时间是我们人生中最宝贵的财富,总结能帮助我们更好地利用时间。针对不同的学科和学习方式,我们可以采用不同的方法来撰写一篇完美的总结。今年的工作总结,让我深思与反思;
数学建模课程论文篇一
目前大部分高职院校均将礼仪课程作为必修或选修课程普遍开设,但就教学效果而言并不理想,高职院校的部分学生在学习和生活中缺乏礼仪修养的现象屡见不鲜;礼仪素质诸要素发展水平不平衡,礼仪的认识、情感、品质、言行四者之间,有的成分超前,有的成分滞后,有的逆向发展;尤其是“知而不行,知行不一”的现象非常普遍和突出。纵观校园,不文明、低素养的现象时有发生。
一、目前我国高职学生礼仪教育存在的问题。
(一)对礼仪内涵认识不到位,忽视礼仪教育。
礼仪是在人类历史发展中形成的一种文化,是对他人表示尊重的一种形式。然而,目前高职院校礼仪教育忽视礼仪中蕴含的文化内涵,仅注意礼仪表象的学习,狭隘理解礼仪。
同时,由于高职教育将培养学生就业技能作为教学的主要目标,重视专业学生的专业技能、专业课程学习,在礼仪课程方面仅开设一些与专业相关的职业礼仪、秘书礼仪、商务礼仪等,且教育流于形式,授课时间短,教育质量不佳。
此外,一些高职院院校忽视基本礼仪教育,认为学生基本礼仪教育是家庭教育、其他教学单位的责任,不应由高职院校进行教育,教育观念片面。
(二)缺乏教师礼仪素质培养,教师素养有待提高。
从高职院校教师来源看,教师多来自于师范院校、贸易、金融、数学等专业学科。对于来自师范院校的教师,接受过教育心理学、教态等培养,而来自于专业学科的教师,接受的师范教育少,可能会缺乏一定的教育心理、学生心理、教师职业素养等方面知识。这样,如果其自身修养不够,将直接影响教学质量,对学生造成不利影响。
(三)职业礼仪教育体系不完善,环境不理想。
高职学生未来的职业受科学职业礼仪教育影响,因此,对于高职院校而言,职业礼仪教育体系建设必不可少,需要完善的职业礼仪教育体系。但是,目前我国许多高职院校仍没有深刻认识职业礼仪教育的重要性,在整个教育环境中,院校忽视职业礼仪教育,教育环境不理想。
二、高职学生礼仪教育的重要性。
(一)促进学生身心健康,提高道德水平。
身心健康对高职学生成才具有重要作用,对于高职学生而言,习惯影响性格,而性格决定命运。由于高职学生来自不同的文化背景、生活环境,学生具有爱好、兴趣、性格差异性,加上学习压力、就业压力、感情困惑、竞争失利,学生易产生心理失衡,从而影响人际交往、自信心。
在此背景下,加强高职学生的礼仪教育,指导学生如何规范个人的言行举止,装扮自己,塑造良好的个人形象。而得体的装扮、优雅的举止则可表现一个人的积极与自信,从而赢得别人的信任、尊重,进而树立自信心。
同时,面对新的环境、同学、同事,如果学生不懂得如与人沟通、相处,则会影响人际交往,产生无聊、寂寞情绪,不利于身心发展。通过礼仪教育,学生掌握求职就业的礼节、见面施礼问候的礼节等,培养交际能力,且通过诚信的交往、优雅的举止向对方表达自己的善意、友好,增强彼此了解,建立和谐的人际关系。
(二)提高学生职业素养,增强就业竞争力。
高职礼仪教育直接关系着学生的道德修养与劳动者素质。高职学生只有具备职业理论,提高整体素质,才能更好地适应工作岗位。同时,学生只有具备了职业礼仪,在职业中遵守礼仪,形成人与人交际的规范,才能具备职业竞争力,获得职场青睐。在就业形势日趋激烈的今天,高职教育应思考如何增强学生的就业“软实力”。
例如,在就业形势日趋激烈的职场,刚毕业的高职大学生想在职场上立于不败之地,就需要重视职业形象的塑造,熟悉和正确运用礼仪,以恰当的语言、优雅的举止在面试中脱颖而出,增强双方友谊,为步入职场奠定良好基础。
此外,现代礼仪源于实践、用于实践,其符合当下人们的心理需求、生活方式、道德观念等。当高职毕业生迈入社会后,文明自律、彬彬有礼的表现则容易被社会接纳,培养学生的社会适应能力,进而提高社会心理承受力,工作承压力、实力增强。
三、采取合理措施,完善高职学生素质教育中礼仪教育。
(一)优化礼仪教育环境,加强教师队伍建设。
首先,高职院校应充分认识礼仪教育的内涵和重要性,对礼仪教育环境进行优化。例如,加大礼仪教育方面的财力、物力、人力投入,积极利用社会资源,对学生进行日常礼仪、各专业职业礼仪等方面的教育,对学生进行定期职业礼仪培训,逐渐提高职业素养。
同时,高职院校可通过校园广播、社团活动等方式在学生中间宣传、普及各种礼仪知识,强化礼仪教育氛围,潜移默化地使学生形成职业礼仪、公共场合礼仪意识。
其次,在师资队伍建设方面,高职院校要建设一支专业化、职业化的`礼仪指导队伍。如院校可通过聘用、兼职方式,积极引进长期从事职业研究的专家到我校做讲座、授课,丰富学生礼仪知识。
此外,建立专门的大学生职业规划教育教研室、就业指导中心,设置专门的职业礼仪指导部门,分派专业的指导老师,对学生职业礼仪进行专门的指导。而对于教师自身而言,高职院校应加强对教师的培训、进修,指导教师保持良好的教风,注重自身礼仪,以身作则,以自己的高素质影响学生。
(二)根据学生特点,科学设计礼仪教学。
礼仪教学质量与学生素质密切相关,因此,在礼仪教学中,教师不能采取传统的教学方法,应创新教学,改革教育,提高礼仪教育效率。首先,教师对学生进行全面了解,分析学生存在的礼仪问题及学习兴趣点,利用学生兴趣培养其学习积极性。在具体礼仪教学中,结合学生兴趣,利用多媒体手段,组织情景练习,保持课堂生动、轻松,提高教学效率。
例如,结合学生年龄特点,请一些本专业、本行业的先进青年现身说法,并利用多媒体播放各种礼仪大赛、礼仪讲座等,示范礼仪规范示演,让学生感受礼仪对自我风采展示的作用及魅力。此外,由于一些学生认为礼仪就是几句简单的话、动作,无需进行训练,从而没有形成礼仪意识。
因此,在礼仪教学中,教师应加强礼仪实践,组织情景练习,为学生自我训练提供平台。例如,在请校友到班级做客时,教师应对学生分组,要求学生接待客人,担当不同角色。在学习礼仪理论之前,学生面对客人可能不知该如何安排与自处,没有微笑,站姿不对,慌慌张张,忘记打招呼等。在此情况下,学生会意识到自己失礼及礼仪学习、训练的重要性,会在以后客人接待中提升自身礼仪。
(三)完善礼仪教育内容,加强日常训练。
在高职学生素质教育过程中,不仅需要在课程体系中纳入礼仪教育,还需训练学生在职业礼仪、社会礼仪、个人礼仪中注重自己的穿衣打扮、言行举止,在日常生活、工作中展示自己风采、魅力。在具体礼仪教育中,结合学生实际情况,使学生在学生示范、典型案例分析中养成与工作、学习、生活相关的礼仪,提高学生的综合素质。
例如,指导、训练学生的电话礼仪、握手礼仪、着装礼仪、电梯礼仪等。如在接电话时,需面带微笑、备好纸笔,合理利用电话礼貌用语,这样当对方传达重要信息时,第一时间记录,提高工作效率,并以合适的用语表示对对方的尊敬。
在握手礼仪方面,长辈伸手后,晚辈才能伸手相握;上级伸手后,下级才能接握。礼仪教育是高职教育的关键内容,有助于培养学生的心理素质、职业素质、公共素质等。因此,高职学校应注重对学生礼仪的培养,根据社会的发展需求,结合学生的特点,通过提高教师素质、改革课堂教学、加强礼仪训练等方式,逐渐提高学生的综合素质,向社会输出高素质人才。
数学建模课程论文篇二
数学建模是指利用数学符号对数学实践问题以公式形式表述出来,再通过相关计算解决实际问题。数学建模可以为学生创设适宜的学习条件,让学生在假设、研究、分析、比对中形成学习结论。教师要借助教学内容展开渗透操作,利用实际问题为学生创设实践机会,根据教法改进渗透建模思想,从而促进建模思想的全面渗透,提升学生的数学核心素养。
一、借助教学内容渗透建模思想。
在数学教学过程中,教师要对教材内容进行筛选和剖析,找到文本思维和生本思维的对接点,让学生顺利介入数理讨论学习之中。教师利用教学内容对学生渗透数学建模思想,利用教辅手段创设教学环境,可以有效唤醒学生的数学思维。利用多媒体创设教学情境,运用数学公式进行数学推演操作,都涉及数学建模思想的渗透。因此,教师要积极整合教学内容。借助教学内容渗透建模思想时,教师要结合多种教学调查情况展开相关操作。筛选教学内容时,教师需要观照不同群体学生的不同学力基础。如解读定积分概念时,教师可以通过推导曲边梯形的面积公式,鼓励学生对曲边梯形进行分割、归类、求和、取极限等实际操作,建立定积分数学模型,并让学生在实际操作中完成对物体体积和质量的具体计算。这些数学模型具有广泛性,学生在实践中再遇到类似情境时,也会运用相关模型进行实际操作。推演数学公式时,教师可引入建模思想,让学生参与问题的设计、推演、验证,并利用推演结果反过来解决实际问题,给学生带去全新的学习体验。教师根据教学内容渗透数学建模思想,能够为学生提供更清晰的学习渠道,能够促使学生运用现成的数学模型来解决数学问题,进而加深对知识的理解。
二、利用实际问题渗透建模思想。
教师在数学建模教学实施过程中,需要有接轨生活的意识。数学来源于生活,教师结合生活实际问题渗透建模思想,可以有效提升学生的数学概念意识,并使学生在假设、推理、验证过程中形成数学能力。利用生活实际问题渗透数学建模思想,符合学生数学认知成长的`实际需要,教师要结合学生的数学知识掌握情况展开设计,让学生利用已知数学等量关系解决实际问题,这势必能促使学生形成数理认知基础。高职数学教学中,教师不妨鼓励学生展开质疑活动,让学生列举疑惑问题,对这些问题进行整合优化处理,并结合数理知识进行实践探索。这些也属于数学建模思想的渗透。如教学“假设检验”时,教师可让学生展开假设创设,并通过多重操作实践进行检验。另外,教师设计课外作业时,也可渗透数学建模思想,让学生运用建模思想解决实际问题,以提升学生的数学综合素质。数学建模思想不仅是一种数学认知理论,还是一种解决数学问题的方法和措施。学生结合生活实际和学习认知基础展开相关操作,自然能够促进数学基本技能的提升。高职数学具有较强的抽象性,教师要针对学生的学力基础,为学生布设适宜的学习任务。结合学生生活实际提出问题,利用建模思想解决问题,需要关涉很多专业理论,教师应该进行示范操作,让学生有学习的榜样,这样才能提升数学课堂教学效度。
三、借助教法改进渗透建模思想。
教师要重视数学学法的传授,增加教学的灵活性、针对性和实践性。由于高职学生学力基础、学习悟性、学习习惯等存在差距,所以教师需要做好学情调查,降低数学学习难度,运用简单通俗的语言解读抽象的数学概念。这样,学生才能听得明白、学得好。渗透建模思想时,教师需要鼓励学生主动参与数理讨论互动,这不仅能引导学生展开质疑、释疑活动,还有利于学生树立数学建模理念,形成良性学习认知。教师打破传统教法束缚,采用先进的计算工具、数学软件、多媒体等教学辅助手段,或者利用网络搜集平台展开教学设计,都可以为学生提供难得的学习契机。高职学生通常拥有一定的信息技术应用能力,教师可借助信息媒体展开教学设计,与学生的生活认知接轨。如翻转课堂的适时介入,便属于数学建模典范设计。多数学生都有智能手机,可以随时随地参与网络信息共享活动,因此,教师应具备信息共享和网络互动意识,为学生布设相关学习任务,让学生在多元互动操作中逐渐达成学习共识,进而建立数理综合认知体系。将数学建模思想渗透到教学过程之中,每一个环节都有可能,教师要做好全面考量,针对学生实际进行科学设计。教师要加强对数学建模思想方法的研究,并将这些方法与学生学习实践相结合,从而调动学生的数理学习思维,提升学生的数学应用品质。总之,高职数学教学中渗透建模思想时,教师需要具备整合意识,对建模资源信息展开搜集整理,对学生学力基础进行全面判断,为建模思想的顺利渗透创造良好条件。数学教学设计应不断更新,教师教学水平也亟待提升,而建模思想的全面渗透,给教师的教学带来了全新契机。教师要根据教学实际展开创新设计,有效提升数学课堂教学效率。
参考文献:
[1]李建杰.数学建模思想与高职数学教学[j].河北师范大学学报,2013(06).
