题,说说块是什么意思?

2.根据已有的知识经验,自己列式计算。

(一)学生汇报,并说一说你是怎样想的?

方法1:++===(块)。

方法2:×3=++====(块)。

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的.。

区别:一种方法是加法,另一种方法是乘法.。

教师板书:++=×3。

(三)为什么可以用乘法计算?

加法表示3个相加,因为加数相同,写成乘法更简便.。

(四)×3表示什么?怎样计算?

表示3个的和是多少?

++====,用分子2乘3的积做分子,分母不变.。

(五)提示:为计算方便,能约分的要先约分,然后再乘.。

(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?

求几个相同加数的和的简便运算.。

用分子和分母相乘的积做分子,分母不变。

(一)巩固意义。

1.改写算式。

+++=()×()。

+++++++=()×()。

2.只列式不计算:3个是多少?5个是多少?

(二)巩固法则。

1.计算(说一说怎样算)。

×4×6×21×4×8。

思考:为什么先约分再相乘比较简便?

2.应用题。

(三)对比练习。

1.一条路,每天修千米,4天修多少千米?

2.一条路,每天修全路的,4天修全路的几分之几?

(一)的3倍是多少?的10倍是多少?

(二)一个正方形的边长是米,它的周长是多少米?

(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.。

例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:++===(块)。

用乘法算:×3=++====(块)。

答:3人一共吃了块.。

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.。

1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为教学重点服务服务,使学生顺利掌握“分数乘整数的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。

2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。

分数除以整数教学设计人教版篇四

这节课的教学目标是分数除法的意义以及分数除以整数的算理和计算方法。本节课为使学生理解分数除法的意义,我先对整数除法进行了复习。从整数除法迁移到分数除法,在例题教学中,通过让学生画一画,折一折,在具体操作中理解分数除以整数。在理解分数除以整数的算理时,我创设了折纸的操作活动,让学生大胆猜想,在学生猜想后,我放手让孩子用自己的方法来验证,然后全班交流。学生操作时,先要求学生在草稿本上画一画,再让学生折纸,在折纸时学生出现两种折纸的方法。

一种竖着折,即平均分成两份;一种横着着,即转化为求这张纸五分之四的二分之一。在共同交流的同时,我有意识的选择竖着折的这种先讲,让学生明白为什么是分子除以2;再问学生有没有不同的,再请学生上前讲,通过学生的讲解和我的引导让学生理解了为什么可以乘以除数的倒数。

在用不同方法解决了问题后,让学生选择自己喜欢的一种并说明理由。然后出现除数3的这种,按第一种方法做,行不通;按第二种方法能够顺利解决。进一步让学生明白除以一个数等于乘以它的倒数。学生感知第二种方法是最优的选择。

虽然本节课学生明白了意义,知道了算理,达成了目标,但本课仍存在着明显的不足之处:如在学生自主探究与合作交流时以及学生展评时没有给学生更多的表达空间,总结方法及优化时应放手让学生去多说,学生在计算时出现错误时,让学生具体说说错误的原因,不要急于进行下一阶段内容。这是我在今后的课堂教学中应该注意的问题。

将本文的word文档下载到电脑,方便收藏和打印。

分数除以整数教学设计人教版篇五

教学目标:

1、使学生理解一个数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算,并培养学生的推理归纳能力。

2、使学生在探索整数除以分数、分数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。

3、培养学生迁移、概括的能力。

教学重点:

掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算。

教学难点:

理解分数除法的意义,体会数学知识之间的内在联系。

教学准备:

展台。

教学过程:

一、创设情境,激趣导入。

谈话:同学们,你们喜欢布艺手工劳动吗,会做什么呀?看我们布艺小组同学做的书信袋,既环保又实用,多么有创意。

二、自主探索,获取新知。

1、说说你了解到的信息,能提出什么问题?学生找出信息,提出问题。

2、红点问题一:2米布可以做多少个小书信袋?引导学生自己观察。

师:要求2米布可以做多少个小书信袋,就是求2米里面有多少个1/5米。怎样列算式?

师:这个算式表示的意义就是:2里面有几个1/5。

小组讨论,如何计算呢?引导学生用线段图帮助理解。师展示分析过程。“1”里面有5个1/5,2里面就有(2×5)个。也就是10个1/5。也就是2÷1/5=2×5=10(个)。所以结果等于10。

师:那么,5和1/5有什么关系呢?

