总结是一种对事物逻辑关系的整理和概括,可以让我们更好地理解问题。总结应该注重逻辑性和系统性,做到有始有终。小编为大家收集的总结范文可能仅是冰山一角,大家可以通过阅读更多的总结文章来丰富自己的写作素材和提升写作水平。
数学史论文篇一
家具设计与制造专业自招生以来,始终坚持教学模式必须从以知识发展为导向的学科中心.走向以社会需求为导向的学生能力中心模式,结合每届学生就业情况,深入就业单位调研,走访用人单位对人才培养的评价,与毕业学生沟通座谈,全面了解行业发展及社会对人才的需求.通过分析就业趋势变化,邀请行业、企业专家对专业人才培养方案进行论证,不断完善专业培养方案。
2、科学设置课程体系。
细化应用型人才培养应掌握的基础知识、实践能力和动手能力要求,详细研究课程的性质和内容,注意课程设置的前后衔接及课时安排,对传统课程的经典内容加以强化。
3、加强实践环节针对性。
发挥校内、校外实习实训基地作用,强化学生动手操作能力培养,充分体现学生的主体地位,在校内实训基地完成《家具设计》、《工艺与设备》、《模型制作》、《材料学》等课程的实践学习:组织学生参与行业设计大赛.真题真做。学生利用课堂学习时间、课外业余时间,用他们自己的计算机查找资料,进行作品设计,全过程组织学生进行典型结构分析,大赛作品案例分析,从小组讨论,到课堂全班讨论.从学校机房到下学生宿舍的计算机指导,教师通过课堂全面指导、下宿舍逐个指导,参与学生的讨论等,帮助学生对所学知识进行总结和应用,学生动手能力得到强化,学习的主动性和积极性明显提高,不仅强化了学生独立思考的能力,也培养了学生之间相互协作的团队精神,学生自信心明显增强;每届召开专场毕业生人才供需见面会,企业与学生直接交流,双向选择,学生在企业顶岗实习,完成毕业设计等.达到了理论知识与实践过程的紧密结合,实现学生“知识、能力、素质”全面协调发展。
4、用人单位参与课堂教学。
企业提前介入人才培养课程内容建设,根据企业管理人才培养的需求.增加ie工业工程内容、出口产品全过程的检验内容的学习,聘请企业优秀技术员到校授课。课程内容中增加企业最先进设备视频教学等,课程内容丰富,针对性强,实用性强,真正将校内与校外、教室与实验室、协会与企业都融为一个“大课堂”,缩短了学生与企业、社会的距离,做到“了解行业,适用岗位,创新发展”,校企建立共同育人、合作就业,完成了真正的教育和训练,突出应用型人才培养过程的开放性.达到家具人才培养与家具企业人才储备目标相一致。
5、研促进教学。
科学研究是教师自我完善与发展的'过程,革中注重把科学研究作为提高教师素质的关键环节,强调教师科研为人才培养服务,鼓励教师参与行业协会活动,专业教师主持科研项目.教师参与专业评审,及指导学生进行专利设计、论文发表等。教师把科研成果充实到教学环节中,通过科研潜移默化地熏陶着学生,学生参与科研项目、市场调研、撰写论文、专利申请等,综合素质得到提升,学习能力分析能力增强。
6、家具设计与制造专业,坚持产学研用。
突出应用型人才培养,通过不断改革与探索,教育教学质量不断提高,教学效果良好。人才培养模式的改革和创新是深化高等教育改革、提升办学水平的强大动力,我国基础设施建设、城市化进程的加快,给家具行业发展带来不可忽视的推动,家具专业紧紧围绕应用型人才培养目标和创新人才培养观.通过与行业、企业开展各具特色的产学研合作,通过对行业发展、社会人才需求的调研.人才培养方案应用性得到强化,课程体系更趋合理。教学内容实用,创造性地将行业设计大赛、企业订单培养特设课程、专业专场人才供需见面会、学生作品专利等引入学习的全过程,从整体上优化学生的知识、能力、素质结构,参与科研能力增加,学生发表论文、发明专利的数量和质量不断提高,适应社会、行业能力得到提升。人才培养模式的改革,对学生的专业知识水平提高和个性化发展起到了重要作用,培养了学生的创新意识与创新精神,推动了教育理念更新和学生就业能力提高。
数学史论文篇二
课堂是教师的主阵地,也是推进数学新课程改革的主战场。教师按课程的规定,为学生获得数学知识经验、个性发展提供最有效的途径与方法;为学生终身发展,形成科学的世界观、价值观奠定基础。在新的理念下究竟如何展开课堂教学是值得研究的问题。本文就如何进行教学设计谈几点认识。
一、教学设计应有利于发挥学生的主体作用。
学生是学习的主体,所有的新知识只有通过学生自身的“再创造”,才能纳入其认知结构中,才可能成为一个有效的知识。传统课堂设计往往是“教师问,学生答;教师写,学生记”。在这样教学下,学生机械被动地学习,师生缺乏主动对话、沟通、交流。新课程标准要求教师必须转变角色,尊重学生的自主性,以新的理念指导设计教学。在教学过程中,要根据不同学习内容,使学生学习成为在教师指导下自动的建构过程。教师在设计教学目标、组织教学活动等方面,应面向全体学生,突出学生的主体性,充分发挥学生的主观能动性,让学生自主参与探究问题。
二、教学设计应有利于培养学生的合作精神。
当代科学的发展已呈现既高度分化,又高度综合的趋势,单凭个人的力量无法胜任科学研究工作。据统计,诺贝尔奖金有60%是集体获得。美国女科学家哈里特·朱克曼在《科学的精神》一书中说:荣获诺贝尔奖金的研究成果大都是通过合作获得的。
为促进学生的合作交流,教学设计时应考虑到把班级分成几个小组,有明确的责任分工,教师能有效地组织学生的合作学习、交流。这样设计有助于培养学生的合作精神和竞争意识,同时有助于教师的.因材施教,弥补一个教师难以面向有差异的众多学生的教学不足,从而真正体现“不同的人在学习上有不同的发现”的教学目标。在教学学习中,个人努力与合作学习相结合则能促进学生对数学的理解,在交流与讨论中,能够澄清认识,纠正错误。这有助于扩展思路,提高能力,培养合作精神,体会分工协作带来的快乐。
三、教学设计应有利于培养学生的应用意识。
《新课程标准》大大增加了数学建模内容,也就是运用数学思想、方法和知识解决实际问题,已经成为不同层次数学教育重要和基本的内容。因此,我们有必要改变传统教学观念,着力加强数学应用意识的培养,并将之渗透到整个课堂教学过程中。所以教师必须认真研究课程标准,设计富有情趣、联系生活的教学活动,让学生有更多机会从周围熟悉的事物中学习数学,理解数学,使学生自觉地联系数学以及其他学科的知识,让学生参与提出问题、分析问题、解决问题这一全过程,并深刻体会数学的应用价值。
如在学习必修五第一章《数列》最后一节时,可以让学生先去调查亲戚、朋友购房时所选择的付款方式;学习《解三解形》最后一节时,可以让学生设计恰当的方式去测量学校旗杆的高度。
由此看出,这种模式的一个关键点就是围绕学生日常生活来展开,由学生身边的事引出数学问题,使学生体会到数学与生活的紧密和谐关系,可以让他们真正应用数学,并引导他们学会做事。
四、教学设计应有利于培养学生的创新意识。
关注学生的学习以后,还要给他一定的空间,让他突破自己。教学中教师要精心设计教学,不应停留在简单的变式和肤浅的问答形式上,而应让他在学习某些内容时,自己有一些新的发现,获得一些相对他自己而言的新结论。使学生在“观察、联想、类比、归纳、猜想和证明”等一系列探究过程中,体会成功的快乐,从而激发学生创新的欲望。
如在《空间向量与立体几何》一章的教学设计中,一般先复习《平面向量》,然后让学生自己研究,大多数同学类比平面向量的研究方法,能总结出空间向量的计算和应用。这一方法展示了学生对知识的深刻理解,反映更高层次的思维水平,培养学生创新精神的过程,应该看成是培养学生自我发展能力的过程。从多个角度来认识,我们做事情的时候,不必十分在乎学生初级创造的结果,而要重视学生在这个创造过程中人格的建立、能力的发展、学科素养的成长。
随着《课程标准》改革深化,教学理念、教学模式、教学内容等都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,更加适应《新课标》的发展要求,培养好每一个学生。
数学史论文篇三
[摘要]随着我国经济的不断发展,人们对于教育的认识也发生了改变。将数学史融入小学数学课堂教学有助于学生深层次了解数学知识,养成良好的阅读习惯,提高学习兴趣,促进学生的全面发展。本文以论述数学史实践为出发点,通过发现当前小学数学教学过程中存在的突出问题,提出有针对性的解决方案,以期提高数学课堂教学的质量。
[关键词]数学史;小数数学;探讨。
自新课程改革以来,怎样提高小学数学课堂教学效率成为了一项重要的课题[1]。将数学史巧妙融入课堂教学是学校和教师当前非常关心的问题,因为,将数学史融入数学教学能够促使学生对其产生深刻的印象,有助于学生理解和掌握数学知识,还能够提升学生的数学学习兴趣。