[2]刘学才.高职数学建模教学的现状及对策[j].湖北职业技术学院学报,2012(07).
数学建模课程论文篇三
多年以来,高职数学的课堂教学被学生认为是抽象、单调和枯燥的。在高职数学教学中,几支粉笔一堂课的现象还相当普遍。尽管许多教师都意识到了现代教育技术的重要性,但是很多时候,教学条件的改变是不尽如意的。现实中存在的教法过于陈旧死板,不便于理解和接受。另外,由于高职数学教学有它自身的特点,传统的教学方式还不能完全丢弃,因此,如何将传统的教学方式和现代教育技术做到有机结合是需要研究的问题。
二、高职数学教学中的对策与建议。
1.结合专业课内容,着重培养学生应用能力。
高职数学教学内容必须与专业相结合。由于专业趋向专门化,各专业对数学的需求也必然不同。所以,高职院校的数学教学和教材的选用有必要结合本专业的知识进行设置,针对不同的专业,给出适应专业需要的教学内容。为了更好的服务专业、适应专业、融于专业,必须对传统的高职数学教学内容做必要的取舍,使学生拥有与专业培养目标紧密结合的高职数学知识,突出培养专业人才的能力。它的主要特点是体现专业性,其内容要体现一个“用”字,让学生感受到学习数学是发展的需要。授课方式相对灵活,可以采用“讨论式”或“双向式”教学,也可由某一专业领域实际问题的数学应用展开。从某种意义上说,这样做是符合培养应用型人才的需要。
2.取舍教学内容,做到重点突出。
由于高职院校办学特点所决定的,高职数学的课程学时减少是一种普遍现象。在这种情况下,高职数学教学要结合高职院校的特点,适当增删内容,保留传统教材的基本结构,更新部分概念和理论的表达形式,只有在有限的课时环境下调节好难易度、把握好重难点,做到教学内容重点突出,才能将高职院校的数学教学提升到一个更高的台阶,教学效果才能有所改善。
3.培养自学能力,重视学法指导。
当同学们进入到高职院校以后,以往那种仅靠教师讲解、题海战和反复训练的情况已经不存在了,更多的时候还是要靠学生自己来合理支配学习时间;所以,应当着力培养高职生自学能力。不少学生很不适应高职数学教学中教师讲授快节奏的教学方式,依然留恋中学里所接受的“题型教学”、“题海战术”,但是,大学更加强调学生在学习中的独立思考和自学能力。所以,学生要转变观念,尽快适应中学到高职院校的'教育教学模式的转变,教学内容的转变,争取做到合理支配学习时间,将高职数学能够做到学以致用。
4.运用合理的教学方法。
高职数学教学也有必要打破传统教学法,开拓教学新思路,让教师“变主动为被动”,学生“变被动为主动”。教师可以采用灵活的教学互动式教学方法,使学生通过教师的讲授、小组的讨论,提高自信心、主动性和分析思考能力,使每个学生增强学习兴趣。另外,教师有必要以社会需求为基本出发点,紧扣专业需求,充分了解学生专业及将来从事岗位的有关情况,制定授课目标,达到学生满意的授课结果,使授课切实满足学生合理需求。另外,高职院校的数学教学还有必要做好以下几点:一是遵循教育部制定的《高职高专教育高职数学课程基本教学要求》,因地制宜,突出实用性。二是必须保证一定的课时。三是对基础太差的学生,在做好课外辅导的前提下,让他们在心理上减轻对高职数学的学习压力。只有爱学,才能学得更好。
数学建模课程论文篇四
[摘要]数学建模活动是一种知识性和应用性相结合的实践活动。通过数学建模活动的开展,侧重培养学生综合运用数学知识分析和解决实际问题的能力,增强创新意识和科学计算的能力,开拓知识面,从而推动数学教学思想、内容和体系、方法和手段的改革。因此,本文就在高职院校中开展数学建模活动进行可行性分析。
面对二十一世纪,高职院校的教育应以培养应用型人才为目标,人才的知识能力结构是应用型,而不是学术型;要按照应用型能力结构,重新构建理论和实践教学的体系,培养的应用能力应为创造性。开展数学建模活动的宗旨是:创新意识、团队精神、重在参与、公平竞争。数学建模活动极大地激发了学生学习数学的积极性,培养了学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,拓展知识面,培养了创新精神和合作意识。
高等数学是理工经济类学生必修的基础理论课,其目的在于培养职业技术人才所必须的基本数学素质。目前,国内许多高职院校的数学课程主要是由微积分、线性代数、概率论与数理统计等几部分组成,课程内容存在重经典、轻现代;重连续、轻离散;重分析推导、轻数值计算;重运算技巧、轻数学思想方法的趋向,而且各部分内容自成体系,过分强调各自的系统性与完整性,缺乏应用性和相互联系。在这种体系下,不仅需要大量的教学时数,而且不利于学生综合利用数学知识能力的培养,联系实际的领域也不够宽阔。
为解决上述问题,培养二十一世纪的技术应用型人才,数学建模活动以其对学生知识、能力、素质的综合培养,成为高职院校数学教学改革的有力手段。它是在基础课和专业课之间架起的一座桥梁,通过数学建模活动的开展,侧重培养学生综合运用数学知识分析和解决实际问题的'能力,增强创新意识和科学计算的能力,开拓知识面,从而推动数学教学思想、内容和体系、方法和手段的改革。
1开展数学建模活动是高职数学课程教学改革的需要。
高等职业教育的培养目标是为生产服务和管理第一线培养实用型人才,根据这个目标,高职数学课程的教学改革应以突出数学的应用性为主要的突破点。高职数学课程的一个重要的任务,就是培养学生用数学原理和方法解决实际问题的能力。在高职院校中开展数学建模活动,以此推动高职数学课程的改革应该是一个很好的做法。开展数学建模活动的出发点就在于培养高职学生使用数学工具和运用计算机解决实际问题的意识和能力,进而推动高职数学课程教学的改革。
2开展数学建模活动,能加速应用数学人才和复合人才的培养。
开展数学建模活动,能促进数学理论研究专门人才和应用型数学人才的培养。进入21世纪以来,高新科学技术发展突飞猛进,各行各业的应用型人才显得十分缺乏。
正是考虑到应用型数学人才的培养的重要性,国际和国内的数学建模竞赛在近十年来迅速发展。数学建模竞赛的题目由日常生活、工程技术和管理科学中的实际问题简化加工而成,它不要求有十分高深的数学知识,但涉及的面很广;并且一般没有事先设定的严格的标准答案,但留有充分的余地供参赛者发挥聪明才智和创造精神。数学建模活动采用开放式,可查阅资料和使用计算机,每个参赛队由三人组成,可自由组合,也可跨系、跨专业组队,参赛队必须在三天的时间内完成一篇包括模型的假设、建立和求解,计算方法的设计和实现,结果的分析和检验,模型的改进等方面的。参赛小组在完成的过程中,可以通过各种手段来收集资料,使用计算机和任何软件,甚至通过网上查询来完成解答。因此,开展数学建模竞赛对于加速高职院校培养应用型的人才和复合型人才具有十分积极的推动和促进作用。
3开展数学建模活动,能扩大学生的知识面。
数学建模活动所涉及的内容很广,用到的知识面比较宽,不但包含了较广泛的数学基础知识和各种数学方法技巧,而且联系到各种各样实际问题的背景:如生物、物理、医学、化学、生态、经济、管理等。我们认识到单靠数学系的老师担当指导教师对学生进行这些方面的知识传授可能不够深入全面。因此,学生在课下还需要自学。如建模方法与应用、线性规划、动态规划、生态数学模型、概率统计排队论、层次模型分析、图论、离散数学、计算机仿真、案例分析、matlab,mathematica等。这样大大丰富了学生的知识面,开拓了学生在数学方面的视野。这样充分调动了学生的学习积极性,激发学生努力自学,有利于将学生的潜能更充分地发挥,有利于培养和提高学生的自学能力。参加数学建模培训的同学均有这种深刻体会。