4、红点问题二:2米布能做几个大书信袋?小组讨论交流,得出结果。2÷2/5=2×5/2=5(个)。

从而我们也可以得出:2除以2/5也就是2乘2/5的倒数。

5、绿点问题。

让学生独立解决,集体交流算式的意义和算法。

小组讨论,归纳总结:一个数除以分数,等于这个数乘分数的倒数。

三、自主练习。

1、自主练习第1题。

练习时,要培养学生认真仔细的学习习惯。教师可适当补充类似的练习,以逐步提高学生的计算水平。

2、自主练习第2题。

让学生独立做在练习本上,然后集体订正。练习时,要让学生解答完第1小题后,讨论数量关系,在明确“燃烧总量除以时间等于每小时的燃烧量”的基础上,再来解答第2小题。这样便于学生通过练习,全面巩固知识。

四、全课小结。

1、今天我们学习了什么新知识?

2、一个数除以分数的计算法则是什么?

3、计算一个数除以分数应注意什么?

分数除以整数教学设计人教版篇六

教学重点。

教学难点。

引导学生总结分数乘整数的计算法则.。

教学过程。

一、设疑激趣。

(一)下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)。

(二)计算下面各题,说说怎样算?

++=++=。

同学之间交流想法:++==33=。

3这个算式表示什么?为什么可以这样计算?

教师板书:++=3=。

二、自主探索。

(一)出示例1。

小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

1.读题,说说块是什么意思?

2.根据已有的知识经验,自己列式计算。

三、交流、质疑。

(一)学生汇报,并说一说你是怎样想的?

方法1:++===(块)。

方法2:3=++====(块)。

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的.。

区别:一种方法是加法,另一种方法是乘法.。

教师板书:++=3。

(三)为什么可以用乘法计算?

加法表示3个相加,因为加数相同,写成乘法更简便.。

(四)3表示什么?怎样计算?

表示3个的和是多少?

++====,用分子2乘3的积做分子,分母不变.。

(五)提示:为计算方便,能约分的要先约分,然后再乘.。

四、归纳、概括:

(一)结合=3=和++=3=,说一说一个分数乘整数表示什么?

求几个相同加数的和的简便运算.。

(二)分数乘整数怎样计算?

用分子和分母相乘的积做分子,分母不变。

五、巩固、发展。

(一)巩固意义。

1.改写算式。

+++=()()。

+++++++=()()。

2.只列式不计算:3个是多少?5个是多少?

(二)巩固法则。

1.计算(说一说怎样算)。

462148。

思考:为什么先约分再相乘比较简便?

2.应用题。

(三)对比练习。

1.一条路,每天修千米,4天修多少千米?

2.一条路,每天修全路的,4天修全路的几分之几?

六、课后作业。

(一)的3倍是多少?的10倍是多少?

(二)一个正方形的边长是米,它的周长是多少米?

(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?

七、板书设计。

分数乘整数。

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.。

例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:++===(块)。

用乘法算:3=++====(块)。

答:3人一共吃了块.。

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.。

分数除以整数教学设计人教版篇七

一、教学目标:

1、理解一个数除以小数的计算方法,会计算除数是小数的除法。

2、掌握将除数是小数的除法转化成除数是整数的除法的推导过程。

二、教学重、难点。

重点:一个数除小数的计算方法。

难点:1、把除数转化为整数然后再除的方法。

2、确定商中小数点的位置。

预计教学时间:2节。

三、教学过程:

(一)基础训练。

【口算】。

2.8÷7=0.36÷12=5.05÷5=1.2÷4=。

2.6÷13=9.1÷7=10.2÷2=5.1÷3=。

(二)新知学习。

【典型例题】。

1、学习例5:

想:除数是小数怎么计算?

(1)小组讨论计算方法。

(2)独立完成。

(3)小结方法:可以把除数转化成整数。被除数和除数同时扩大相同的倍数,商不变。

2.学习例6,进一步体会小数除法的算理、算法。

(1)学生列出竖式,并说明意义。

(2)小组讨论算法。

(3)汇报:鼓励学生用自己的语言解释理由并进行交流。

【小结】怎样计算一个数除以小数?