一、数学史融入小学数学课程的重要意义。
(一)有助于培养学生的人格。
许多数学家都具有优秀的品质,锲而不舍和勤奋刻苦的精神、顽强拼搏的毅力都令人感动。数学家的工作为人类发展做出了贡献,数学定理、概念以及公式都经过科学家的反复思考、大量演算及推理,虽然无数次的考证中也面临着重重困难,他们并没有气馁,而是突破障碍,最终取得了成功。当前舒适的生活条件和美好的生活环境在很大程度上取决于科学家的顽强拼搏与辛勤付出,因此,数学教师有义务将科学知识的产生过程讲授给学生,使学生养成严谨的治学态度和顽强的意志品质。
(二)有助于丰富学生的知识。
数学史具有很强的教育功能,将其引入小学数学课堂教学有助于小学生高效地学习数学知识、理解数学发展的大致脉络,使学到的数学知识更加深刻[2]。数学史能够使课堂教学内容更加丰富和生动,激发学生的学习兴趣,使数学知识的学习更加有效。数学史中包括很多趣味性强的故事,比如,教师讲授十进制内容时,可以给学生讲解十个手指的故事;数学史包括数学家的.故事;数学史包括趣味游戏,如摆火柴和七巧板拼图;数学史还包括许多历史名题,如四色问题和哥德巴赫猜想。丰富的数学内容能够活跃课堂教学的气氛,有助于学生积极开展数学知识的学习。
(三)有助于培养学生的数学能力。
1.使学生具备正确的数学思维和数学方法。
思维和方法是数学的精髓。数学史与数学思维和方法有着密切的联系,学生可以从数学史学习中形成一套适合自己的思维和学习方法。日本数学家米山国藏认为:科研工作者需要不断学习数学知识,知识永远无法满足他们的需要,数学思维和方法却能满足他们的需要;数学知识暂时存在于脑海中,数学思维和方法却是长期受用,经过一段时间仍能发挥很大的作用,使人一生受益。引用数学史内容时,教师需要剖析数学家主要的思想和方法,旨在帮助学生形成解决问题的思路和方法。在小学数学课堂教学中,教师需要引导学生在学习和体味知识的同时引入思维方法,使学生在头脑中生成印象深刻的学习思想,促进学生对于知识的有效类比与归纳,实现知识的记忆和有效利用。法国数学家阿玛达认为:学生遇到和解决数学问题的过程与科学家研究和探索数学问题有相似之处,当然差异性更多表现在程度上。学习数学史的过程就是学生尊重数学的过程,学生在数学知识学习中遇到的问题能够映射出数学家在探索过程中遇到的问题。当前的数学教材在编排顺序上存在一些不合理之处,主要是重视数学定义、原理、公式等内容的呈现,却忽略了数学史的内容,使得数学学习的顺序和数学知识的探索过程完全相反,学生难以较好地了解数学家探索问题时的解决思路,导致学生缺乏学习主见,只是被动接受知识。数学史能够使学生了解到数学思维的根源,从不同的角度审视问题,不仅开阔了学生的视野,而且使学生在解决数学问题时成功避开障碍,有效解决问题。
2.有助于培养学生的问题解决能力和创造力。
小学数学的教学目的在于帮助学生获得知识,并运用已有知识解决现实生活中存在的问题,培养学生运用已有知识解决实际问题的能力。素质教育的培养目标给教师提出了新的要求,强调学生主观能动性的发挥,尊重学生的人格,培养学生分析与解决问题的能力,实现学生智慧和潜能的开发,促使学生养成健全的人格,培养学生的创新能力,最终提高学生的整体素质。将数学史融入数学课堂教学符合素质教育的需要,具有一定的现实意义。数学史能够培养学生分析与解决问题的能力,帮助学生掌握解决问题的新方法。在学习知识和解决问题的过程中,学生的知识体系也在不断完善,思维能力得到不断的提升,不仅形成了创造性思维,而且培养了创造能力。
(一)注重激发学生兴趣,忽视数学思维与方法渗透。
我国数学史的内容包括多种类型,有数学家解决的数学问题、有针对问题的解决策略、有数学发展史资料,还有数学家在现实生活中遇到的奇特事物。小学数学课堂教学中融入数学史有助于学生对数学知识形成深刻的认识,极大调动了学生的学习兴趣。在教师教育中,课程的设置多以经验为主,以实证研究为决策基础的现象还不多[3]。通常情况下,数学教学只把数学史当成一种辅助性手段,大多数教师将数学史融入课堂教学只是为了提高学生的学习兴趣,并非为了真正实现学生的全面发展。当前,一些版本的数学教材中已经融入了数学史,以数学知识中的“方程”内容为例,教师可以联系古代方程的求解开展教学。
(二)过于展现“正面历史”,淡化“负面历史”
数学经过漫长的发展过程。事实上,数学教师给学生讲授数学知识时,重点讲述具有积极意义的数学史,通过正面的内容促进学生对数学知识的理解,调动学生的学习兴趣,那些有负面色彩的内容却没能客观地介绍给学生。比如,牛顿和莱布尼为了微积分的发现权争夺得不可开交,从中我们可以了解到数学家也会为了荣誉而不惜一切去争斗,这类知识可以加深学生对微积分知识的印象,数学知识不再是刻板和严肃的符号,而是变得十分生动和有趣,学生才能从中认识到自己的不足,从而不断努力学习和充分实践,最终得出实践是检验真理的唯一标准。
一些人对于小学生的数学学习发挥着至关重要的作用,包括教材的编写者、教学研究者以及教师。小学数学课堂教学的效果是大家共同努力的结果,需要大家相互配合,一方面,教学内容中数学史知识的选择要有针对性,能够突出数学史的真实性和科学性;另一方面,数学史知识的筛选要有一定的合理性,既有助于学生对数学思想的理解,又能调动学生的学习兴趣,使小学生主动投入数学学习,实现全面发展。由于小学数学教学内容不能完全与数学史知识相匹配,往往存在不同年级和不同数学内容的限制。比如,教师讲授与图形运动有关的内容时,会涉及到小学六年级的内容,包括角的认识、长度及立体图像;另外,三角形等平面图形的知识和图形运动等内容分散在不同年级的教学中。在实际的数学课堂教学过程中,数学教师要将数学内容和数学史很好地融合在一起,目的是为了保证数学教学的客观性和完整性,将数学知识更好地呈现给学生。
(二)将数学史融入教学过程。
了解数学史的发展可以更好地挖掘高等数学的文化价值[4]。教师在讲授数学知识之前,可以先介绍相关的数学故事,从而为学生营造一种和谐的教学环境,调动学生的学习主动性,点燃他们对于数学知识的学习热情。另外,教师需要运用多种教学方法将数学知识传授给学生。将数学史渗透进小学数学课堂教学是一个极其复杂的过程,恰当的教学手段能够发挥积极的作用,为此,数学教师需要教会学生不同的学习方法,并引导他们在消化与整合后形成符合个体特点的学习方法,从而加深知识的理解,实现学生能力的真正提高。最后,教师在课堂教学中需要引导学生积极探究数学知识的根源,这不仅是素质教育的要求,也是数学教学的目标。
(三)教材编订形式多样化。
目前,我国基础教育阶段普遍使用的教材版本主要有人教版、苏教版、西师版及北师大版,虽然版本不同,却有不少的相似点,包括较少涉及数学史方面的知识。为了解决这个突出的问题,笔者认为可以编写满足小学生发展需要的数学史读本,本着教材多样化的思想,巧妙地将数学史知识融入数学课堂教学中,不仅丰富了学生的数学知识,而且有助于新旧知识的有效整合,还能调动学生的数学学习兴趣,最终提高数学课堂教学的效率。综上所述,当前的小学数学教学中存在一些突出的问题,不利于学生的全面发展,也不能提高课堂教学的质量。因此,本文特别提出引入数学史解决小学数学教学效果不佳的问题。
[参考文献]。
将本文的word文档下载到电脑,方便收藏和打印。
数学史论文篇四
在中学数学教学中,教师在讲解某一知识点时,将与该知识相关的资料讲述给学生听,比如数学家研究出该知识点时采用的方法、运用的路径等,也就是说在教学过程中适当的将数学史分析给学生,从而让学生能够掌握学习数学的方法,同时还可以拓宽学生的知识面,由此可见,在中学数学教学中,数学史拥有着非常重要的作用,因此,研究数学史的应用对中学数学教学来说有十分重要的现实意义。
1.1能够培养出学生的数学创造性思维能力。
在数学教学的过程中,不止要让学生掌握数学知识,还要让学生具备一定的创造性思维能力,具备利用数学知识解决实际问题的能力,这已经发展成为数学教育界的共识,为了完成这一目标,教师在进行中学数学教学时,根据数学史来设计教学内容,有利于培养学生的创造性思维。
1.2帮助学生认识数学,理解数学思想。
在实际的中学数学学习中,有很大一部分学生认为数学既枯燥又难学,这个现象的存在除了教师的教学方法不恰当之外,学生自身的错误认识也是很重要的原因。但是如果在中学数学教学过程中恰当的渗透相关数学史内容,不仅可以调动起学生学习数学的兴趣,还可以帮助学生认识数学,理解数学思想,掌握数学学习技巧。
1.3培养学生的爱国主义精神。