4开展数学建模活动,有助于培养学生的创新能力。
现代教育思想的核心是培养学生创新意识及能力,而能力是在知识的教学和技能的训练中,通过有意识地培养而得到发展的。教学中,数学建模方法和思想的融入,有助于激发学生的原创性冲动,唤醒学生进行创造性工作的意识,因为建模本身就是一项创造性思维活动,它既有一定的理论性,又有较强的实践性。既要求思维的数量,又要求思维的深刻性和灵活性,其关键是把实际问题抽象为数学问题,这就要求学生具有一定的转化能力,而且要有相当的观察、分析、类比等各种综合能力。对一个实际问题而言,一般不是只有一个正确模型,许多不同的模型都可以用来解决相同的问题,而同一个抽象模型又可以用于解决不同的具体问题,它没有固定的方法和规定的数学工具,也没有现成的答案、模式可以遵循。其结果只有更好,没有最好。这样数学建模本身就给学生提供了一个自我学习,独立思考,认真探索的实践过程。给学生带来了灵活的思维方式,开拓了学生的视野。它鼓励学生深层次思考问题,为学生提供了一个发挥创造性才能的氛围和条件。通过建模,学生要从错综复杂的实际问题中,抓住问题的要点,使问题逐渐明确,并将问题中的联系归成一类,揭示出它们的本质特征,得出解决问题的重点与难点,自觉地运用所给问题的条件寻求解决问题的最佳方案和途径,这一过程能充分发挥学生丰富的想象力和创新能力。
数学建模活动是一种知识性和应用性相结合的实践活动。在高职院校开展数学建模活动有助于培养高职学生的实践能力和动手能力以及分析问题和解决问题的能力,为学生以后从事技术性工作奠定良好的基础。
参考文献:
[1]杨晋浩。《数学建模》。北京:高等教育出版社,2003。
[2]张双德。《大学生数学建模竞赛与高等数学教育改革》[j]。《数学教育学报》,1999,(8)。
数学建模课程论文篇五
摘要:为了更好促进我国高职院校学前教育专业声乐课程教学水平的提高,促进我国高职院校学前教育专业的健康发展;笔者结合工作实际,专门探讨了高职院校学前教育专业声乐教学方法问题,并探索性提出了有效的声乐教学方法改进策略与建议。
关键词:高职院校;学前教育专业;声乐教学。
声乐课程是学前教育专业课程的重要组成部分,其基于学前教育专业学生要掌握与具备一定声乐演唱知识、能力目标而开设,学生的声乐理论水平、演唱能力等深深的影响着其后续的教学工作,进而影响到儿童的健康成长。就当前我国学前教育专业声乐教学来说,基本上都是“集体教学”方式,与音乐专业学生相比,学前教育专业学生的数量更多、声乐理论基础及演唱能力等更差,要想提高学前教育专业学生的声乐理论、演唱水平,必须从改进教学方法入手;为此,笔者结合长期从事学前教育专业声乐教学工作的实际,谈谈对改进声乐教学方法的体会。
一、开展正式声乐教学前,与学生充分交流,全面了解学生。
开展正式的声乐教学前,是声乐教学比较关键的一个阶段,其具有“自由”、“期待”两个主要特点;对于“自由”特点,主要体现在教师与学生都是处在“教学”之外,不论是学生还是教师都相对“自由”一些,没有教学中的那种“紧张”心理或者氛围绕,教师、学生之间可以进行更为轻松的交流,这样可以了解到学生内心的真实想法、真实需求及真实能力;对于“期待”特点,主要体现在教师、学生之间之前都不是很了解,都“期待”深入了解对方,教师可以深入了解学生相关的“声乐条件”,如身体状况、乐理知识、视唱练耳水平等,而学生则可以深入了解教师的学历背景、教学能力教学设施、教学条件及所要开设声乐课程情况等。总之,在开展正式的声乐教学前,教师与学生之前有必要进行专门、深入的交流,为后续声乐教学开展奠定良好基础。
二、培养学生浓厚兴趣与良好习惯,引导学生进入声乐殿堂。
学生良好的声乐理论知识水平、高超的声乐演唱能力,不是在一朝一夕就可以掌握、形成的,其需要日久天长的积累,这就要求学生一要有对声乐课程浓厚的学习兴趣,二要有良好的声乐学习习惯,然后在二者共同影响下,学生必能进入美妙的声乐殿堂。对于学生声乐学习兴趣的培养,教师在向学生传授声乐理论与演唱知识时,要先想方设法吸引学生的注意,在激发学生好奇心、满足学生好奇心、再激发学生好奇心、再满足学生好奇心的“循环”中,逐步培养起学生学习声乐的兴趣,这与教师渊博的知识、风趣的语言、良好的形象、美妙的亲和力是分不开的;对于学生良好声乐学习习惯的培养,虽然习惯的养成很难、很痛苦,但一定要求学生坚持,如每天半小时至一个小时的呼吸、微发声、咬字吐词和哼唱歌曲等练习,学生良好声乐学习习惯一旦养成,其也就会自动进入到了专注、忘我的声乐学习境界。
三、因材施教,有针对性的、循序渐进的开展声乐基础训练。
第一,坚持歌唱姿势训练;对于声乐演唱来说,歌唱姿势同样重要,声乐教师在给学生第一次上声乐课时,一定要强调、讲解歌唱姿势问题,在第一堂课中就要求学生要能够“良好站立”,如身体自然站立、胸部自然挺起,头摆正、脖子不能歪曲等。第二,科学进行发声训练;声乐是一门典型的歌唱艺术,其通过声音来表达人类情感,即科学发声是声乐演唱的基础,要想学好声乐,发声训练是基础;首先,让学生学会正确呼吸,在使学生充分了解人体发声器官基本工作原理基础上,保证学生掌握正确的吸气、呼气方法;其次,让学生正确的开喉,重点使学生掌握声带与气息之间的平衡感和开喉的适度感,以及掌握正确的开喉练习方法;第三,让学生正确认识共鸣,声乐演唱中的“共鸣”主要是指人体对发声产生的共鸣,要求学生对“共鸣”要有一个正确认识,同时掌握对共鸣腔体的运用方法;第四,掌握正确的发声练习路子,其是学生学习声乐的关键环节,是一种典型的技术训练过程,也是打好声乐演唱基本功的重要与有效途径。
四、重视语言在声乐演唱中作用,加强咬字、吐字语言训练。
声乐演唱是一门高雅的、音乐与语言相结合的艺术,语言是声乐演唱的基础,也是人们表达、获取思想情感的最直接、最有力工具。清晰的咬字、吐字对于声乐演唱来说意义重大,可以说一切声乐演唱技法训练都是围绕语言中心展开的。因为语言是产生声乐演唱优美旋律的主要依据,通过语言的咬字发音与音乐旋律的结合刻画出特有的音乐形象及产生预期音响效果。为此,也要求声乐演唱要字正腔圆、声情并茂,这就使正确掌握咬字、吐字发音成为学前教育专业学生必须要掌握的声乐演唱技能。为了使学生更好的掌握咬字、吐字发生,教师在授课时一定要结合歌曲演唱进行,引导学生注意不同咬字、吐字发音所表达的不同艺术效果。
五、专门引导学生对歌曲进行艺术处理,提高声乐演唱水平。
专门引导学生对歌曲进行艺术处理,是学前教育专业声乐教学中提高学生声乐演唱水平的重要与有效手段;可以理解为我们平时所说的二度创作。要想使学生能够成功的对歌曲进行艺术处理,首先要求学生要全面的了解、熟悉作品,熟悉歌词、熟悉乐谱、熟悉歌曲所表达的情感,甚于是歌曲作品的创作背景,只有对歌曲作品有了“深入骨髓”的了解,才有可能成功的对其进行艺术处理;其次,对歌曲进行艺术处理,不仅体现在对其乐谱、旋律等的更改上,还体现在对其所要表达内容、情感的改进上,可以考虑将自己的生活内容、情感等融入其中,再通过字正腔圆、声情并茂、忘我演唱等表现出来,进而产生一种新的声乐艺术效果。
[参考文献]。
[1]赵芳.基于合作学习的高职学前教育专业声乐教学实践[d].河北师范大学,2016.
[2]郭敏.浅析高职学前教育专业声乐教学存在的问题及对策[j].大众文艺,2017,01.
[3]刘江虹.高职院校学前教育专业声乐教学的问题及对策研究[j].黄河之声,2015,11.