(1)除数是小数的,可以把被除数与除数同时扩大相同倍数,把除数转化为整数再除。

(2)被除数位数不够,在末尾用“0”补足再除。

(三)巩固练习。

【基础练习】。

1.书p22做一做第一题。

2.书p22做一做第二题。

3.书p24第3题。

4.书p24第2题。

4、

【提高练习】。

5、书p24第4题。

6、书p24第5题。

7、书p25第6题。

8、书p25第8题。

能说一说其中的规律吗?

【拓展练习】。

9、书p25第7题。

10、书p25第9题。

(四)全课总结。

怎样计算小数除以整数?

(1)按整数除法的方法去除。

(2)商的小数点要和被除数的小数点对齐。

(3)整数部分不够除,商0,点上小数点。

(4)如果有余数,要添0再除。

(五)教学效果评价(小测题)。

1.计算下面各题。

26÷0.13=6.21÷0.03=210÷1.4=。

分数除以整数教学设计人教版篇八

1、使学生理解一个数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算,并培养学生的推理归纳能力。

2、使学生在探索整数除以分数、分数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。

3、培养学生迁移、概括的能力。

掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算。

理解分数除法的意义,体会数学知识之间的内在联系。

展台。

一、创设情境,激趣导入。

谈话:同学们,你们喜欢布艺手工劳动吗,会做什么呀?看我们布艺小组同学做的书信袋,既环保又实用,多么有创意。

二、自主探索,获取新知。

1、说说你了解到的信息,能提出什么问题?学生找出信息,提出问题。

2、红点问题一:2米布可以做多少个小书信袋?引导学生自己观察。

师:要求2米布可以做多少个小书信袋,就是求2米里面有多少个1/5米。怎样列算式?

师:这个算式表示的意义就是:2里面有几个1/5。

3、整数除以分数的计算方法。

小组讨论,如何计算呢?引导学生用线段图帮助理解。师展示分析过程。“1”里面有5个1/5,2里面就有(2×5)个。也就是10个1/5。也就是2÷1/5=2×5=10(个)。所以结果等于10。

师:那么,5和1/5有什么关系呢?

4、红点问题二:2米布能做几个大书信袋?小组讨论交流,得出结果。2÷2/5=2×5/2=5(个)。

从而我们也可以得出:2除以2/5也就是2乘2/5的倒数。

5、绿点问题。

让学生独立解决,集体交流算式的意义和算法。

小组讨论,归纳总结:一个数除以分数,等于这个数乘分数的倒数。

三、自主练习。

1、自主练习第1题。

练习时,要培养学生认真仔细的学习习惯。教师可适当补充类似的练习,以逐步提高学生的计算水平。

2、自主练习第2题。

让学生独立做在练习本上,然后集体订正。练习时,要让学生解答完第1小题后,讨论数量关系,在明确“燃烧总量除以时间等于每小时的燃烧量”的基础上,再来解答第2小题。这样便于学生通过练习,全面巩固知识。

四、全课小结。

1、今天我们学习了什么新知识?

2、一个数除以分数的计算法则是什么?

3、计算一个数除以分数应注意什么?

分数除以整数教学设计人教版篇九

1、理解分数除法的含义。

2、经历分数除以整数计算方法的探究过程,并能根据题目已知的数据选择合适的方法进行计算。

3、体验合作探究的乐趣,培养学生的协作精神。

2、根据题目已知数据选择合适的方法进行计算。

课件,导学案,达标测验卷。

(一)单元导入,明确目标:

1、出示单元知识树:

这节课,我们继续学习第三单元的分数除法,第三单元主要包括三部分内容:倒数的认识,分数除法,分数除法应用。倒数的认识是上一节课的内容,我们已经学习了乘积是1的两个数互为倒数,这一部分是分数除法学习的基础,而分数除法又包括三个方面:分数除以整数,一个数除以分数,这个数可以是整数,也可以是分数,分数混合运算,包括分数加减法,分数乘除法。本单元的最后一节是对前面两节内容的应用,利用分数除法解决实际中的问题。我们今天要研究的内容是分数除以整数。

2、出示本节课的学习目标:

1.理解分数除法的意义。

在本节课的最后我们要根据各个小组的表现评选出这节课的“优秀小组”。

(二)自主学习,合作探究:

1、出示问题:

把一张纸的4/5平均分成2份,每份是这张纸的几分之几?

师:我们知道,把一个整数平均几份,求每份是多少,用除法计算,而。

把一张纸的4/5平均分成两份,求每份是多少,也可以用除法计算。

列示为:4/5÷2=?