在数学方面,我国古代取得了比较灿烂的数学成就,而且有些成就的提出时间要比国外早很多,比如正负数的概念就是我国最先提出的。在中学数学教学的过程中,通过相关数学史的介绍,让学生充分了解我国灿烂的数学文化,进而培养出学生的爱国主义精神,并增强民族自豪感。
1.4培养文化素养。
在人类发展的过程中,积累并形成了大量的文化,数学作为文化中的重要组成部分,在提高人们的文化素养方面也具有非常重要的作用。实际上,数学史就是数学文化发展的历史,因此在中学数学教学的过程中,将数学史科学的融入进去,让学生了解并认同数学文化,进而有效的提升自身的文化素养。
1.5激发学生的学习兴趣。
在学生学习数学的过程中,兴趣是最好的学习动机,然而在现阶段的数学学习过程中,学生的学习动机并不明确,导致学生对数学的学习无兴趣,最终影响到数学教学效果。但是在数学史中,有很多内容都能激发出学生的学习兴趣,比如巧拿火柴棒游戏、哥德巴赫猜想等,这样一来,学生学习数学的兴趣被调动起来,有效的提升了数学教学的效果。
2.1科学性与趣味性相结合。
所谓科学性,是指选择的数学史材料内容要符合史实,而且教师在传授数学史时,不能随意更改数学史的内容,更不能虚构数学史内容,要做到尊重历史、尊重事实。而趣味性,是指选择的数学史材料内容要生动或者曲折,以便于能够活跃课堂气氛,调动学生学习的积极性,让学生参与到数学教学过程中。在实际的教学中,教师要做到科学性与趣味性相结合,提高教学效果。
2.2广泛性与实用性相结合。
数学史涵盖的范围非常广,在选择数学史材料时,要选择能够反映不同时期、不同国家、不同文化背景的数学知识,这也是广泛性的要求;实用性是指所选择的数学史材料要对学生的学习有帮助。将广泛性与实用性结合起来,不仅可以拓宽学生数学文化知识的知识面,还可以直接促进学生的发展,教师在进行教学的过程中,要实现广泛性与实用性相平衡。比如在讲授勾股定理的证明时,可以将国内外的证明方法都演示给学生看,以便于学生能更好地掌握勾股定理。
2.3可接受性与目的性相结合。
教师在选择数学史材料时,要充分的考虑学生的接受能力,要保证最终选取的数学史材料能够与学生所掌握的旧知识以及即将学习的新知识都有联系,而且在数学史材料中涉及的数学知识难度要适中,以略高于学生的水平为最佳,这样才能达到教学的目的。
3中学数学教学应用数学史的教学原则。
3.1指导性原则。
在中学数学教学的过程中,教师在选择数学史及运用数学史时,要充分的考虑学生的思考过程中,尽量的做到数学史教材化,实现数学知识与数学史的有机融合。实际上,数学教学的效果在很大程度上受到二者有机整合的影响,一般来说,整合的过程包括数学史与相关数学知识间的融合、数学史与学生之间的整合,只有做到有机整合,才能收获更好地教学效果。
3.2选择性原则。
在数学教学的过程中,根据学生的实际学习水平及学习需求,有选择性、有针对性的将数学史内容融入到教学内容中,另外,根据具体的数学知识在教学中的作用,有选择的融入不同作用的数学史。
3.3研究性原则。
在数学史中,蕴含了数学知识及数学思想的演变进程。在学生学习数学知识的过程中,会因为不理解而产生困惑,学生的这种困惑通过数学史就可以很好地解决。因此,教师要详细的研究数学的概念、理论、方法等的变迁,从中总结出教学难点并重新构建,以便于能够更好的解答学生的困惑,让学生理解并掌握数学思想。
4中学数学教学应用数学史的方法。
4.1通过方法的比较,引导学生发现学习。
从总体上看,教学内容可以划分为表层知识及深层知识两个层次,表层知识是指数学概念、性质、公式、定理等基本知识,而深层知识是指数学思想和数学方法。深层知识并不是独立存在的,而是蕴含在表层知识红,需要经过分析及挖掘之后才能掌握,因此,教师在进行教学的过程中,要将相关知识的深层知识渗透给学生,让学生的认识达到质的飞跃。在实际的教学中,教师可以对相关问题的中外解决办法进行对比,从对比中让学生学会学习处理数学问题的方法。比如在证明1+2+3+……+n=1/2n(n+1)时,教师可以将数学归纳法及数学结合的方法来演示证明过程,从而让学生更好的认识数学思维。
4.2从具体问题出发,引发学生积极思考。
在数学教学过程中,教师要尽量的将数学的创造过程反映给学生,并能够引导学生积极的对该创造过程进行思考,从而在理解的基础上予以把握,为了良好的实现这一教学目标,就需要教师根据教学内容创设恰当的情境,让学生置身情境中去发现真理,只有这样,学生才能真正的学会数学知识。比如等差数列教学,可以利用杨辉的“三阶幻方”来辅助教学,以提升教学效果。
4.3利用数学史开展探究性学习。
研究性学习针对的是学生的学习过程,通过对知识的研究和探索,从而有效地提升自身的思维能力及解决实际问题的能力。在数学教学中,开展探究性学习要以数学史为基础,充分培养学生自主学习的能力。对于大部分的数学概念、定理来说,都是经过推理得到的,但是教材中只是将结果呈现给学生,缺乏推理的过程,因此,教师可以通过数学史的融入,将过程呈现在学生面前,让学生进行充分的联想、分析及观察,提升学习的兴趣,引导学生主动探究。
4.4利用历史上的名题。
在数学史中蕴含了大量的名题,这些名题教师可以直接拿来教学,比如希腊三大几何难题、《九章算术》中的应用题等。通过历史名题的教学,可以让学生很好地掌握数学思想及数学方法,并培养出学生的创造性思维,提升学生利用数学知识解决实际问题的能力。
4.5利用历史上的逸闻趣事。
在选择数学史内容时,除了注重知识性之外,还要具备趣味性,因此,在教学中,教师可以将一些数学家的成长过程、逸闻趣事等介绍给学生听。很多的数学家成长过程都是比较坎坷的,教师将数学家的这些经历介绍给学生,不仅可以帮助学生建立克服困难的信心,还可以激励学生励志学好数学。
传统的中学数学教学只是单纯的传授数学知识,这不利于学生数学思维的培养,学生也无法掌握数学思想,从而降低学生利用数学知识解决实际问题的能力。为了有效的改善这个问题,在数学教学中应用了数学史,让学生了解数学概念、定理、法则、公式等内容的演变过程,从而使学生更好的掌握数学方法,学会学习数学,真正的提高自身的数学思维及数学能力。
参考文献:
数学史论文篇五
流形是20世纪数学有代表性的基本概念,它集几何、代数、分析于一体,成为现代数学的重要研究对象。在数学中,流形作为方程的非退化系统的解的集合出现,也是几何的各种集合和允许局部参数化的其他对象。〔1〕53物理学中,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。
流形是局部具有欧氏空间性质的拓扑空间,粗略地说,流形上每一点的附近和欧氏空间的一个开集是同胚的,流形正是一块块欧氏空间粘起来的结果。从整体上看,流形具有拓扑结构,而拓扑结构是“软”的,因为所有的同胚变形会保持拓扑结构不变,这样流形具有整体上的柔性,可流动性,也许这就是中文译成流形(该译名由着名数学家和数学教育学家江泽涵引入)的原因。
流形作为拓扑空间,它的起源是为了解决什么问题?是如何解决的?谁解决的?形成了什么理论?这是几何史的根本问题。目前国内外对这些问题已有一些研究〔1-7〕,本文在已有研究工作的基础上,对流形的历史演变过程进行了较为深入、细致的分析,并对上述问题给予解答。
二、流形概念的演变。
流形概念的起源可追溯到高斯(,1777-1855)的内蕴几何思想,黎曼(n,1826-1866)继承并发展了的高斯的想法,并给出了流形的描述性定义。随着集合论和拓扑学的发展,希尔伯特(t,1862-1943)用公理化方案改良了黎曼对流形的定义,最终外尔(,1885-1955)给出了流形的严格数学定义。
1.高斯-克吕格投影和曲纹坐标系。
十八世纪末及十九世纪初,频繁的拿破仑战争和欧洲经济的发展迫切需要绘制精确的地图,于是欧洲各国开始有计划地实施本国领域的大地测量工作。1817年,汉诺威政府命令高斯精确测量从哥廷根到奥尔顿子午线的弧长,并绘制奥尔顿的地图,这使得高斯转向大地测量学的问题与实践。高斯在绘制地图中创造了高斯-克吕格投影,这是一种等角横轴切椭圆柱投影,它假设一个椭圆柱面与地球椭球体面横切于某一条经线上,按照等角条件将中央经线东、西各3°或1.5°经线范围内的经纬线投影到椭圆柱面上,然后将椭圆柱面展开成平面。
采用分带投影的方法,是为了使投影边缘的变形不致过大。当大的控制网跨越两个相邻投影带,需要进行平面坐标的邻带换算。高斯-克吕格投影相当于把地球表面看成是一块块平面拼起来的,并且相邻投影带的坐标可以进行换算。这种绘制地图的方式给出了“流形”这个数学概念的雏形。