数学建模课程论文篇六
摘要:随着现代社会的发展,数学的广泛用途已经无需质疑,他深入到我们生活的方方面面。现阶段,数学建模已经成为应用数学知识解决日常问题的一个重要手段。本文通过简述数学建模的方法与过程,以及应用数学建模解决实际经济问题的应用,展现的了数学学习的重要意义,以及数学在经济问题解决中的重要作用。
经济现象具有多变性,随着经济社会的发展,国际间贸易往来的日趋紧密,日常经济形势受到的影响因素越来越复杂多变。而日常经济生活中所遇到的经济现象同样存在着诸多的变化的影响因素。如何应对这些难以把控的变量,做好风险的预估、成本的核算、进行最大成本的规划,所有这些都可以借助数学知识、应用数学建模为工具进行较为理性的计算,为经济决策、企业规划提供重要的帮助。
数学建模,其实就是建立数学模型的简称,实际上数学建模可以称之为解决问题的一种思考方法,借助数学工具应用已知的定理定义进行合理的运算,推导出一种理性的结果的过程。数学建模是可以联系数学和外部世界的一个中介和桥梁,在工业设计、经济领域、工程建设等各个方面,运用数学的语言和方法进行问题的求解和推导,实际上,都是一种数学建模的过程。数学建模的主要过程可以总结为如下的框图形式:实际上,数学模型的最终建立是一个反复验证、修改、完善的动态过程,很少能够通过一次过程就建立起完美适合实际问题的数学模型。通过上述过程的多次循环执行:1.模型准备:分析问题,明确建模的目的,统计各种信息数据;2.模型假设:根据建模目的,结合实际对象的特性,对复杂问题进行简化,提取主要因素,提炼精确的数学语言;3.模型建立:根据提炼的主要因素,选择适当的数学工具,建立各个量(变量、常量)间的数学关系,化实际问题为数学语言;4.模型求解:对上述数学关系进行求解(包括解方程、图形分析、逻辑运算等);5.模型分析:将求解结果与实际问题结合,综合分析,找到模型的缺陷和不足,进行数学上的优化,建立稳定模型;6.模型检验:将模型得到的结果与实际情况相验证,检验模型的合理性和适用性。
二、经济问题数学模型的建立。
经济类问题因为其特有的特点,可以按照变量的性质分为两类:概率型和确定型。概率型应用于处理具有随机性情况的模型,可以解决类似风险评估、最优产量计算、库存平衡等问题;确定型则可以基于一定的条件与假设,精确的对一种特定情况的结果做出判断,如成本核算、损失评估等。对经济问题的建模计算实际上是一个从经济世界进入数学世界再回到经济世界的过程。建立经济数学模型,需要首先对实际经济问题和情况有一个较为深入的认识,然后通过细致的观察梳理,抽出最为本质的特征性的东西。将原始的复杂的经济问题简化提炼为一个较为理想的自然模型,然后基于这个原始模型应用数学知识建立完整的数学经济模型。
三、建模举例。
四、结语。
综上所述,我们可以看到,数学建模在经济中的应用可以非常广泛,对很多的决策和工作都可以提供参考和指导,如提高利润、规避风险、降低成本、节省开支等各个方面。上文只提供了一个简单的例子,和初步的介绍,其深入的理念和概念更加值得我们去努力的学习和思考。
数学建模课程论文篇七
[摘要]随着国家经济建设的突飞猛进,我国的高等职业艺术院校也得到了蓬勃发展。无论是综合大学,还是传统的艺术院校都对设计专业关怀备至。每年成千上万的设计专业毕业生走向社会,大多被政府部门和企事业单位聘用。而另一方面,传统的教育体制则偏重于数量,忽视了教育质量,同时认为平面设计只是手工劳作,忽略了平面设计的创造性和创新性。本文就现代高等职业艺术学院的平面设计专业存在的教学问题进行了分析并提出相应的改进建议和措施。
[关键词]高等职业艺术学院平面设计现状措施。
高职教育已走向快速发展的道路,高职教育在学习内容上具有“专业化程度较高,职业定向性很强”、“实践知识丰富,动手能力很强”等特点。高职学生的特长在于较强的职业技能,平面设计是一门动手能力很强的课程,随着社会不断发展,平面设计受到更多的关注。
一、平面设计教育的现状。
平面设计教育作为高职类及师范类毕业生综合素质的一个方面,在开设目的、开设时间、开设条件、开设课程上有很大的局限性。另一方面,扩招以后的生源素质大大降低,学生进校的专业水平相对较低,有的甚至没有基本的造型能力。学生学习宽泛基础课程,因为平均课时量少,都没能较深入地学习,使得学生没有较为突出的专业方向,较全面的综合能力更无从谈起,离师范类毕业生的“一专多能”的培养目标相去甚远。
根据对现在的从业设计师的比例调查,平面设计师的数量达到了所有种类设计师的52.44%。中国在商品经济空前发展的今天,平面设计行业起步较晚,起点较低。社会急需大量的平面设计人才,这样巨大的从业空间一方面给我们的平面设计教育提供了良好的大环境,也给建立平面设计专业提供了可行性支持。艺术院校重艺术轻技能,理工院校重技能轻艺术,这两种平面设计的人才观都略有偏颇。如何才能在重技能和重艺术之间找到一个合理的平衡点是现在许多专家考虑的问题。
二、高职平面设计教学存在的问题。
直至1998年,国家教育部才正式将艺术平面设计教育归入艺术设计专业学科,仅在艺术院校和普通高校开设相应的专业课程。在高等职业技术院校中,艺术平面设计教育起步较晚,在这样的背景和传统教学观念的制约下,高等职业艺术平面设计课程还存在着以下一些问题。
1.落后的教学方法。传统观念认为“学习”就是“死记”。在这种思想的影响下,形成了满堂灌的教学方法。学生失去了思维和行为的主动性,创新意识也被抑制了。而平面设计需要创新,只有注入新观念、新想法,才能设计出新的东西来。
2.被动的学习态度。学生虽然系列地修完了各专业基础课,但并不等于已具备了全面、准确地理解和掌握这门课程所涉及的专业知识结构,并将其融会贯通到设计实践中。学生在学习习近平面设计课程时,只仅仅把它当作一门必修课来完成,大部分同学只是想考试及格,拿到学位即可。高职学生被动的学习态度严重影响平面设计的教学效果。
3.泛滥的电脑设计。计算机特技是电脑软件中最引人注目的部分之一,合理地利用它能产生传统方法无法达到的奇特效果。但是大家不假思索,不加控制地利用就会泛滥。
4.较差的动手能力。由于课时少、教学任务重的原因,往往忽视学生动手能力和实践能力的培养。结果学生只是学到了一些死知识,而很少有机会进行设计训练。其实平面设计这门课程完全是一门试验课程,老师在讲解要点的同时,不能忽视学生动手能力的培养。
高职平面设计教学存在着不少问题,如何解决这些问题,提高教学效果成为平面设计课程教学教师需要考虑的首要问题。我以为应该从以下方面进行尝试:
1.制定详细的教学大纲。高职课程的教学大纲应以课程目标为依据,根据理论知识必须、够用,并在进行教学分析的基础上确定。通过课程的学习使学生能做到掌握软件的操作要点,掌握知识结构框架,理解各章节的重点和难点。
2.强调积累和实践。艺术平面设计不能忽视学生平时的实践经验积累。长期处在封闭的训练中,学生不了解社会、企业的发展状况,不能及时根据社会企业需要调整自己的知识结构。可利用课余时间,采用多种途径,使学生得到锻炼,吸取经验,达到提高实践能力的目的。可组织学生参加平面设计、动画设计、板报设计大赛,进一步培养学生的实践能力。
3.激发学生的学习情趣。让学生明白学好平面设计课程对学生将来的`发展的重要性,在课堂教学中还可以适当举例说明其重要性,让学生从心理上重视该门课程。在教学过程中,枯燥的讲述必然导致学生对该门课程索然无味,应该结合案例教学,加上幽默风趣的讲解,让学生在轻松的课堂气氛中学习难以掌握的知识。要让学生在平时的练习中将书本知识转化为作品,以激发学生的学习兴趣。
4.树立现代设计观念。观念决定一切,用什么观念指导办学和学习,就会产生什么样的效益和质量。因此,作为艺术设计专业的学生,从一踏进美术系的大门,就应该牢固地树立设计意识,明确自己的专业目标,以现代设计意识来统帅学习期间的全部过程,明确每门课程要解决的问题及它在专业教学中的地位和作用,增强学习的主动性、积极性和参与意识。
5.注重学生个性化的培养。设计的本质是创造,设计创造源于设计师的创造性思维。个性化是设计师对平面设计个性差异的独到见解。平面设计教学应通注重培养学生设计创意个性化的表达,倡导设计风格,挖掘个人与众不同的创造性思维,使设计具有鲜明、独特的个性表达和强烈的视觉冲击力。在教学中,教师要鼓励学生大胆想象,培养学生个性化思维,只有这样培养出来的学生才具有个性,才具有创新力。
四、思考与总结。
虽然平面设计越来越受关注,但是目前我国的高等职业艺术学院的艺术设计教育才刚刚起步,我认为不能照搬照套外国的教育模式。以往平面设计教学普遍存在着以知识为本位、教师为中心和以传授、灌输为主要特征的课堂教学模式。这样的课堂教学模式,阻碍着创新人才和技能型应用人才的培养。这就意味着教师应当在教学过程中,采用全新的教学模式,因而必然要对传统的教学理论、教学观念提出挑战。所谓“教学相长”,正是在师生双方相互交流、相互沟通、相互理解、相互启发、相互补充的过程中,逐步达到教师与学生,分享彼此的思想、交流彼此的情感、设计的观念与理念,从而达到共识、共享的效果。
参考文献:
[1]张葳,李海冰.艺术理论课在设计教育的重要性[j].包装与设计,2005,(12).
[2]陈基才.现代高等职业艺术平面设计教育的二元制[j].2004,(3).
[3]彭建祥.创建具有特色的艺术设计教育体系探讨[j].2006,(6).
[4]华勇.论高校艺术设计教育如何适应市场[j].2006,(8).。
[5]尹定邦.设计学概论[m].湖南科学技术出版社.2002.。
[7]秋蕾.对平面设计课程教学的几点思考[m].陕西教育出版社.
数学建模课程论文篇八
摘要:思想道德修养与法律基础课程是高校思想政治理论课程的主要组成部分,也是高校思想政治教育体系的主要渠道和主要阵地,思想道德修养与法律基础课程主要对大学生在思想道德观以及法律基础知识上起到塑造与完善的重要作用。
关键词:互联网;思想道德修养与法律基础;体验式教学;策略。
一、引言。
思想道德修养与法律基础课程对大学生高尚人格的形成、大学生社会责任感的增强、大学生法律意识的形成具有重要的作用,该课程也是高校思想政治理论课的重要课程,显示出国家对培养人才的重视,以及高校在培养人才上的重视程度。随着素质教育的推进,以及国家对培养全面发展人才的要求,高校在教学方法以及教学内容上面进行了大刀阔斧的改革,然而效果并不明显。尤其是思想政治理论教学方法的好坏直接关系到教学质量的高低,也直接影响到思想政治理论学生的塑造与影响。在发达的互联网时代,传统与单一的灌输式教学方法,已经不能适应时代的要求,高校思想政治理论课程在教学方法方面的改革显得尤为迫切。
二是,互联网上丰富的内容给思想政治理论课程带来了挑战,原有的教学内容显得捉襟见肘,互联网上多元化的信息资源,更能够激发起学生的学习兴趣;三是以互联网为载体的信息传递方式给传统的教学带来了极大的挑战,传统的老师讲、学生听的授课方式已经完全不能够适应互联网时代学生发展的需求,教师应该开展多元化、多种方式的教学来感染学生、激发学生的兴趣。体验式教学是一种能够让学生参与课堂,并且尊重学生的主体地位,让学生产生兴趣的情感,学生进行情感共鸣,他能够积极调动学生在道德情感以及道德行为上的塑造。
因此,体验式教学是实现学生知行统一的有效渠道,它也可以增强学生之间的合作学习以及情感互动,对高校思想政治课程教学改革、提高教学效果具有重要的作用,也是当前高校思想道德修养与法律基础课程应对互联网对该课程提出挑战的主要解决办法。
二、网络对思想道德与法律基础课程产生的影响。
三是互联网的出现,使得思想道德修养与法律基础课程教学更加凸显了学生的地位。网络的出现,使得教育主体与客体之间的地位趋向平等,从而突出了学生的主体地位。比如,在互联网上进行信息的共享,可以自由平等的获取,学生可以拥有主动权,教师不再是权威者,而与学生的地位趋向于平等。同时,网络互动性的特点,更加容易激发学生的学习欲望,为大学生进行自我教育,自我塑造自我学习,提供了更加开阔的空间与平台,教师的地位从讲授转换到了引导。
然而,互联网的出现也对思想道德修养与法律基础课程的教学产生了一定的负面影响,主要有以下几个方面:
一是大学生过于依赖网络。据调查,我国大学生是互联网使用的主体,这给高校思想道德修养与法律基础课程的教学提出了极大的挑战,学生可以通过互联网了解各种事情和信息,而教师的讲授则难以起到太大的知识传递的作用。但是,网络上的信息不仅有积极向上的,还有消极扭曲的,如果大学生长期沉迷于网络,则很容易将一些鱼龙混杂的信息深入自己的道德观念中,这不仅会削弱大学生对道德思考的问题,还会给大学生的人格形成带来阻碍,很容易让大学生对自身现实生活与网络的虚拟性形成混淆,充满误解,从而形成不健康的人生观与价值观。
二是互联网环境下高校思想道德修养与法律基础课程的.教师缺乏对学生进行积极的引导。主要是由于部分教师对于互联网以及互联网环境下体验式教学存在一定的偏见,对其不完全了解,忽视了课堂中学生的情感体验,只是按照自己的思路进行教学,没有将学生所需要得到的东西融入课堂之中,因此起不到道德教育的作用。
三、利用网络环境提升思想道德与法律基础的教学策略。
第一,高校思想道德修养与法律基础课程的教师,应该加强学习和运用体验式教学方法,树立以学生为本,运用体验式教学的理念,在互联网日益发展的今天,高校思想道德修养与法律基础课程教师应该转变教学观念,让互联网成为一种新的教学方式,让体验成为学生学习的主要方式,让学生在参与体验中真正了解感受,并且塑造积极向上的思想道德修养。二是,高校思想政治教师应该学习和提高运用网络信息的技能,为了更好的利用互联网的优势,高校教师首先应该整合提高自己的互联网修养,能够敏锐地接受互联网信息,并且形成较强的信息处理能力,将这种能力完全融入到思想道德修养与法律基础课程的教学中,将网络优势与体验教学的优势整合发挥,取长补短,促进教学效果的提升。
第二,高校思想政治教师应该为学生创造丰富的体验教学模式。比如,课堂讨论、讲座、演讲、案例教学等等,都是有效的体验教学模式。课堂讨论可以增加师生之间学生之间的互动交流,具有较强的互动性以及合作性,而且具有互补性,通过课堂讨论,可以提高学生课堂参与度,并且升华师生的情感,达到体验教学的目的。演讲是一种更为真切的体验教学方式,学生可以将自己的真情实感,自己个人对思想道德修养与的见解敞开心扉的演讲出来,应该会更加具有吸引力,更加具有情感。
参考文献:
[1]徐雁.基于网络环境下高校思想政治理论课教学模式的创新[j].中国成人教育.(12).