师:分数除法的意义与整数除法的意义相同,是已知两个因数的积与其中一个因数,求另一个因数的运算。

师:4/5÷2=到底如何计算呢?请大家借助手中的正方形纸折一折,也可以在练习本上画一画,还可以借助你学过的旧知识进行验证,开始。

师:你是怎么算的?

师:4/5÷2=可以看做把4个1/5平均分成2份,每份是(4÷2)个1/5,也就是2/5。用式子来表示就是4/5÷2=4÷2/5=2/5。也就是用分子除以整数,分母不变。

师:还有别的方法吗?

师:把把一张纸的4/5平均分成2份,就是求4/5的一半是多少,也就是4/5的1/2,4/5÷2=4/5×1/2,1/2就是2的倒数,把这个式子转化成了分数乘法,用式子表示就是4/5÷2=4/5×1/2=4/10=2/5。

2、比较,优化算法?

师:如果把这张纸平均分成3份,每份是这张纸的几分之几?用你学会的方法进行计算。

由这道题,你发现了什么?

分子是整数的倍数时,分数除以整数(0除外),用分子去除以整数,除得的商做分子,分母不变。分数除以整数(0除外),可以转化为分数乘这个整数的倒数。(任何情况都可以使用)。

(三)巩固训练,拓展提高。

(四)达标检测,课堂小结。

1、完成本节课的达标测验卷。

2、课堂小结:

这节课我们深入研究了分数除以整数的计算,发现分子是整数的倍数时,分数除以整数(0除外),用分子去除以整数,除得的商做分子,分母不变。分数除以整数(0除外),可以转化为分数乘这个整数的倒数。(任何情况都可以使用),下节课我们来一起研究一个数除以分数的计算。

3、评选出本节课的优秀小组。

分数除以整数教学设计人教版篇十

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

教学重点。

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

教学难点。

引导学生总结分数乘整数的计算法则。

教学过程。

一、设疑激趣。

(一)下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)。

(二)计算下面各题,说说怎样算?

++=++=。

说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。

同学之间交流想法:++===。

×3这个算式表示什么?为什么可以这样计算?

教师板书:++=×3=。

为什么只把分子与整数相乘,分母10不和3相乘?

二、提出问题。

(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

1、读题,说说块是什么意思?

2、根据已有的知识经验,自己列式计算。

三、解决问题。

(一)学生汇报,并说一说你是怎样想的?

方法1:++===(块)。

方法2:×3=++====(块)。

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的`。

区别:一种方法是加法,另一种方法是乘法。

教师板书:++=×3。

(三)为什么可以用乘法计算?

加法表示3个相加,因为加数相同,写成乘法更简便。

(四)×3表示什么?怎样计算?

表示3个的和是多少?

用分子2乘3的积做分子,分母不变。

(五)提示:为计算方便,能约分的要先约分,然后再乘。

四、归纳、概括:

(一)结合=×3=和++=×3=,说明分数乘整数的意义与整数乘法的意义相同,都是表示求几个相同加数的和的简便运算。

(二)分数乘整数计算方法:用分子和整数相乘的积做分子,分母不变。能约分的先约分。

五、拓展应用。

(一)基本练习。

1、改写算式。

+++=()×()。

+++++++=()×()。

2、只列式不计算:3个是多少?5个是多少?

3、计算(说一说怎样算)。

×4×6×21×4×8。

思考:为什么先约分再相乘比较简便?

(二)综合练习。

应用题。

(三)拓展练习。

1、一条路,每天修千米,4天修多少千米?

2、一条路,每天修全路的,4天修全路的几分之几?

六、板书设计。

分数乘整数。

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

例1、小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:++===(块)。

用乘法算:×3=++====(块)。

答:3人一共吃了块。

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

分数除以整数教学设计人教版篇十一

一、教学目标:

1、理解除数是小数的小数除法的方法。

2、掌握除数是小数的小数除法的方法。

二、教学重点:

掌握除数是小数的小数除法的方法。

难点:除数扩大几倍,被除数也要扩大几倍。

三、教学准备:多媒体:

四、教学过程:

a、准备题:

计算:0.45÷912.25÷5。

b、引入新课:

今天我们继续学习小数的除法。

c、讲授新课:

例6:一根钢筋长3.6米,如果把它截成0.4米长的小段。可以截成几段?