大地测量的实践导致了高斯曲面论研究的丰富成果。由于地球表面是个两极稍扁的不规则椭球面,绘制地图实际上就是寻找一般曲面到平面的保角映射。高斯利用复变函数,得出两个曲面之间存在保角映射的充要条件是两个曲面的第一类基本量成比例。高斯关于这一成果的论文《将一给定曲面投影到另一曲面而保持无穷小部分相似性的一般方法》使他获得了1823年哥本哈根科学院的大奖,也使他注意到当比例常数为1时,一个曲面可以完全展开到另一个曲面上。高斯意识到这个成果的重要性,在论文的标题下面写下了一句话:“这些结果为重大的理论铺平了道路。”〔8〕189这里重大的理论就是高斯后来建立的内蕴几何学。
全面展开高斯的内蕴几何思想的是他1827年的论文《关于曲面的一般研究》,这是曲面论建立的标志性论述。〔2〕163高斯在这篇文章中有两个重要创举:第一,高斯曲率只依赖于曲面的度量,即曲面的第一基本形式;第二,测地三角形内角和不一定等于180°,它依赖于三角形区域的曲率积分。高斯的发现表明,至少在二维情况下可以构想一种只依赖于第一基本形式的几何,即曲面本身就是一个空间而不需要嵌入到高维空间中去。〔3〕32,〔4〕308高斯在这两篇论文中都使用曲纹坐标(u,v)表示曲面上的一个点,这相当于建立了曲面上的局部坐标系。突破笛卡尔直角坐标的局限性是高斯迈出的重要一步,但问题是:曲纹坐标只适用于曲面的局部,如果想使曲面上所有的点都有坐标表示,就需要在曲面上建立若干个局部坐标系,那么这些坐标系是否彼此协调一致?这是高斯的几何的基础。高斯当时不具备足够的数学工具来发展他的几何构想,但高斯对空间的认识深刻地影响了黎曼。
2.黎曼的“关于几何基础的假设”
黎曼在1851年的博士论文《单复变函数的一般理论》中,为研究多值解析函数曾使用黎曼面的概念,也就是一维复流形,但流形是什么还没有定义。在高斯的几何思想和赫巴特(t,1776-1841)的哲学思想的影响下,黎曼1854年在哥廷根做了着名演讲《关于几何基础的假设》,演讲中他分析了几何的全部假设,建立了现代的几何观。〔5〕2全文分三部分,第一部分是n维流形的概念,第二部分是适用于流形的度量关系,第三部分是对空间的应用。
黎曼在开篇中提到:“几何学事先设定了空间的概念,并假设了空间中各种建构的基本原则。关于这些概念,只有叙述性的定义,重要的特征则以公设的形态出现。这些假设(诸如空间的概念及其基本性质)彼此之间的关系尚属一篇空白;我们看不出这些概念之间是否需要有某种程度的关联,相关到什么地步,甚至不知道是否能导出任何的相关性。从欧几里得到几何学最着名的变革家雷建德,这一领域无论是数学家还是哲学家都无法打破这个僵局。这无疑是因为大家对于多元延伸量的概念仍一无所知。因此我首先要从一般量的概念中建立多元延伸量的概念。”〔9〕411从开篇中我们可以看到黎曼演讲的目的所在:
建立空间的概念,因为这是几何研究的基础。黎曼为什么要建立空间的概念?这与当时非欧几何的发展有很大关系。罗巴切夫斯基(hevsky,1793-1856)和波约(,1802-1860)已经公开发表了他们的非欧几何论文,高斯没有公开主张非欧几何的存在,但他内心是承认非欧几何并做过深入思考的。然而就整个社会而言,非欧几何尚未完全被人们接受。黎曼的目的之一,是以澄清空间是什么这个问题来统一已经出现的各种几何;并且不止如此,黎曼主张一种几何学的全局观:作为任何种类的空间里任意维度的流形研究。
黎曼在第一部分中引入了n维流形的概念。他称n维流形为n元延伸量,把流形分为连续流形与离散流形,他的研究重点是把连续流形的理论分为两个层次,一种是与位置相关的区域关系,另一种是与位置无关的大小关系。用现代术语来讲,前者是拓扑的理论,后者是度量的理论。黎曼是如何构造流形呢?他的造法类似于归纳法,n+1维流形是通过n维流形同一维流形递归地构造出来的;反过来,低维流形可以通过高维流形固定某些数量简缩而成。这样每一个n维流形就有n个自由度,流形上每一点的位置可以用n个数值来表示,这n个数值就确定了一个点的局部坐标。黎曼这种构造流形的方法显然是受到赫巴特的影响。赫巴特在《论物体的空间》中提到:
“从一个维度前进到另一个维度所依据的方法,很明显是一个始终可以继续发展的方法,然而现在还没有人会想到按空间的第三个维度去假设空间的第四个维度。”〔10〕197可看出黎曼受到赫巴特的启发并突破了三维的限制按递归的方法构造了n维流形,这种构造方法体现了几何语言高维化的发展趋势。从本质上讲,黎曼的“流形”概念与当时格拉斯曼(h.ann,1809-1877)的“扩张”概念和施莱夫利(l.schlafli,1814-1895)的“连续体”概念基本一致.〔6〕83流形应具有哪些特征呢?黎曼提到:
“把由一个标记或者由一条边界确定的流形中的特殊部分称为量块(quanta),这些量块间数量的比较在离散情形由数数给出,在连续情形由测量给出。测量要求参与比较的量能够迭加,这就要求选出一个量,作为其他量的测量标准。”〔9〕413黎曼在此使用的量块体现了现在拓扑学中的邻域概念的特征,“参与比较的量能够迭加”则是要求两个量块重叠的部分有统一的测量标准,即保证任意两个局部坐标系的相容性,这在后来由希尔伯特发展为n维流形局部与n维欧氏空间的同胚。黎曼这种引入点的坐标的方法并不是很清晰的,这种不清晰来自他缺乏用邻域或开集来覆盖流形进而建立局部坐标系的思想。11〕8在文章第二部分黎曼讨论了流形上容许的度量关系。他在流形的每一点赋予一个正定二次型,借助高斯曲率给出相应的黎曼曲率概念。进一步,黎曼陈述了一系列曲率与度量的关系。曲面上的度量概念,等价于在每一点定义一个正定的二次型,亦称为曲面的第一基本形式。自高斯以来,第一基本形式的内蕴几何学几乎一直占据着微分几何的中心位置。从后来的希尔伯特和外尔的流形的定义可看出,他们都延续了高斯的内蕴几何思想。
3.希尔伯特的公理化方法。
从19世纪70年代起,康托尔(g.cantor,1845-1918)通过系统地研究欧几里得空间的点集理论,创立了一般集合论,给出了许多拓扑学中的概念。康托尔的研究为点集拓扑学的诞生奠定了基础,这使得希尔伯特能够利用一种更接近于拓扑空间的现代语言发展流形的概念。希尔伯特在1902年的着作《几何基础》中引进了一个更抽象的公理化系统,不但改良了传统的欧几里得的《几何原本》,而且把几何学从一种具体的特定模型上升为抽象的普遍理论。在这部着作中他尝试以邻域定义二维流形(希尔伯特称之为平面,而把欧氏平面称为数平面),提出了二维流形的公理化定义:
“平面是以点为对象的几何,每一点a确定包含该点的某些子集,并将它们叫做点的邻域。
(1)一个邻域中的点总能映射到数平面上某单连通区域,在此方式下它们有唯一的逆。这个单连通区域称为邻域的像。
(2)含于一个邻域的像之中而点a的像在其内部的每个单连通区域,仍是点a的一个邻域的像。若给同一邻域以不同的像,则由一个单连通区域到另一个单连通区域之间的一一变换是连续的。
(3)如果b是a的一个邻域中的任一点,则此邻域也是b的一个邻域。
(4)对于一点a的任意两个邻域,则存在a的第三个邻域,它是前两个邻域的公共邻域。
(5)如果a和b是平面上任意两点,则总存在a的一个邻域它也包含b.”
〔12〕150可以看出在希尔伯特的定义中,(1)和(2)意味着在平面(二维流形)的任意一点的邻域到数平面(欧氏平面)的某单连通区域上都能建立同胚映射。(3)-(5)意图是要在平面(二维流形)上从邻域的角度建立拓扑结构。希尔伯特的定义延续了黎曼指明的两个方向:流形在局部上是欧氏的(这一点黎曼已经以量块迭加的方式提出),在整体上存在一个拓扑结构。这个拓扑结构希尔伯特显然要以公理的方法建立(这一工作后来由豪斯道夫完成,豪斯道夫发展了希尔伯特和外尔的公理化方法,在1914年的着作《集论基础》中以邻域公理第一次定义了拓扑空间),〔13〕249但与豪斯道夫的邻域公理相比,他的定义还不完善,比如(3)中描述的实际上是开邻域。另外,他没有提流形须是一个豪斯道夫空间。希尔伯特已经勾勒出流形的基本框架,随着拓扑学的发展,外尔完善了希尔伯特的工作,给出了流形的现代形式的定义。
4.外尔对流形的现代形式的定义。
(a)给定一个称为”流形f上的点“的集合,对于流形f中的每一点p,f的特定的子集称为f上点p的邻域。点p的每一邻域都包含点p,并且对于点p的任意两个邻域,都存在点p的一个邻域包含于点p的那两个邻域中的每一个之内。如果u0是点p0的一个邻域,并且点p在u0内,那么存在点p的一个邻域包含于u0.如果p0和p1是流形f上不同的两个点,那么存在p0的一个邻域和p1的一个邻域使这两个邻域无交,也就是这两个邻域没有公共点。