[2]佘双好.关于思想政治理论课体验式教学的思考[j].思想教育研究.2012(04).
[3]萨日娜,原丽红.网络普及化对高校思想政治理论课课堂教学的挑战[j].中国成人教育.2012(05).
[4]邱靖.网络对高校思想政治理论课教学的挑战及对策思考[j].教育探索.2011(11).
数学建模课程论文篇九
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。
一、数学应用题的特点。
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的.一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力。
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
1提高分析、理解、阅读能力。
2强化将文字语言叙述转译成数学符号语言的能力。
3增强选择数学模型的能力。
4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
数学建模课程论文篇十
摘要:数学作为很多学科的计算工具,可以说是现代科学的基础,要想利用数学来解决实际问题,首先要建立相应的数学模型,本文在数学建模思想概念和特点的基础上,从计算机软件、实际生活中的应用等方面,对其应用的发展进行了分析,最后从分析问题、建立模型、校验模型三个阶段,对数学建模的方法,进行了深入的研究。
引言。
随着自然科学的发展,利用数学等思想来解决实际问题,越来越受到人们的重视,数学作为一门历史悠久的自然科学,是在实际应用的基础上发展起来,但是随着理论研究的深入,现在数学理论已经非常先进,很多理论都无法付诸实践,在这种背景下,如何利用现有的数学理论来解决实际问题,成为了很多专家和学者研究的问题。通过实际的调查发现,要想利用数学来解决实际问题,首先要建立相应的数学模型,将实际的问题转化成数学符号的表达方式,这样才能够通过数学计算,来解决一些实际问题,从某种意义上来说,计算机就是由若干个数学模型组成的,计算机软件之所以能够解决实际问题,就是根据实际应用的需要,建立了一个相应的数学模型,这样才能够让计算机来解决。
数学是一门历史悠久的自然科学,在古时候,由于实际应用的需要,人们就已经开始使用数学来解决实际问题,但是受到当时技术条件的限制,数学理论的水平比较低,只是利用数学来进行计数等,随着经济和科技水平的提高,尤其是在工业革命之后,自然科学得到了极大的发展,对于利用自然科学来解决实际问题,也成为了人们研究的重点,在市场经济的推动下,人们将这些理论知识转化成为产品。计算机就是在这种背景下产生的,在数学理论的基础上,将电路的通和不通两种状态,与数学的二进制相结合,这样就能够让计算机来处理实际问题,从本质上来说,这就是数学建模思想的范畴,但是在计算机出现的早期,数学建模的理论还没有形成,随着计算机软件技术的发展,人们逐渐的意识到数学建模的重要性,发现利用数学建模思想,可以解决很多实际的问题,而数学建模的概念,就是将遇到的实际问题,利用特定的数学符号进行描述,这样实际问题就转化为数学问题,可以利用数学的计算方法来解决。
如何解决实际问题,从有人类文明开始,就成为了人们研究的重点,随着自然科学的发展,出现了很多具体的学科,利用这些不同的学科,可以解决不同的实际问题,而数学就是其中最重要的一门学科,而且是其他学科的基础,如物理学科中,数学就是一个计算的工具,由此可以看出数学的重要性,进入到信息时代后,计算机得到了普及应用,无论是日常生活中还是工作中,计算机都有非常重要的应用,而在信息时代,注重的是解决问题的效率。与其他解决问题的方式相比,数学建模显然更加科学,现在数学建模已经成为了一门独立的学科,很多高校中都开设了这门课程,为了培养学生们利用数学解决实际问题的能力,我国每年都会举办全国性的数学建模大赛,采用开放式的参赛方式,对学生们的数学建模能力进行考验,而大赛的题目,很多都是一些实际问题,对于比赛的结果,每个参赛队伍的建模方式都有一定的差异,其中选出一个最有效的方式成为冠军。由此可以看出,对于一个实际的问题,可以建立多个数学模型进行解决,但是执行的效率具有一定的差异,如有些计算的步骤较少,而有些计算的过程比较简单,而如何评价一个模型的效率,必须从各个方面进行综合的考虑。
2.1计算机软件中数学建模思想的应用。
通过深入的分析可以知道,计算机之所以能够解决实际问题,很大程度上依赖与计算机软件,而计算机软件自身就是一个或几个数学模型,在软件开发的过程中,首先要进行需求的分析,这其实就是数学建模的第一个环节,对问题进行分析,在了解到问题之后,就要通过计算机语言,对问题进行描述,而计算机语言是人与计算机进行沟通的语言,最终这些语言都要转化成0和1二进制的方式,这样计算机才能够进行具体的计算。由此可以看出,计算机就是依靠数学来解决实际问题,而每个计算机软件,都可以认为是一个数学模型,如在早期的计算机程序设计中,受到当时计算机技术水平的限制,采用的还是低级语言,由于低级语言人们很难理解,因此在程序编写之前,都会先建立一个数学模型,然后将这个模型转化成相应的计算机语言,这样计算机就可以解决实际的问题,由于计算机能够自行计算的特点,只要输入相应的参数后,就可以直接得到结果,不再需要人为的计算。
经过了多年的发展,现在数学建模自身已经非常完善,为了培养我国的数学建模人才,从1992年开始,每年我国都会举办一届全国数学建模大赛,所有的高校学生都可以参加,大赛采用了开放性的参赛方式,通常情况下,对于题目设置的也比较灵活,会有多个题目提供给队员选择,学生可以根据自己的实际情况,来选择一个最适合自己的问题。而数学建模大赛举办的主要目的,就是让学生们掌握如何利用数学理论,来解决实际问题,在学习数学知识的过程中,很多学生会认为,数学与实践的距离很远,学习的都是纯理论的知识,学习的兴趣很低,与一些实践密切相关的学科相比,选择数学专业的学生很少,而数学建模的出现,在很大程度上改善了这种情况,让人们真正的了解数学,并利用数学来解决复杂的问题。受到特殊的历史因素影响,我国自然科学发展的起步较晚,在建国后经历了很长一段时间封,闭发展,与西方发达国家之间的交流比较少,因此对于数学建模等现代科学,研究的时间比较短,导致目前我国很少会利用数学建模来解决实际问题,相比之下,发达国家在很多领域中,经常会用到数学建模的知识,如在企业日常运营中,需要进行市场调研等工作,而对于这些调研工作的处理,在进行之前都会建立一个数学模型,然后按照这个建立的模型来处理。
从本质上来说,数学是在实际应用的基础上,逐渐形成的一门学科,但是受到当时技术水平的限制,虽然人们已经懂得去计算,却并知道自己使用的是数学知识,随着自然科学的发展,对数学的应用越来越多,而数学自身理论的发展速度很快,远远超过了实际应用的范围,同时随着其他学科的发展,数学变成了一种计算的工具,因此数学应用的第一个阶段中,主要是作为一种工具。随着电子计算机的出现,对数学的应用达到了一个极限,人们在数学和物理的基础上,制作出了能够自动计算的机器,在计算机出现的早期,受到性能和体积上的限制,只能进行一些简单的数学计算,还不能解决实际的问题,但是计算机语言和软件技术的.发展,使其在很多领域得到了应用,在计算的基础上,能够解决很多问题,而软件程序的开发,其实就是建立数学模型的过程,由此可以看出,数学建模思想应用的第二阶段中,主要是以现代计算机等电子设备的方式,来解决实际的问题。
3.1分析问题。
数学模型的应用都是为了解决实际问题,虽然很多问题都可以通过建模的方式来解决,但是并不是所有的问题,因此在遇到实际问题时,首先要对问题进行具体的分析,首先就是看是否能够转化成数学符号,如果能够直接用数学语言来进行描述,那么就可以容易的建立相应的数学模型,但是通过实际的调查发现,随着经济和科技的发展,遇到的问题越来越复杂,其中很多都无法直接用数学语言来描述,这就增加了数学建模的难度。由此可以看出,分析问题作为数学建模的第一个环节,也是最重要的一个环节,如果问题分析的不够具体,那么将无法建立出数学模型,同时对数学模型的建立也具有非常重要的影响,通过实际的调查发现,能够建立高效率的数学模型,都是对问题分析的比较彻底,甚至有些独特的理解,只有这样才能够采用建立一个最简单的模型,而随着数学建模自身的发展,现在建立模型的过程中,对于一个实际的问题,经常需要建立多个模型,这样通过多个数学模型协同来解决一个问题。
在分析实际问题后,就要用数学符号来描述要解决的问题,这是建立数学模型的准备环节,要想利用数学来解决实际问题,无论采用哪种方式,都要转化成数学语言,然后才能够通过计算的方式解决,而数学模型的过程,就是在描述完成后,建立相应的数学表达式,通常情况下,在分析问题时,都能够发现某种内在的规律,这个规律是数学建模的基础。如果无法找到这个规律,显然就不能利用现有的一些数学定律,从而建立相应的表达式,最后解决相应的问题,由此可以看出,分析问题的内在规律,是影响数学建模的重要因素,而这个规律的发现,除了在现有的数学知识外,也可以结合其他学科的知识,尤其是现在遇到的问题越来越复杂,对于以往简单的问题,只需要建立一个简单的模型即可解决,而现在复杂的问题,经常需要建立多个模型。因此现在数学建模的难度越来越大,从近些年全国数学建模大赛的题目就可以看出,对于问题的描述越来越模糊,甚至出现了一些历史上的难题,而不同学生根据自己的理解,建立的模型也具有很大的差异,其中一些模型非常新颖,为实际问题的解决提供了良好的参考,目前我国对数学建模的研究有限,尤其是与西方发达国家相比,实践的机会还比较少。
在数学模型建立之后,对于这个模型是否能够解决实际问题,具体的执行效率如何,都需要进行校验,因此检验是数学模型建立最后的一个环节,也是非常重要的一个步骤,通常情况下,经过校验都能够发现模型中存在的一些问题,从而进行完善,这样才能够保证严谨性,在实际校验的过程中,要对数学模型的每个部分进行验证,通过输入特定的数据,看得到的结果是否符合理论值,如果没有问题,就说明该模型可以解决实际问题。除了检验模型的准确外,校验还有另外一个作用,就是优化模型,在选定数据后,能够看到数学模型计算的整个过程,这时就可以对具体的细节进行优化,如哪部分可以减少计算的步骤,或者简化计算的方式等,这样可以使整个模型更加科学、合理,由此可以看出,校验工作对于数学模型的建立,具有非常重要的意义。
4结语。
通过全文的分析可以知道,对于数学理论的应用,从很久之前就已经开始了,但是数学建模思想的出现,却是随着计算机技术的发展,逐渐形成的一门学科,电子计算机的出现,在很大程度上改变了处理事情的方式,利用计算机软件,只要输入相应的参数,就可以直接得到结果,这正是数学模型完成的任务,只是计算机的出现,省略了中间的计算过程,因此计算机软件的方式,是数学建模思想最好的应用方法,要想解决不同的问题,只要建立不同的模型,然后编写相应的程序。
数学建模课程论文篇十一