1、要求学生用自己想的方法独立完成。(有两种可能)。

a、3.6米=36分米0.4米=4分米。

36÷4=9(段)。

b、3.6÷0.4=9(段)。

2、说一说两题的解题思路。

3、你从以上两种方法计算中,你觉得这两种方法有什么共同点?

4、说一说除数是小数的除法,可以怎么算?

师生小结:除数是小数的除法,先转化成除数是整数的除法再计算。

例7:0.065÷0.05=。

1、除数是0.05,在计算中该怎么办?

2、学生独立计算,一生板演。

3、让学生说说解题过程。

4、讨论:商的小数点要和什么对齐?

d、巩固练习:

0.72÷0.40.096÷0.80.051÷0.03。

1、先说一说把每题除数转化整数的除法。

2、学生独立完成,教师巡视。

3、学生讲评,说一说错的原因。

e、课堂小结:

今天我们学习了什么内容?与除数是整数除法有什么不同?

f、强化练习:

1、p-32口算训练第二题,校对。

在口算过程中,因注意哪些方面?

2、p-32第三题第一排。

g、布置作业:p-32第三题余下三道。

课后小结:本课内容,我用不同的方式上了两次,第一节课我是按照教案上所写的过程上下来的。在第一个例题中用一种很强硬的方式让学生接受除数是小数的除法,转化成除数是整数的除法,但对为什么不转化成整数除法,学生还不是很清楚。第二个例题就对刚才的'结论进行应用。整节课下来,觉得学生的主动性体现的不够,教学不够开放。为此,在另一班的教学中,我进行了改动,出示第一个例题后,[内容来于淘-教_案-网]让学生用以前的知识尝试解决,得到除数是小数的除法可以转化,很多学生都认为转化成整数除法,接着,教师抛出第二个例题,让学生独立完成,指名不同做法的同学板演,通过讨论分析,知道除数是小数的除法,只要转化成除数是整数的触发就可以了,然后让学生说说转化的时候要注意什么。对这种方法进行强化。学生的主动性和探究能力得到了发展。学生学得也很有兴趣!

分数除以整数教学设计人教版篇十二

教学目标:

1、使学生掌握被除数的整数部分不够除和除到被除数的小数末尾还有余数的两种特殊情况。

2、进一步掌握除数是整数的小数除法的计算方法,能正确、熟练地进行除数是整数的小数除法的计算。

3、引导学生通过整数除法的验算知识迁移到除数是整数的小数除法的验算。

4、培养学生书写工整,格式规范的好习惯。

教学重难点:使学生掌握被除数的整数部分不够除和除到被除数的小数末尾还有余数的两种特殊情况。

教学准备:ppt。

教学过程:

一、复习。

1、口算。

4.2÷37.2÷62.8÷2。

16.8÷85.5÷54.8÷4。

2、不改变数的大小,把下面各数改写成三位小数的数。

2.4=117=5=18=。

二、新授课。

1、教学例2。

出示例题。

让学生独立分析,列式解答:5.6÷7。

提问:这道算式有什么特点?(商的个位不够商1)。

商的个位不够商啊,商的个位应该写什么数?为什么?

用56个十分之一除以7,可根据除数是整数的小数除法法则进行计算。

小结:小数除以整数,根据除数是整数的小数除法法则进行计算,除的商的哪一位不够商1,就要在哪一位上写0占位。

2、练习:做一做的第一题。

学生独立计算后,教师讲评。重点要讲解为什么个位上要写0。

3、教学例3。

(1)学生独立分析,然后列式:1.8÷12。

(2)学生试做。

提问:为什么在个位上写0呢?

18个十分之一除以12商是多少?

余数6表示什么?

6除以12商不够1怎么办?

60个百分之一除以12,商是多少?

4、做一做第2题。

提问:当除到被除数的末尾仍有余数时,该怎么办?

5、想一想:前面几例小数除以整数是怎样计算的?

怎样验算上面的小数除法呢?自己试一试!

小结:小数除法的验算和整数除法的验算方法相同。

三、练习:

1、比一比,算一算。

56÷891÷14。

5.6÷89.1÷14。

2、计算。

7.8÷313.6÷174.6÷8。

3、下面的计算对吗?如果不对,错在哪里?

24÷15=161.26÷18=0.7。

四、小结:今天你有什么收获?

五、作业:《作业本》。

【本文地址:http://www.xuefen.com.cn/zuowen/13497403.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档