(b)对于流形f中每一定点p0的每一个邻域u0,存在一个从u0到欧氏平面的单位圆盘k0(平面上具有笛卡尔坐标x和y的单位圆盘x2+y21)内的一一映射,满足(1)p0对应到单位圆盘的中心;(2)如果p是邻域u0的任意点,u是点p的邻域且仅由邻域u0的点组成,那么存在一个以p的像p′作为中心的圆盘k,使得圆盘k中的每一点都是u中一个点的像;(3)如果k是包含于圆盘k0中的一个圆盘,中心为p′,那么存在流形f上的点p的邻域u,它的像包含于k.”〔15〕17可以看出,(a)从邻域基的角度定义了f是一个豪斯道夫空间。(b)中的映射为一一的、双向连续的(即同胚)映射,这样(b)定义了f中任意一点都有一个邻域同胚于欧氏空间中的一个开集。外尔给出的这个定义正是现代形式的流形的定义,尽管外尔的定义是针对二维的情形,但本质上给出了流形精确的数学语言的定义,并且推广到高维没有任何困难。
一般认为,高维流形的公理化定义由维布伦(,1880-1960)和怀特黑德(ead,1861-1947)于1931和1932年给出,即把流形作为带有最大坐标卡集和局域坐标连续以及各阶可微变换的点集。实际上,这种看法没有足够重视外尔1919年对黎曼讲演的注释,特别是未能利用外尔1925年的长文《黎曼几何思想》。事实上,除了未对高阶微分结构予以明确区分外,外尔的注释和长文中实质上包含了高维微分流形的定义。
三、流形理论的发展。
我们上面提到的流形指拓扑流形,它的定义很简单,但很难在它上面工作,拓扑流形的一种---微分流形的应用范围较广。微分流形是微分几何与微分拓扑的主要研究对象,是三维欧氏空间中曲线和曲面概念的推广。可以在微分流形上赋予不同的几何结构(即一些特殊的张量场),对微分流形上不同的几何结构的研究就形成了微分几何不同的分支。常见的有:
1.黎曼度量和黎曼几何。
仿紧微分流形均可赋予黎曼度量,且不是惟一的。有了黎曼度量,微分流形就有了丰富的几何内容,就可以测量长度、面积、体积等几何量,这种几何称为黎曼几何。黎曼这篇《关于几何学基础的假设》的就职演说,通常被认为是黎曼几何学的源头。但在黎曼所处的时代,李群以及拓扑学还没有发展起来,黎曼几何只限于小范围的理论。大约在1925年霍普夫(,1894-1971)才开始对黎曼空间的微分结构与拓扑结构的关系进行研究。随着微分流形精确概念的确立,特别是嘉当(,1869-1951)在20世纪20年代开创并发展了外微分形式与活动标架法,李群与黎曼几何之间的联系逐步建立了起来,并由此拓展了线性联络及纤维丛的研究。
2.近复结构和复几何。
微分流形m上的一个近复结构是m的切丛tm的一个自同构,满足j·j=-1.如果近复结构是可积的,那么就可以找到m上的全纯坐标卡,使得坐标变换是全纯函数,这时就得到了一个复流形,复流形上的几何称为复几何。
3.辛结构和辛几何。
微分流形上的一个辛结构是一个非退化的闭的二次微分形式,这样的流形称为辛流形,辛流形上发展起来的几何称为辛几何。与黎曼几何不同的是,辛几何是一种不能测量长度却可以测量面积的几何,而且辛流形上并没有类似于黎曼几何中曲率这样的局部概念,这使得辛几何的研究带有很大的整体性。辛几何与数学中的代数几何,数学物理,几何拓扑等领域有很重要的联系。
四、结语。
以上谈到的是流形的公理化定义的发展历史,其线索可概括为高斯---黎曼---希尔伯特---外尔。导致流形概念诞生的根本原因在于对空间认识的推广:从平直空间上的几何,到弯曲空间上的流形概念的历史演变几何,再到更抽象的空间---流形上的几何。流形概念的一步步完善与集合论和拓扑学的发展,特别是邻域公理的建立密不可分,(微分)流形已成为微分几何与微分拓扑的主要研究对象,并发展成多个分支,如黎曼几何、复几何、辛几何等。所以说,几何学发展的历史就是空间观念变革的历史,伴随着一种新的空间观念的出现和成熟,新的数学就会在这个空间中展开和发展。
参考文献。
〔3〕conceptofmanifold,1850-1950[c]//yofdam:elseviersciencepublisheres,1999:25-64.
〔4〕[德]莫里斯·克莱因。古今数学思想:第三册[m].万伟勋,石生明,孙树本,等,译。上海:上海科学技术出版社,2003.
数学史论文篇六
总之,在职业技术教育当中,想要将数学史的价值发挥出来,还需要两者的相互整合,有赖于所有的教学工作者的探讨与摸索,也希望本文中对于数学史的教育价值的分析与阐述能够为之后的工作尽一份微薄之力。
参考文献:。
[1]张国定.全面认识新课程下数学史的教育价值[j].教学与管理,2010,(25)。
[2]岳荣华.发掘数学史在数学教学中的教育功能[j].衡水学院学报,,(01)。
数学史论文篇七
摘要:小学数学课堂教学以学生掌握更多数学知识、实现小学数学有效教学为终极目标。而在小学数学教学的过程中,适当将数学史融入其中,不仅能够丰富教学内容,健全学生数学知识体系,还能培养学生树立正确的数学观,激发学生学习兴趣,为实现小学数学教学目标提供有利条件。本文谈谈如何将数学史适当融入小学数学课堂教学。
关键词:小学数学;数学史;课堂教学;小学生。
数学作为一门自然学科,抽象性较强,如果教师在教学过程中存在教学方法不得当、综合素质较低等问题,就会导致小学生对数学产生畏难心理,失去学习数学的兴趣和信心。针对目前我国大部分小学数学课堂教学存在的问题,将数学史适当融入小学数学课堂教学就显得尤为必要,这不仅是学生学习知识的需要,更是现代数学教育发展的必然趋势。
一、提升数学教师综合素质。
数学教师综合素质的高低直接影响学生掌握数学知识的程度。由于长期受我国应试教育的影响,很多数学教师只注重自身数学解题技能水平的提升以及向学生传授数学解题方法;但在目前小学数学知识更新速度日新月异的情况下,教师的综合素质就会显得力不从心,尤其数学史方面的知识更是知之甚少。甚至有的数学老师始终认为即便是掌握丰富的数学史知识,在考试时数学史也不会作为考试内容,还不如把学习数学史的时间腾出来向学生多讲授几道练习题更实际。这样导致学生只知道机械解题,长期如此,学生就会对这种枯燥无味的教学方法产生厌烦心理,进而导致小学数学课堂教学效率的下降。鉴于此,数学教师应在提升数学专业技能水平的同时,转变自身观念,努力加强数学史的学习,熟知数学教学主题内容后面的数学故事,并将其适当融入小学数学课堂教学,让小学生认识到我国数学知识的博大精深。
传统教学方法中,往往教师一到课堂,就让学生打开课本,告诉学生今天所要学习的内容,接着在黑板上写出本节课所讲内容,直至讲课结束。很多学生对这种教学方法早已司空见惯,了然于胸,因为太过熟悉,已经无法提起任何兴趣,在老师讲解知识的过程中自然不能全神贯注,走神、开小差的现象在所难免。小学生对任何新鲜事物都充满好奇,以数学史作为教学背景,可以使小学生耳目一新。教师可以在讲授内容之前,以与讲解内容相关的古代数学家的故事为引题开展教学活动,可以使学生放松对传统教学的戒备心理,定会集中精神认真听讲。然后教师自然引出教学主题并进行讲解。在课堂教学的过程中,小学生的注意力并不能持久,只有通过教师的引导,其思维才能始终跟上教师的教学进度。而笔者对我国数学史梳理后发现,小学数学每个教学主题背后都有可追溯的历史渊源,而这些背后的故事就是教师可以利用的数学史题材,可通过例题练习、解题技巧、讲解数学史,交替进行,合理引用。这样不但能促使学生学习数学知识,还能有效提高小学数学课堂教学水平。
首先,要明确数学史与数学知识同等重要。小学数学教学应结合教材内容来开展,又要根据学生的不同年龄特点增加数学史的内容。此外,数学史内容的呈现方式应该是多种多样的,除目前已有的形式外,还应结合学生的心理年龄特征、知识接受水平对数学史内容加以选择、编排,譬如连环画、卡通画等形式;也可将数学游戏、数学谜题等作为数学史内容。这样更易激发学生的学习热情,为学生的终身学习提供一个良好的开端。在编排方式上,选择学生最需了解的主题,并以此为基本原则,在各个学段以不同方式系统连贯地加以呈现。只有这样,数学史的教育价值才能得到充分发挥。
四、结论。
数学史在我国小学数学课堂教学中的适当融入,可以让学生全面了解我国的数学发展史,并在丰富数学课堂教学、激发学生学习兴趣、提升教学有效性等方面产生十分重要的作用,轻视不得。同时教师要从学生的实际情况出发,多角度、多层次地将数学史融入教学,拓宽学生视野,最终为达到小学数学教学目标创造更多的有利条件。
参考文献:
[1]聂卫兰.浅谈如何在小学数学中渗透数学史[j].情感读本,,(14).
[2]陶博慧.数学史对小学数学课堂教学效率的影响研究[j].新课程学习(上),2015,(1).