为了培养小学生良好的数学学习兴趣,激发他们的数学潜能,教师需要采取必要的措施注重数学建模思想的有效培养,促进学生的全面发展。在制定相关培养策略的过程中,教师应充分考虑小学生的性格特点,提高数学建模思想培养的有效性。基于此,文章将从不同的方面对小学生数学建模思想的培养策略进行初步的探讨。
作为小学数学教学中的重要组成部分,数学建模思想的渗透及相关教学活动的顺利开展,有利于提高复杂数学问题的处理效率,保持数学课堂教学的高效性。要实现这样的发展目标,增强小学生数学建模思想的实际培养效果,需要加强对学生动手实践能力的培养,激发学生的更高兴趣。建模的过程涉及问题表述、求解、必要解释及有效验证,在这四个环节中,可能会存在一定的问题,影响着数学教学计划的实施。因此,教师需要利用学生动手实践能力的作用,实现数学建模思想的有效培养,促使小学生能够在数学建模过程中享受到更多的快乐。比如,在讲解“认识角”知识的过程中,某些学生认为边越长角度也越大。为了使学生能够对其中的知识点有更加正确而全面的认识,教师可以通过在黑板上设置一些能够活动的三角板,让学生亲自动手操作,以此得出角与边长的正确关系,为后续教学计划的实施打下坚实的基础。通过这种教学方法的合理运用,可以激发出学生们在数学建模学习中的更高兴趣,丰富他们的想象力,从而使他们对数学建模思想有一定的了解,在未来学习过程中能够保持良好的`数学建模能力。
通过对小学阶段各种数学实践教学活动实际概况的深入分析,可知构建良好的数学模型有利于加深学生对各知识(福建省莆田市秀屿区东峤前江小学,福建莆田351164)点的深入理解,增强其主动参与数学建模教学活动的积极性。因此,为了使小学生数学建模思想培养能够达到预期的效果,教师需要结合实际的教学内容,建立必要的数学参考模型,提升学生对数学建模思想的整体认知水平。比如,在讲授“异分母分数加减法”这部分知识的过程中,可以设置“0.8千克+300克”“1.6千克-400克”等问题,向学生提问是否可以直接计算,并说出原因。当学生通过对问题的深入思考,总结出“单位不同不能直接计算”的结论后,继续向学生提问小数计算中为什么每一位都要对齐,实现“计数单位统一后才能计算”这一数学模型的构建。在这样的教学过程中,学生可以加深对知识点的理解,实现数学建模思想的有效培养。
加强小学生数学建模思想的有效培养,需要在具体的教学活动开展中注重对数学思想的灵活运用,增强相关模型构建的可靠性,促使学生在长期的数学学习中能够不断提高自身的数学能力,运用各种数学知识处理实际问题。比如,在“角的度量”这部分内容讲解的过程中,为了提高学生对角的分类及画角相关知识点的深入理解,教师可以将所有的学生分为不同的小组,让学生们通过小组讨论的方式,对角的正确分类及如何画角有一定的了解,并让每个小组代表在讲台上演示画角的过程。此时,教师可以通过对多媒体教学设备的合理运用,利用动态化的文字与图片对其中的知识要点进行展示,确保学生们能够在良好的教学模式中提升自身的认知水平,并在不断的思考过程中逐渐形成良好的创造性思维,强化自身的创新意识。比如,在讲解“图形变换”中的轴对称、旋转知识点的过程中,教师应通过对学生的正确引导,运用三角板、圆柱等教学辅助工具,让学生从不同的角度对各种轴对称图形、旋转后得到的图形进行深入思考,提高自身数学建模过程中的创新能力,从不同的角度深入理解图像变换过程,对这部分内容有更多的了解。因此,教师应注重小学生数学建模思想培养中多方位思考方式的针对性培养,提高学生的创新能力,优化学生的思维方式,全面提升小学数学建模教学水平。
总之,加强小学生数学建模思想培养策略的制定与实施,有利于满足素质教育的更高要求,实现对小学生数学能力的有效锻炼,确保相关的教学计划能够在规定的时间内顺利地完成。与此同时,结合当前小学数学教育教学的实际发展概况,可知灵活运用各种科学的数学建模思想培养策略,有利于满足学生数学建模学习中的多样化需求,为相关教学目标的顺利实现提供可靠的保障。
[1]童小艳.小学数学教学中培养学生建模思想的策略[j].学子(教育新理念),20xx(6).
[2]白宁.先学而后教——小学生数学建模思想培养的捷径[j].数学学习与研究,20xx(16).
数学建模课程论文篇十二
数学是在实际应用的需求中产生的,要描述一个实际现象可以有很多种方式,为了实际问题描述的更具逻辑性、科学性、客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。数学建模则是架于数学理论和实际问题之间的桥梁,数学模型是对于现实生活中的特定对象,根据其内在的规律,做出一些必要的假设,为了一个特定目的,运用数学工具,得到的一个数学结构,用来解释现实现象,预测未来状况。因此,数学建模就是用数学语言描述实际现象的过程。
大部分的独立院校的数学建模工作纯在一定的问题,主要体现在以下几个方面:(一)学生方面的问题。独立院校的大部分学生的数学功底差,对数学的学习兴趣不大,普遍认为数学的学习对自身的专业的帮助不大。从而更不愿意接触与数学有关的数学建模,对数学建模竞赛的兴趣不大。在独立院校中,参加数学建模竞赛的大都是低年级的学生,而这些学生的数学知识结构还不完整,他们往往参加了一届数学竞赛并未获得奖项后就不愿意再次参加。而高年级的同学忙于其他的就业、考研等压力,无暇参加数学建模竞赛的培训。(二)教资方面的问题。首先。传统的教学是知识为中心、以教师的讲解为中心。数学建模的教学要求教师以学生为中心,培养学生学会学习的能力,发展学生的创新能力和创造能力。独立院校外聘的老师常常对独立院校的学生不够了解,这直接影响到教学成果。其次,数学建模涉及的知识面广,不但包括数学的各个分支,还包含了其他背景的专业知识。独立院校的教师一部分是才从大学毕业不久的研究生,他们对于数学建模教学和竞赛的培训经验不足,科研能力不是很强,对数学的各个分支的把控能力不强,对其他专业的了解不够全面。(三)教学实施方面的问题。大学生数学建模竞赛的目的决不仅仅是获奖,更重要的是通过参加大学生数学建模竞赛活动,促进高校数学教学改革,起到培养全体学生能力、提高全体学生素质的作用。独立院校数学建模教学存在很多的问题。首先,大学数学建模教育在独立院校中的普及性不够。数学建模的宣传力度不大,课程大多开在大一和大二的跨选课,这个时候学生的数学知识结构还不完整。其次就是教材的选取,数学建模的相关教材大都是为了数学建模竞赛而编写的,对于独立院校的学生来说,这些教材的难度系数大,涉及的知识面广,远远超过了学生的接受能力。
(一)让学生了解数学建模,培养学习数学建模的兴趣。数学建模课程的开设有利于培养学生运用数学具体解决实际问题的能力,让学生发现学习数学的用处,改变学生学习数学的态度,提高学习数学的能力,认识到数学的意义和价值。独立院校学生的数学基础虽然比较差,但是学生的动手能力强。学校可以在多开展数学建模的讲座和课程,让学生了解数学建模。同时多向学生宣传数学建模的成果。(二)在教学内容中渗透数学建模思想和方法。1.在日常数学教学中渗透数学建模的思想方法。传统的数学教学重视的是知识的培养和传输,而忽视的是实际应用能力。教师的教学目标是使学生掌握数学理论知识。一般的教学方法是:教师引入相关的的基本概念,证明定理,推导公式,列举例题,学生记住公式,套用公式,掌握解题方法与技巧。学生往往学习了不少的纯粹的数学理论知识,却不知道如何应用到实际问题中。数学建模课程与传统数学课程相比差别较大,学校开设的数学建模跨选课及数学建模培训班,对培养学生观察能力、分析能力、想象力、逻辑能力、解决实际问题的能力起到了很好的作用。由于学校开设的数学建模课程大多是选修课程,课时较少,参选的学生也有限,数学建模的作用不能很好的向学生传输。高等数学中的很多内容都与数学建模的思想有关,因此,在大学数学课程的教学过程中,教师应有意识地结合传统的数学课程的特点,将数学建模的思想和内容融入到数学课堂教学中。这样既可以激发学生的学习兴趣,又能很好的将突出数学建模的思想。2.数学建模与专业紧密联系,发挥数学对专业知识的服务作用。数学建模与专业知识的结合,不仅可以让学生认识到数学的重要作用,在专业知识学习中的地位,还可以培养学习数学知识的兴趣,增强数学学习的凝聚力,同时加深对专业知识的理解。通过专业知识作为背景,学生更愿意尝试问题的研究。在学习中遇到的专业问题也可以尝试用数学建模的思想进行解决。这有利于提高学生的综合能力的培养。3.分层次进行数学建模教育。大体说来独立院校的数学建模课程的开设应该分成两个阶段:(1)第一阶段:大学一年级,在这个阶段,大部分学生对数学建模没有了解,这时候适合开设一些数学建模的讲座和活动,让学生了解数学建模。同时,在日常的数学教学中选择简单的应用问题和改变后的数学建模题目,结合自身的专业知识进行讲解,让学生了解数学建模的一般含义。基本方法和步骤,让学生具备初步的建模能力。(2)中级层次:大学二、三年级。在这个阶段,学生基本具备了完整的数学结构,具有了基本的建模能力。这个时候应该开设数学建模专业课程,让学生处理比较复杂的数学建模问题,让学生自己去采集有用的信息,学会提出模型的假设,对数据和信息需进行整理、分析和判断,并模型进行分析和评价,最终完成科技论文。
(一)提高数学教师自身水平。在数学建模教学过程中,教师扮演着重要的角色。教师水平的高低决定着数学建模教学能否达到预期的目的。数学建模的教学,不仅要求教师具备较高的专业水平,还要求教师具备解决实际问题的能力和丰富的数学建模实践经验。而独立院校的教师部分教师是才毕业不久的研究生,缺乏实践经验。这就对独立院校的的数学建模教学工作产生了很大的障碍。为了提高教师的水平,可以多派青年教师进行专业培训学习和学术交流,参加各种学术会议、到名校去做访问学者等等。同时可以多请著名的数学专家教授来到校园做建模学术报告,使师生拓宽视野,增长知识,了解建模的新趋势、新动态。青年教师还需要依据特定的教学内容、教学对象和教学环境对自己的教学工作作出计划、实施和调整以及反思和总结。青年数学教师还必须更新教育理念,改变传统的教学理念。只有不断创新,努力提高自身素质,才能适应新的形势,符合建模发展的要求。(二)选取合适的教材。数学建模教材使用也存在诸多不足之处。绝大部分高校教学建模课程采用的是理工类专业数学建模教材。这些教材主要涵盖的数学模型的难度系数大。而独立院校的学生的基础薄弱,无法接收这些模型。在教学过程中,教师可以将具体的案例或是历年的数学建模题目做为教学内容。通过具体的建模实例,讲解建模的思想和方法。一边讲解,一边让学生分组讨论,提出对问题的新的理解和对魔性的认识,尝试提出新的模型。(三)丰富建模活动。全面开展数学建模活动是数学建模思想的最重要的形式,它既使课内和课外知识相互结合,又可以普及建模知识与提高建模能力结合,可以培养学生利用数学知识分析和解决实际问题的能力,可以有效地提升了学生的数学综合素质。学校可以定期的开展数学建模宣传活动,扩大数学建模的知名度。学校还可以邀请有经验的专家和获奖学生开展建模讲座,提高对数学建模的重视,积极的组织建模活动。实践证明,只有根据独立院校的自身特点和培养目标,对数学建模课程的教学不断进行改革,才能解决独立院校数学建模课程教学的问题,才能真正的让学生喜欢上数学,喜欢上数学建模。
[1]李大潜.将数学建模思想融入数学主干课程[j].中国大学教育.20xx.
[2]贾晓峰等.大学生数学建模竞赛与高等学校数学改革[j].工科数学.20xx:162.
[3]融入数学建模思想的高等数学教学研究[j].科技创新导报.20xx:162.
作者:李双单位:湖北文理学院理工学院。
数学建模课程论文篇十三
对于高职院校的学生来讲,数学在其教学过程中起着基础性的作用,对于学生后续的学习相当关键。但是从现阶段高职院校数学教学的基本情况来看,数学教师的教学方法以及教学策略都相当落后,对于学生数学兴趣的提升造成了不同程度的影响。在这样的背景下,相关专家提出了数学建模的方式,希望以此提升高职院校高等数学的教学效率。本文结合数学建模在高职高专人才培养当中的意义和作用入手,对于其中的应用策略进行全面的分析,希望为相关单位提供一个全面的参考。
随着我国社会的发展,经济产业结构日益升级,因此高等院校的人才需求日益扩大,对于高职教育的发展提供了前所未有的契机。在这样的背景下,从数学建模入手,将其思想融入到高等教育的数学教学当中,对于其中的策略和方法进行全面的研究应该是一项具有普遍现实意义的工作。
从近些年的发展来看,参加过数学竞赛的学生在科研能力等方面都具有比其他同学更强的优势,因此数学建模在提升学生创新能力、提高学生知识水平以及调动学生的.学习兴趣都具有十分重要的意义。比如在解决实际问题的时候,数学建模通过利用各种技巧,可以使得学生分析问题、创造能力得以全面的提升,进而使得学生在摒弃原始思考问题方式的基础上,敢于向传统的知识发出挑战,对于学生的综合能力的全面提升相当关键。其次,数学知识本就源于生活,因此在建模的基础上学生就可以带着问题去思考,这对于数学知识整体性的发挥以及解决问题能力的提升都具有十分重要的意义。最后,面对传统数学的解决方式,很多学生望而生畏,因此主动分析问题的欲望就会受到遏制。在这样的背景下,通过数学建模方式,学生会发现数学方法的灵活性,进而使得他们解决问题的能力得以全面的提升。
3.1制定切实可行的教学大纲,从而使得教学进度得以保障。教学大纲在高职教学当中起着十分重要的作用,这对于教学内容的合理性以及提升学生学习的针对性都具有十分重要的意义[1]。比如在教学高等数学(一)的选修模块时,教学大纲的制定应该结合学生的专业,从而使得学生的数学学习真正取得实效。比如可以为理工类的学生选择无穷级数以及傅里叶变换的内容;机械类的学生选择线性代数以及解析几何作为教学内容,从而使得学生的综合能力得以全面的提升。3.2开展“三段式”的教学模式。数学建模在以解决实际问题为核心的过程中,使得学生分析问题以及组织问题的能力得以全面的提升,这种方式的本质为素质教育,因此不能和现行的其他教学模式分割开来,这就需要相关部门开展“三段式”的教学模式,使得学生的数学兴趣得以全面的提升。其中,第一段需要还原数学知识的原创过程,使得学生明确数学知识的产生过程,进而让学生从生活案例当中发现数学的价值,比如知道极限是由人影的长度变化引起的,导数是由于驾车的速度引入的,使得学生发现知识的价值,进而就会大大提升自己的学习兴趣和探究意识。第二段:讲解数学知识。数学建模是在实际问题当中引入的,因此要通过具体数学知识的讲解使得学生明确数学建模的真正价值,比如在讲解微积分的过程中,可以以“极限-微分-积分”为主线,使得学生对于数学的分析能力真正得以提升[2]。然后在为学生积极引入大量数学图表的基础上,为增强学生的感性认识,进而提升学生的综合能力奠定坚实的基础。第三段:数学知识的运用。随着社会的发展,数学的应用在各行各业都发挥出巨大的作用,因此对于高等数学在实际生活当中发挥出来的作用进行全面的探究是实现这种知识价值的真正途径。在这样的背景下,高等数学教师要将每个知识点的运用真正灌输给学生,比如指数增长在银行计息当中的应用、定积分在学习曲线当中的应用、再生资源在数学开发以及管理当中的应用等等。从而使得学生数学学习中的创新意识以及应用能力得以全面的提升。3.3开设数学实验,提升学生的综合素质。数学建模为学生提供了一种真正的“数学实验”,在这种实验的过程中,学生对于数学知识的发展以及由来过程都会得到进行全面的考虑,这对于他们数学探索意识的提升具有十分重要的意义。另外,在计算机辅助实验的过程中,学生的动脑能力也会得到全面的提升,这对于学生主动的学习数学相当关键。因此在教学过程中,教师要积极利用这种方式对于学生进行全面的培养。
总之,随着我国经济水平的不断提升,社会对于高职院校的重视力度日益提升,因此对于高职院校当中数学建模思想在高等数学教学当中的应用进行全面的分析是实现学生综合素质得以全面提升的关键措施,这对于学生的长远发展也相当关键,相关教育工作者要加大在这方面的研究力度,力求将高职院校的学生培养成为新时代所需要的人才。
[1]吴健辉,黄志坚,汪龙虎.对数学建模思想融入高等数学教学中的探讨[j].景德镇高专学报,20xx,(4).
[2]张卓飞.将数学建模思想融入大学数学教学的探讨[j].湘潭师范学院学报(自然科学版),20xx,(1).