数学史论文篇八
当前,已经有一部分数学教师意识到了数学史在初中数学课中的积极作用,并尝试着将数学史和初中数学课进行融合。将数学史融入到初中数学课堂教学过程中,不仅让学生对数学课产生了更大的兴趣,让他们在一定程度上消除了对数学的恐惧心理,而且也帮助教师加深了对理论内容的理解。本文先说明了数学史在初中数学课堂中的作用,然后介绍了将数学史融入到初中数学课堂的有效方法,以期提高我国初中数学教育教学质量。
数学史浓缩了数学理论精华,再现了数学探索历程。初中数学教师将数学史融入到初中数学课堂中,不仅能提高学生对数学发展史的了解,从而对数学产生更浓厚的兴趣,指导他们把数学学得更好,而且还能帮助教师巩固数学教育理论知识。总的来说,数学史融入初中数学课堂对学生产生的作用主要表现在以下几个方面:
(一)有利于学生的学习兴趣不断提高。
大多情况下,教师直接讲授初中数学知识点时没有充分结合学生的兴趣点。所以,学生在听数学课时,通常会感觉枯燥无味或者生涩难懂,继而发展到对数学科目产生恐惧心理。如果教师能将与数学有关的历史典故融入到知识点讲解过程中,那么会给学生耳目一新的感觉,让他们顿时提起精神认真听讲,使整堂课的教学氛围更融洽和教学效果更显著。例如,在讲到勾股定理的证明时,学生往往对我国数学家的证明方法很感兴趣。所以,教师可以将课本上勾股定理的中国古代证明方法指引给学生学习,并且附加当前几种非常著名的证明方法,并鼓励学生自己也可以凭借聪明才智证明勾股定理的正确性。这样一来,学生的学习兴趣不但被激发,而且还可能有自己尝试探索的冲动,这对于学生的学习很有帮助。
(二)有利于学生数学情怀的培养及发展。
当前,我国教师在进行教学时很容易受到传统观念和传统方法的影响,继而一味的将知识点不断塞给学生,而不去考虑学生是否能够接受和是否愿意接受。是否能够接受体现了学生的学习能力,是否愿意接受体现了学生的学习态度或者情怀。当前,我国学生学习初中数学非常被动,甚至已经产生了厌恶心理和恐惧心理。究其原因,主要是学生缺乏数学情怀。所以,教师应该借助数学史培养学生的数学情怀。例如,在讲到《圆与直线的位置关系》时,教师可以将阿基米德热衷于研究圆的故事讲给学生听。特别是当一个罗马士兵把刀子架在阿基米德的脖子上时,阿基米德那种为了数学研究孜孜追求甚至不惜付出生命的精神,应该值得我们赞扬,每个学生都应该受此激励而认真对待数学这门科目。要知道,我们现在所学习的数学知识,有的是经过科学家克服重重困难获得的,有的甚至为此付出了自己的生命。
(三)有利于学生自主学习习惯的形成。
当前,我国学生的学习方式比较被动,和我国素质教育对学生的要求截然相反。所以,教师要适当引导学生如何养成良好的自主学习习惯。在这方面,学生可以在教师上新课之前,利用身边现有的材料或资源,对教师准备上的新课内容进行预习。对其中比较重要的内容,可以在课余时间利用网络或其它方式查找与之相关的数学史资料,进而对该数学内容的起源和发展脉络了解得十分清楚,为学好该知识点奠定了基础。例如,教师在讲“函数的概念”之前,可以布置任务让学生事先对“漏刻计时”这种古代计时方法进行了解。那么学生自己就会利用身边一切的资源寻找与之有关的材料,并在此过程中对相关数学知识产生了更深刻的理解。事实上,一个知识点如果是教师直接讲授,往往很容易忘记。但是,如果依靠学生自主探究活动得出,往往记忆非常深刻。再者,在学生利用资料查找和探索的过程中,自主学习的习惯逐渐形成了。
二、将数学史融入到初中数学课堂的有效方法。
以上内容主要涉及到了数学史在初中数学课堂中的作用,我们可以看到,将数学史融入到初中数学当中有如此之多的有利之处,那么接下来本文对如何有效的将数学史融入到初中数学课堂中进行介绍:
(一)课前教师要充分准备。
数学史不仅可以作为导语引用,而且还能作为授课内容进行讲解,一方面以充实授课内容,另一方面以激发学生兴趣。所以,教师在上课之前,有必要根据授课内容选择恰当的数学史故事,以激发学生学习本节课内容的积极性。例如,教师在讲人教版七年级数学上册《一元一次方程》内容前,有必要在授课课件中增加“丢番图年龄”的数学史故事。这样一来,学生通过接触这个故事,已经对丢番图的年龄产生了好奇,并且试图算出丢番图的年龄。这时,如果教师将丢番图的`年龄算法和一元一次方程之间的关系说明,那么一方面学生对教师提出一元一次方程的内容不感到那么突然,另一方面也能带着这个疑问进行更深入的学习。
(二)课堂授课时适当穿插故事。
处于初中阶段的学生,在心智水平、自我控制能力等诸多方面都表现出了不足,经常会因为这些原因难以坚持认真听教师讲课。如果教师能在此时穿插一些有名的数学史故事,那么可以让学生瞬间兴奋起来。例如,在教师讲到《勾股定理》这一内容时,往往会提到这一定理的另一个名称———毕达哥拉斯定理。而学生由于在此之前并未接触过这方面内容,自然就会想到为何一个定理会出现中西两种不同的称呼。随着教师运用数学史内容解释其中缘由,学生才明白这是因为我国在勾股定理的发现、证明和运用等方面均领先西方国家两千多年。如此一来,不仅有效引起了学生对这一内容的注意,更在一定程度上提高了学生作为中华民族中的一员的自豪感。
(三)课外及时巩固。
学生的学习不仅仅是在课堂上,课外也是学生习得知识和技能的重要途径。所以,教师在课堂授完课以后,还要给学生布置一定的作业。这种作业不应该停留在传统作业层面,而应该突出学生创新能力的培养。为此,作业可以是和数学史故事有关的阅读活动,也可以是探究数学史中涉及到的数学问题的活动。这样一来,学生不仅对数学史更加了解,而且还能进一步提升学生对数学的兴趣,以及提高他们探究数学魅力的欲望。例如,教师在讲完不等式的内容之后,可以布置任务让学生阅读与不等式产生有关的数学史,以进一步提高他们对所学内容的认识和理解,这对于他们的学习很有帮助。
三、结语。
综上所述,将数学史融入到初中数学教学过程当中,不仅有利于学生学习兴趣的提高和自主学习习惯的形成,还有利于学生数学情怀的培养及发展。所以,教师要在课前为所授课的内容做充分准备,以获得预期教学效果。要在课堂授课过程中,将数学史故事灵活穿插到授课内容中,以激发学生的学习兴趣。要在授完课后,布置与数学史故事有关的任务或作业给学生,以巩固他们对数学内容的理解。只有这样,我国初中学生的素养才能更好的全面发展,我国数学教学质量才能有希望更进一步。
参考文献:
[1]邹创名.数学史融入初中数学教育的实践探讨[j].中学课程辅导:教学研究,(11):13.
[2]林平.浅谈数学史融入初中数学课堂的意义和教育价值[j].新课程(中),(5).
数学史论文篇九
(一)数学史有助于国际主义教育。
(二)数学史有助于爱国教育。
(三)数学史有助于建立辩证唯物主义的世界观。
(四)数学史展现了数学家为真理而献身的高尚情操与伟大人格。
五、总结。
【参考文献】。
[1]张小明.中学数学教学中融入数学史的行动研究[d].上海:华东师范大学,.。
[2]宋乃庆,徐斌艳.数学课程导论[m].北京:北京师范大学出版社,.。
[3]教育部.义务教育数学课程标准(版)[m].北京:北京师范大学出版社,.。
[5]王青建,陈洪鹏.《数学课程标准》中的数学史及数学文化[j].大连教育学院学报,(4):40-42.
数学史论文篇十
16世纪到17世纪,可以说是一个数学史路上一个里程碑,在16世纪早期,学者们创造了代数,他们被称为“未知数计算家”,在那个时期,代数占据了数学史的中心位置,而到了16世纪末17世纪初,人类开始了新的探索,代数与几何共存,以此来研究天文,工程,航海,甚至是政治上的一些问题:开勒普用希腊圆锥描述太阳系,托马斯・哈里奥特则发展代数,笛卡尔把代数和几何结合,从而开始理解彗星,光等现象,这一时期,可以说是各种数学成就在此出生,但最出名的,还是微积分,当时人们无法用数字表现出天体的运动,无法表现一些抽象的物体,于是牛顿与莱布尼茨发明了微积分,但微积分始终还是较为抽象,不就后,当时最著名的数学家――欧拉也做出了一系列成就:三角形中的几何学,多面体的基本定理,有趣的是,欧拉甚至将数应用于船舶,中彩票或是过桥,欧拉将自己生活的方方面面都往数学上想,在他的世界中,数学无处不在。
我们不难看出这些数学家的发明的确大大改变了人们的生活,他们掌握了探索世界的钥匙――数学,将数学应用到方方面面,我们现代生活不也是如此,处处是数学,但最重要的是,我们热爱数学。
数学史论文篇十一
随着近代工业革命和现代科学技术的迅猛发展,人们物质文化生活水平不断提高,艺术参与环境改造的活动越来越多,这是在全世界范围内众所周知的。今天,由工业文明向生态文明转化的可持续发展已成为时代的主题。我国环境设计教育改革需要较为科学的理论进行指导,否则与迅速发展的国家经济、文化形势不相适应。环境设计是一门集艺术、科学、工程技术于一体的应用型新兴学科,以环境规划设计、环境形态艺术、物质环境设计、大众行为心理等为研究核心,以策划、规划、设计、管理四个环节的结合,构成了环境设计纵向系统的整体。环境设计的最终目标是实现人类生存环境的可持续发展,涉及的学科专业领域包括生态学、建筑学、艺术学、行为学、心理学、经济学、社会学、室内设计、景观设计、城市设计、规划设计等。目前,国内大部分高校开设了环境设计专业,课程设置主要由通识课、学科基础课、专业核心课、专业实践课四部分组成。其中,通识课约占总课程量的50%,学科基础课和专业核心课约占40%,专业实践课约占10%。在专业课程中,主要以景观设计、观赏植物配置与造景、景观小品设计、建筑初步设计、室内设计、家具设计为主线设置一系列专题设计课程,课程分类繁细,内容覆盖面广,各自独立,呈点状的板块式分布。教学方式以理论教学为主体,以实验教学和实践教学为补充,在理论教学中充分运用多媒体手段传授设计理论和设计方法,在实验教学和实践教学中则指导学生在本门课程内分阶段地完成专题专项研究,使学生能够运用多种合理的表达方式充分展现自己的设计创意,最终达到本专业的教学目标。生态设计在一些西方国家已经形成了较为完整的市场与教学体系,其设计教育发展程度较高。我国的生态设计基本上还处在探索阶段,各高校的生态设计教育发展程度不均衡,受重视程度也需要加强。因此,国内高校可借鉴国外设计院校的教学模式,积极建立与国外设计院校和相关科研机构的互动关系和交流合作,吸收先进的环境设计专业的办学理念、课程设置、教学方法和研究成果,为培养出符合我国生态文明建设所需的、具有国际化视野的高层次复合型设计人才而肩负起重大责任。在环境设计教育中植入生态设计理念,应根据所处环境的自然条件,充分运用生态学、设计学、环境科学及现代科学技术手段等,创造适合人类生活、工作需要的环境,最终体现出人类的生存环境与生态系统长期相协调的状态,使生态环境得以改善,同时让人类历史文化的精华得以继承。但是长期以来,环境设计教育受社会意识、经济压力、资源条件等因素影响,国内部分高校还没有建立起真正意义上的环境生态设计教学体系。