数学建模课程论文篇十四
2.1、建立引导机制,激发学习动力。
2.2、建立转化机制,促进知识向能力的转化。
2.3、建立协作机制,增强团队意识。
高校学生在平时的学习过程中,绝大多数情况下,基本上都是独自学习,与他人合作研究和解决问题机会很少.而在各种层次级别的数学建模竞赛中,参赛学生要3人一组,以团队而不是个人身份参赛.在正式比赛之前,要按照学科、特长等因素寻找队友,组成队伍.在比赛期间,由于队友经常是来自不同专业,知识能力水平各有所长,脾气秉性各有特点,需要在比赛时认真沟通,相互协调,合理分工,团结协作共同完成整个比赛.为了比赛,在发生矛盾时,要学会忍耐和妥协,而不能意气用事.在整个比赛期间,求同存异,取长补短,优势互补,最终合作完成任务.这个过程,无形中就培养了学生的合作意识和团队精神,使学生亲身感受到现代社会与人合作是大多数人成功的必要选择.依托数学建模竞赛,培养创新型人才的团队协作意识,建立培养人才的.合作交流机制,这是适应社会和时代需要的人才培养过程中的重要环节之一。
2.4、建立沟通表达机制,提高学生的语言及文字表达能力。
2.5、建立问题导向机制,培养学生主动式学习的自主学习能力。
3.1、促进了学生全面发展。
3.2、提高了学生的就业质量。
数学建模课程论文篇十五
摘要:在新课改以后,要求教师要在教学中重视学生的主体地位,提升学生学习兴趣,培养他们的自主学习能力。本文从小学数学教学过程中数学建模入手,对如何将数学建模运用到学生解题过程中进行了分析。
数学建模是指利用数学模型的形式去解决实际中遇到的问题,换句话说,就是利用数学思维、数学方法解决各种数学问题。数学建模是在新课程改革后出现的新概念,经过一段时间的观察我们可以发现,数学建模的方法能够有效的提高学生的学习兴趣,培养学生的数学能力。这种方式能够将复杂的数学问题利用简单的方式找到解决方案,是提高小学数学课堂效率及课堂质量的有效手段。小学数学是小学学习中的重要课程之一,也是培养学生数学思维的重要阶段。可以说,小学数学的学习是学生学习数学的关键,对今后的学习起到极大的影响。因此,对于小学数学教师来说,不断的完善教学手段,提高数学课堂质量是教学工作中的重中之重。而数学建模就是为了解决数学在生活中的实际问题,能够让学生感受到数学本身的魅力,培养他们的数学思维,提高数学学习能力,从而让小学数学教学质量也得到大幅度的提升。小学数学与数学建模之间有着密不可分的作用,两者相互联系、相互促进,如何有效的将数学建模运用在小学数学教学过程中,是每个小学数学教师都值得思考的问题。
数学建模是为了解决数学中遇到的问题,数学本身特别是小学数学也是一门较贴近学生生活的学科。因此在数学学习中,教师要首先培养学生的数学学习意识,让他们感受到数学与生活的紧密联系,然后再引导学生用数学建模去解决遇到的问题。在这一过程中,数学教师要注意以下两个问题:(一)在教学中一定要贴近学生的生活,课堂中所提出的问题也必须要符合生活实际,让学生对所学内容感到亲切。积极引导学生利用多种方式解决同一问题,尤其是利用数学建模的方式,以达到培养他们的数学思维以及想象能力的目的。(二)在学生进行数学建模的过程中要利用多鼓励的方式调动他们对数学学习的积极性,让他们在数学建模中获得成就感,增加自信心,以此来提高学生在今后学习中使用数学建模方法的热情。
二、提高学生想象力,用数学建模简化问题。
对于小学生来说,他们的思维与其他年龄段相比极其活跃,拥有了丰富的想象力。在数学学习中,如果能将想象力与数学学习结合在一起,一定会得到意想不到的效果。教师可以根据小学生这一特点,提高他们的想象力,然后再引导他们利用数学建模解决问题,让题目简单化。具体来说,就是在面对复杂的'数学问题时,教师可以先为学生创建教学情境,以这样的方式提高学生的学习兴趣,让他们愿意主动去深入的研究遇到的题目。之后教师再去对他们进行引导,让他们能够理解题目中所提问题的含义,并能够运用他们的想象能力思考解决问题的方式。最后再引导他们进行数学建模,解决问题。这样的方式充分的利用了学生的想象能力,将所需解决的问题简单化。
三、选择合适的题目作为建模案例。
在数学建模过程中,教师也要时刻牢记题目应该贴近学生的生活,符合实际,并且具有一定的趣味性,让他们有兴趣投入到数学建模的过程中去,然后再反复练习之后达到提高他们建模能力的目的。在选择数学建模案例时教师主要应该注意以下两点:首先,教师在选择建模案例时要尽量选择比较典型的问题,能够让学生在学习了该题目以后掌握这一类的解题方法,达到小学数学教学的目的。所以,这就需要教师对题目进行深入的分析,看是否在拥有趣味性、真实性的同时符合教学要求。其次,题目最好能够拥有可变性,教师能够通过对题目中已知条件的改变让学生进行不同方面的建模练习,以此提高他们数学建模的能力。
四、引导学生主动进行数学建模。
在教师经过反复的教学后,学生都已经拥有了基本的数学建模知识,了解了数学建模过程,并且能够在解题过程中简单的使用数学建模。此时,教师在教学中就可以引导学生利用数学建模解决数学题目了。引导学生用数学建模方法解决数学问题,就要在解题过程中多对学生进行这一方面的鼓励,让他们提高建模信心。在这一过程中,教师还可以尝试让学生之间利用合作的方式让他们进行数学建模方法的探讨,并在探讨的过程中吸取他人的经验,提高自己数学建模水平,同时这样的方式能够让数学建模深入到每一个学生的心中,逐渐影响每一个学生的解题思路,让他们能够在解题过程中熟练运用建模的方式,提高解题能力。数学建模的方法能够有效的改变过去的传统教学思路,增加学生对数学的学习兴趣,提高数学解题能力。这种教学方法对于小学数学教师来说,值得不断的探讨研究,并应用在教学中,以此提高数学课堂的教学效率和教学质量。
数学建模课程论文篇十六
高校数学教育是高等教育的基础学科,占据重要的一席之地。如何改变学生对数学枯燥乏味的学习状态,让学生轻松愉快地参与到数学学习中,是当前高校数学教学者面临的一个重要课题。在高校数学教学中开展数学建模竞赛,不仅能培养学生的创新思维,还能有效提高提高学生的创新能力、综合素质和对数学的应用能力。本文对高校开展数学建模竞赛与创新思维培养进行了分析阐述,并对此进行了一定的思考。
数学建模是一种融合数学逻辑思想的思考方法,通过运用抽象性的数学语言和数学逻辑思考方法,创造性的解决数学问题。当前很多高校中开始引入数学建模思想来加强学生创新能力的培养,可以使学生的逻辑思维能力和运用数学逻辑创新解决问题的能力得到提升。数学建模竞赛起源于1985年的美国,几年后国内几所高校数学建模教师组织学生开始参与美国的数学建模大赛,促进了数学建模思维的快速发展。直到1992中国首届数学建模大赛召开,而后一发不可收拾,至今仍以每年20%左右的速度增长,呈现一派繁荣景象。
2.1数学建模竞赛自主性较强。自主性首先体现在在数学建模过程中学生可以根据自己的建模需要通过一切可以利用的资源、工具来进行资料查阅和收集,建模比赛队员可以根据自己的意见和思维进行灵活自由解答,形式不拘一格。其次体现在数学建模竞赛的组织形式呈现多元化特点,组织制度上也较为灵活多样,数学建模主要侧重于分析思想,没有标准答案可以参考分享。2.2建模队伍呈日益燎原之势。1992年首届中国数学建模大赛开展以来,其影响力与日俱增,高校和社会各界对数学建模颇为重视,参赛队伍、参赛学生的质量一直处于上升状态,数学模型也日渐合理科学,学生团队在国际数学建模大赛中屡创骄人战绩。2.3组织培训日益加强。数学建模竞赛对学生数学知识的掌握及灵活运用、口套表达、语言逻辑思维、综合素质都有着非常高的要求,因此高校遴选参赛选手都投入了很大的精力,组织培训的时间很长,培训内容也很丰富,为数学建模竞赛取得好成绩奠定了坚实的基础。
3.1学生的团队协作能力和意识得到增强。数学建模竞赛的团队组织形式活泼自由,通常采用学生组队模式开展,数学建模竞赛队伍形成一个团结战斗的整体,代表着不仅仅是学校的声誉,还一定程度上展示着国家的形象。经过长时间的培训,对数学模型的研究和分析,根据学生训练中的优势和特长,进行合理科学的小组分工,让学生快速高效地完成整个数学建模,在建模过程中学生统筹协作、密切配合,发挥各自的优势和长处,确保数学建模取得最大效用,学生的团队协作能力和意识得到锻炼,责任感和荣誉感进一步增强,通过建模竞赛彰显团队的合作能力和中国数学建模方面的发展。
3.2高校学生参赛积极性高涨。近年来大学生数学建模竞赛的参与性高涨,参赛人数保持着20%左右的上涨幅度,参赛成绩也较为理想,创新能力得到了较好的锻炼和培养,综合素质得到提高,数学的应用能力提升。
3.3高校学生数学逻辑思维能力和灵活运用知识的能力得到提升。数学建模竞赛充满着刺激性和挑战性,是学生各方面综合能力的一个展示。在数学建模竞赛中,学生不仅要需要扎实丰厚的数学知识储备,还需要具备清晰的数学逻辑思维和语言表达能力。同时要有机智的临场发挥能力和应变能力,不怯场、不惊慌,有充分的思想准备,能轻松应对其他参赛选手和评委的提问,能组织条理性、逻辑性的语言进行表述,将参赛小组数学模型的含义和设计清晰完整的传达给评委和其他参赛选手。在这个过程中,无疑会使学生的数学逻辑思维和语言表达能力及灵活运用数学知识的能力有一个较大的提升。
3.4学生的自学能力和意志力得到锻。数学建模竞赛对参赛学生的综合知识和能力要求非常高,难度也非常大,需要与众不同的智慧和能力。可以说数学建模过程中,有许多高深的知识难于理解,有的日常学习过程中根本接触不到,需要数学建模参赛小组成员的互助合作,充分发挥各自优势和平时培训中的知识积淀,通过借助大量的工具书及参考资料,加上团队的`理解分析去摸索,探寻数学建模所需要的基础知识,无疑这对学生的自学能力培养是一个很好的锻炼。另外,搜寻资料、学习数学建模知识的过程是枯燥乏味的,需要长久的耐力和信心,无疑这对学生的坚毅不畏难的品质是一个很好的培养和磨炼。
3.5创新思维与能力得到有效提升。经过艰苦复杂的数学建模训练,高校学生信息收集与处理复杂问题的能力得到培养锻炼,学生数量观念得到增强,能够养成敏锐观察事物数量变化的能力,数学的严谨推导也使学生养成认真细心、一丝不苟的习惯,逻辑思维能力得到提高,思路变得更加富有条理性,能灵活地处理各种复杂问题,有效解决数学疑难,数学理论能更好第应用于实践,数学素养进一步得到提升。
综上所述,高校学生数学建模竞赛的开展,能较高地提升学生的创新能力和综合素养,团队合作能力、竞争能力、表达交流能力、逻辑思维能力、意志品质能力等都能得到良好的塑造。高校要积极组织和开展数学建模竞赛,使学生的综合素质得到发展和锻炼。学校用重视和鼓励全体学生参与数学建模竞赛,通过竞赛实现学生各方面能力尤其是创新能力的培养。
[1]赵刚.高校数学建模竞赛与创新思维培养探究[j].才智,20xx(06).
[2]陈羽,徐小红,房少梅.数学建模实践及其对培养学生创新思维的影响分析[j].科技创业月刊,20xx(08).
[3]赵建英.数学建模竞赛对高校创新人才培养的促进作用分析[j].科技展望,20xx(08)5.
[4]毕波,杜辉.关于高校开展数学建模竞赛与创新思维培养的思考[j].中国校外教育,20xx(12).
数学建模课程论文篇十七
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。
数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。
1.准备阶段。
主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段。
做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段。
从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段。
对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段。
用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义。
(一)加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质。
数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题,因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力。
数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力。
所谓创造力是指"对已积累的知识和经验进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、记忆力、思考力、想象力四种能力所构成".现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程.
(四)加强数学建模教育有助于提高学生科技论文的撰写能力。
数学建模的结果是以论文形式呈现的,如何将建模思想、建立的`模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作.
三、开展数学建模教育及活动的具体途径和有效方法。
即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:
案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。
1.代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2.原始性:来自媒体的信息,企事业单位的报告,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3.创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的.
(二)开展数模竞赛的专题培训指导工作。
建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。
以现代网络技术为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。
完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近20年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。
如20xx年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约1万多个本科参赛队中脱颖而出的。又如20xx年我校57队参加全国大学生数学建模竞赛,43队获奖,获奖比例达75%,创历年之最。
(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛。
全国大学生数学建模竞赛创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。
四、结束语。
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。
【本文地址:http://www.xuefen.com.cn/zuowen/13435206.html】