二、生态设计理念在环境设计教学中的培养途径。
1.建立科学教学构架,开设生态设计课程。
环境设计教育教学改革应将重点放在生态设计理念的培养方面,将生态设计相关课程内容纳入人才培养方案。并不是在设计课程中给学生讲一些概念性的理论就能使学生完全理解生态设计理念,生态设计教育要具体落实到专业课程教学中,根据居住区景观设计、街道区景观设计、商业区景观设计、滨水区景观设计、建筑设计、室内设计等各种不同的环境专题设计课程,结合设计案例在教学过程中倡导适度设计,逐步使学生形成一种从生态设计的角度解决环境设计问题的思维习惯。最终使学生在今后的设计过程中树立科学的设计观,秉持生态设计理念,探索低能耗、低污染的环境设计方法和途径。教师应是生态设计教育的倡导者和实施者,只有谨记“天下兴亡,匹夫有责”的教育者,才能将生态设计的可持续观念深深植入学生的大脑。教师言传身教所传递的信息将会影响学生未来的环境设计观,这是一种倡导保护生态环境的`正能量,相信这种力量的影响力会越来越大。建立科学教学构架,贯彻科学发展观,体现可持续设计,就要优化课程体系,适当增设生态设计课程。教师应遵循“理论—方法—实践”的环境生态设计教学思路,尽可能在大学二年级以前开设诸如设计学概论、环境学概论、城市规划原理、景观生态学等基础理论课程,使学生建立基本的目标概念和设计观念。在大学三、四年级时,应系统地将生态环境策划、生态环境元素、生态设计方法、生态设计法规融入环境专题设计课程教学,并辅以一定的实验教学与实训实务等。
2.树立生态设计意识,积极感知生态环境。
树立生态设计意识,需要培养学生形成一种生态观的设计思维习惯,积极感知生态环境。在课堂教学中,生态设计的内容是核心,教师要适时、适当地将生态设计理念及其重要性传递给学生,从而构建人与自然的和谐关系。在任何给定的设计中,学生都要仔细分析生态给环境中的建筑物、构筑物、道路、水景、人群等带来的价值,不是先设计环境中的建筑物、构筑物、道路等再考虑生态性,而是要从生态的角度进行环境中建筑物、构筑物、道路等的设计。环境设计绝不能脱离生态理念而凸现个性创意,任何时候都要从塑造生态环境的角度创造环境的构成形式。另外,对于环境设计的创作成果,师生也不能只注重方案多么个性,效果图多么漂亮,构成形式多么震撼,而要学会关注环境的长期寿命,即通过生态观与环境的融合实现可持续发展。只有当这种生态设计理念真正深入人心,学生才会在作业训练或设计实践中更积极地感知生态环境,认真思考设计与环境的关系。
3.关注设计生命周期,节约能源物质消耗。
以往的环境设计教育中,对于环境外在形象、功能特点、艺术感的训练较为偏重,而材料、构造、工艺、技术等课程由于与实践脱节,环境设计专业的学生难以理解和消化。因此,材料、构造、工艺、技术等课程是环境设计专业学生学习的软肋。虽然许多高校针对这类知识设置了一部分材料、构造、工艺、技术等方面的课程,但是其教学的实际效果并不理想。材料、构造、工艺、技术等知识是设计立意中极其重要的组成部分,倘若在设计作品中所使用的材料本身就缺乏生态观的考虑,那么整件设计作品的生态性将荡然无存。在材料选用方面,具有生态性的材料形式非常讲究,环境设计师应尽可能地采用当地材料和自然材料,因地制宜地选择合理的构造技术和建造形式,同时以能循环使用、降解再生的材料为主,并且高度重视环境的使用寿命。在环境设计中,自然景观元素和生态系统保护显得非常重要,如自然水体景观、原始森林的保护,应尽可能减少能源消耗以及土地、水、生物资源的使用。通常情况下,为了尽可能地减少能源和物质的消耗,设计师应视自然资源为宝,在环境设计中合理地利用自然中的光、风、水体、植被、土壤等,使其服务于环境的新功能,以提高资源的利用率。如,一些西方国家的环境设计将关闭的工厂和废弃的场地注入鲜活的生命力,使其利用生态技术恢复后再次被人们使用,成为市民追求时尚潮流的休闲娱乐场地。因此,设计师应充分关注环境设计的整个生命周期,减少能源和物质的消耗,包括材料选择、构造技术、施工建设、使用管理和废弃过程,这样会大大降低环境设计场地的耗能和耗材,实现节约能源、节约资源、回归自然、舒适健康的美好愿望。
4.把握生态设计原则,尊重自然环境设计。
今天生活在城市中的人们远离自然环境,自然元素、自然气息和自然过程在日常生活中日趋淡化,人们对大自然的渴望成为环境设计师的诉求。设计师需要合理把握生态设计原则,尊重自然环境设计,体现当地的传统文化和乡土情怀,顺应场地的自然条件,因地制宜,合理利用原有场地的各种资源,创造出充满生态之美的环境,以满足人们与大自然亲近的心理。因此,环境设计师应善于从自然界中汲取灵感,将环境中的建筑物、构筑物、广场、庭院、绿化、水体等是否尊重自然、显露自然作为判断环境设计成败与否的关键。建筑物、构筑物等矗立于环境中,称为实景,在此基础上给观赏者创造的一种想象空间称为虚景,建筑物、构筑物等与其共同构成的环境空间能够形成虚景与实景的融合,也就是虚实相生、虚实相应的意境。这就是中国传统美学观中“虚”与“实”的辩证思想,追求“状难写之景如在目前,含不尽之意见于言外”的艺术风格,与中国山水画、山水诗词的创作精神“求‘神韵’于‘大象’”是一致的。如地形变化多端的场地拥有特殊的地形环境,场地中往往呈现出某一地段多岩石、多沙土、多植物、多冰雪、多雾等现象,具有较为丰富的自然现象和自然环境,那么环境中的建筑物、构筑物等设计可充分利用这种自然现象和自然环境的优势,将岩石、沙土、植物、冰雪、雾等作为环境设计的一部分,再利用阳光、风雨、微地形和微气候为环境空间营造意境。结语社会对环境设计师的要求越来越高,教育改革应针对市场的改变而与时俱进,甚至预见社会发展趋势。环境设计专业人才培养模式的建构思路是以动态发展、动态更新为前提的,这不仅是新形势对环境设计教育功能的要求,也是各高校努力探索的必要前提。因为不能保持先进的教育,就无法保证环境设计专业的人才培养质量,更无从谈起对环境设计教育的贡献。
生态设计理念融入环境设计教学,是实现环境设计科学发展的一个质的飞跃。为了实现人类社会的可持续发展,培养高等人才的环境设计教育应肩负重任。环境设计教育者必须秉持可持续的生态设计理念,把握好我国环境设计教育前进的方向,摒弃不切实际的环境外在形态艺术化和片面追求经济增长、物质享乐的实用价值观,构建一种尊重他人、观照后人、公平对待自然、充满人文理性的文明观、生态观和价值观,让生态设计理念成为未来环境设计师必须遵循的职业道德。
数学史论文篇十二
读完《这才是好读的数学史》之后,我最想表达的就是对数学悠长的历史的感叹,这本书让我了解到从3.7万年前到现在21世纪的数学的发展与进步,也明白了数学在生活中的重要性。
下面我将介绍几点我印象最深刻的内容:
在书中第一章:开端中介绍了四大文明古国的数学文化,包括当时的人们用什么材质的东西来记录数学,用数学干什么以及保存情况如何。在这一章讲述古巴比伦的数学是写了他们数学中几个特征,包括以60的幂表示数字,所以接近4000年后的今天为什么仍然把一小时分成60分,把一分钟分成60秒。在这一章中也讲了我国古代的数学文化,在书中介绍了《算经十书》《九章算术》等中国古代的数学经典,由于种种原因导致当时的数学文化的损失,但作者实事求是,没有写一些没有历史根据的东西,再一次让我感受到这本书的严谨。
书中是按国家的顺序进行安排的,因为如果按时间顺序安排的话,很容易弄混淆,作者按照时间线上在某个时间点上最重要的事情的国家来安排,体现了本书“好读”的特点。
在书中有一个细节让我注意,每一章最后都会有一段来推荐一些关于本章内容更详细的讲解的书目,甚至详细到了具体在哪一章,在书的最后把对应的书名写了出来(虽然是英语的,我看不懂)从中可以看到作者对待数学的严谨和细致。
我非常喜欢在书中的一句话“学习数学就像认识一个人一样,你对他(她)的过去了解的越多,你现在和将来就能越理解他(她),并与其互动。”这句话感觉就像说中了我的感受,我认为阅读完之后,自己不仅会对数学更有兴趣,而且在以后学习数学的时候更加认真对待。
数学史论文篇十三
读完《数学史》,心底不由得一阵感动。那是一种什么感觉呢?是一个对数学有着宗教般虔诚的仰望者的心动,是一个对历史有着无尽探索欲望的追求者的向往。每一代人都在数学这座古老的大厦上添加一层楼。当我们为这个大厦添砖加瓦时,有必要了解它的历史。
通过这本书,我对数学发展的概况有了一个较为全面的了解。书中通过生动具体的事例,介绍了数学发展过程中的若干重要事件、重要人物与重要成果,让我初步了解了数学这门科学产生与发展的历史过程,体会了数学对人类文明发展的作用,感受到了数学家严谨的治学态度和锲而不舍的探索精神。
数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系。
数学的历史源远流长。我了解到,在早期的人类社会中,()是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这使数学成为人类文化中最基础的学科。对此恩格斯指出:“数学在一门科学中的应用程度,标志着这门科学的成熟程度。”在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。
数学史不仅仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在跟读的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的斗争记录。无理量的发现、微积分和非欧几何的创立这些例子可以帮助人们了解数学创造的真实过程,而这种真实的过程是在教科书里以定理到定理的形式被包装起来的。对这种创造过程的了解则可以使人们探索与奋斗中汲取教益,获得鼓舞和增强信心。
在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。
第一次数学危机,无理数成为数学大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是最早发现根号2的希帕苏斯被抛进了大海。
第二次数学危机,数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。但牛顿曾在英国大主教贝克莱的攻击前,显得苍白无力。
第三次数学危机,“罗素悖论”使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础,也给了数学更为广阔的发展空间。但歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。
天才的思想往往是超前的,这些凡夫俗子的确很难理解他们。但是时间会证明一切!
数学是一门历史性或者说累积性很强的科学。重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不近不会推翻原有的理论,而且总是包容原先的理论。例如,数的理论演进就表现出明显的累积性;在几何学中,非欧几何可以看成是欧氏几何的拓广;溯源于初等代数的抽象代数并没有使前者被淘汰;同样现代分析中诸如涵数、导数、积分等概念的推广均包含乐古典定义作为特例。可以说,在数学的漫长进化过程中,几乎没有发生过彻底推翻前人建筑的情况。
而中国传统数学源远流长,有其自身特有的思想体系与发展途径。它持续不断,长期发达,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响。从远古以至宋、元,在相当长一段时间内,中国一直是世界数学发展的主流。明代以后由于政治社会等种种原因,致使中国传统数学濒于灭绝,以后全为西方欧几里得传统所凌替以至垄断。数千年的中国数学发展,为我们留下了大批有价值的史料。
人们为什么长久以来称数学为“科学的女皇”呢?也许是女皇让人无法亲近的神秘感和让人们向往和陶醉的面容,让人情不自禁地联想起数学吧!
数学史论文篇十四
在数学的教学中也会将美国本土的数学家的研究内容融入到专科数学的教学中,没讲到一个数学问题都会将涉及到这个知识点的相关的数学家的研究历史详细的告诉学生,使学生们更能了解到数学的发展是如何一步步发展到今天这个样,但无论怎么发展数学的历史永远是当今每个学生都要必须学习的地方,这样的教学中更好的将数学史融入到数学的教学中,不仅在教学中讲解本土的数学家还会将到不同国度的数学家但对数学的贡献。因此在美国可以更好的将数学史融入到数学教学中。
2日本是如何将数学史与专科数学教学整合在一起。
日本是和我国比邻的国家,日本的数学教学中如何使用数学史也是有一定的方法。日本的数学学习,重视基础知识的理解,重视能力、态度和数学的思想方法的培养,并强调“使学生体会到数学学习活动的乐趣”,突出了对情感体验和学习兴趣的重视。无论是小学数学还是中学数学的教学,以及到专科数学的教学中都会将基础知识作为学习的重点,因此在教学中涉及到不同的教学的理念。如:“高明的计算”、“古人乘法的窍门”、“秀吉令人惊奇的故事”、“测量的技巧”、“离不开数学的人们”、“电子计算机的诞生”。它们旨在帮助学生理解数量和图形的有关概念在人类活动中的发展过程,提高学生对数学的兴趣、关心和学习的欲望,给学生以学习数学的动力。因此日本能很好的将数学教学和数学史进行有效的整合,将学生的兴趣作为数学教学的基本,然后通过数学史的内容和数学教学融合在一起,就会激发学生们的学习积极性,这些教学理念和中国的教学有几分相似之处。
3德国是如何将数学史与专科数学教学整合在一起。
德国是一个欧洲国家,发达的经济背后更注重学生的学习,对于数学的教学中更关注他的实践作用,在教学中涉及到的内容也会和数学史联合起来。没有数学的发展历史就不会当前发达的数学,因此在数学的教学涉及到的数学史的内容也很多,在数学的教材中有100多处涉及到数学史,将数学史编到数学的教材中,而不是单独列出数学史作为一个单独的科目,而是有机的将数学史融合到数学的教学中,这样不仅可以让数学教师更容易的将数学教学和数学史联合在一起而且更能将这两者教学很好的告诉学生。德国这种教学方式更能使学生们接受并达到更好的学习效果。如在自然数表达一节就介绍了数表达的历史特别是罗马数系;在韦达定理的应用一节就介绍了数学家韦达。而在大数定律一节则介绍了数学家雅各布伯努利。这些教程中的内容不仅可以给数学教师指出一条更好的教学之路,还能将数学的教学有效的教给学生,学生学到的知识就会更明确。
4其他国家是如何将数学史与专科数学教学整合在一起。
其他国家中对数学的教学和数学史的整合的现状,不同国家得到的结果也不尽相同。欧洲国家中除了德国还有法国,法国指出了数学史要和专科数学教学中的各项内容要一一结合,只要有数学内容就应该涉及到数学史,将数学史有机的融合到数学的教学的每一个章节。欧洲国家中另一个国家英国,英国要求学生们要知道数学史,并对涉及到数学教学中的数学史要详细的.研读如数学家的名字以及他们的业绩和生平。并作为考试内容重点来考察,这样的教学要求可以激起学生们的独立学习的能力,更能将数学史整合到数学的教学中。其他国家还有俄罗斯,作为中国相邻的国家,俄罗斯的数学教学中也涉及到数学史,主要还是将数学史作为一门单独的课程,在教学中涉及的内容也不多,主要还是学生们的自学,对数学史和数学教学的整合存在一定的差距。不同的国家对数学教学的重视程度不同在数学史与数学教学中的整合也存在一定的差距,无论怎么样的发展,数学史作为一个学科也越来越多的受到教师的重视,在整合的路上还有一段路要走。
5结语。
新课改的不断进行,也为我国的教学提出了一些实际的问题,如何做好新课改下的数学教学,这也是每个教学必须要研究好思考的问题,对不同国家中数学史与专科数学教学的整合现状,我们看到的还是不足之处,借鉴不同国家的经验,应用到我国的数学教学中可以更好的教学,还可以看到我们的不足,取长补短,发挥各自的优势。对我国的数学史的了解,以及其他国家的数学史也要了解,数学不仅涉及到本土的内容,还会涉及到不同国家杰出的数学家的贡献,知识是可以共荣,我国的数学教学重要也要多引用其他国家著名的数学家的研究内容用于我国的专科数学教学中,这也是新课改的言外之意,充分的利用各国先进的教学,将数学史融合到专科数学的教学中,充分发挥各自的优势为我国的数学教学做出贡献。数学史与专科数学教学的整合的问题还在不断的进行着,克服当前存在的问题,寻求解决的办法,还是需要一段路要走。
数学史论文篇十五
从小到大,在学习数学的过程中,接触大量的数学题,对数学的历史很少提及。《数学史》,一本专门研究数学的历史,娓娓道来,满足了我的好奇,把数学的发展过程展示出来。
本书于1958年出版,作者j.f.斯科特。书中主要阐述西方数学的发展历史,但也专门用一章讲述印度和中国的数学发展。沿着时间轴,数学的发展经历了从初等到高等的过程。
上古时代的古埃及人和古巴比伦人在平时的生产劳作中运用到了数学知识。
古希腊人继承这些数学知识并不断拓展,成为数学史上一个“黄金时代”,涌现出毕达哥拉斯、柏拉图、亚里士多德、欧几里得、阿基米德,丢番图等一系列耳熟能详的名字。
在黑暗的中世纪,数学发展处于停滞状态,而斐波那契的出现把数学带上复兴。
文艺复兴,数学又进入一个蓬勃发展的时期,对解三次方程和四次方程、三角学、数学符号、记数方法的研究没有停步。“+”、“-”、“=”、“”、“”的符号是在那个时候出现的,同时出了一名数学家韦达――韦达定理的发明者。
17世纪,解析几何出现、力学兴起、小数和对数发明。这些都为微积分的发明奠定了基础。牛顿和莱布尼兹两位大师的研究,在数学领域开辟了一个新纪元。
18世纪,为完善微积分中的概念,各路数学家在数学分析方法上有所发展。欧拉、拉格朗日,柯西等大师采用极限、级数等方法让微积分更加严谨。同时,非欧几何的理论开始萌芽。
纵观全书,数学的发展是由一群人搭建起来的。前人的工作为后人的研究奠定了基础。后人在前人的工作上不断突破和创新。另外,数学中也有哲理,天地有大美而不言。当看到欧拉时,想到欧拉公式;看到韦达,想到韦达定理。公式很简洁,但把规律说清楚了。数学爱好者可以试着解里面的数学题,看看古人在当时是如何研究的,有的方法很笨拙,有的方法很巧妙。读完后,发现学习数学,会解几道数学题是不够的,还要学会去培养自己的思维。毕竟数学家的思维也会受到历史的局限。比如负数开根号,当时被人看来是无法接受,后来发明了虚数。
历史是在不断地前进,数学的发展亦然。想知道数学和历史的跨界,那就来看《数学史》。
【本文地址:http://www.xuefen.com.cn/zuowen/13436914.html】