教案可以帮助教师预测学生可能遇到的困难和问题。教案的设计要符合课程标准和教学要求。下面是小编为大家整理的几篇优秀教案范文,供大家参考。
解一元一次方程的教案人教版篇一
3、培养学生根据问题寻找等量关系、根据等量关系列出方程的能力。
2、能验证一个数是否是一个方程的解。
寻找问题中的等量关系,列出方程。
如果设大象的体重为xt,蓝鲸的体重应如何表示呢?怎样解决这个问题呢?(学生思考并回答:25x-1=124,)我们把这个式子给它起个名字,叫一元一次方程,这就是我们今天要学习的一元一次方程(板书课题),那——什么叫做一元一次方程——呢?,请同学们带着这些问题,阅读课本114页-115页练习前的内容,对照课本找出自学提纲里问题的答案。
要求:先完成得请你帮帮没有完成的同学,不会做的同学请教会做的同学。
学生自学课本,并完成自学提纲。老师可以先进行板书准备,再到学生中进行巡视指导,掌握学生的学习状况,为展示归纳做准备。
附:自学提纲:
1、什么是方程?请举出1—2个例子。未知数通常用什么表示?
3、在课本“例1”中,你知道这些方程中等号两边各表示什么意思吗?
4、什么是方程的解?x=1和x=-1中哪一个是方程x+3=2的解?为什么?
5、什么是解方程?
1、请有问题的同学逐个回答自学提纲中的问题,生说师写;
2、发动学生进行评价、补充、完善;
3、教师根据展示情况进行必要的讲解和强调。
1、2题口答,要求说理由;其它各题,先让学生独立完成,教师做必要的板书准备后,巡回指导,了解情况,再让学生汇报结果,并请同学评价、完善,然后教师根据需要进行重点强调。
附:变式练习。
(1)5x=0;。
(2)1+3x;。
(3)x2=4+x;。
(4)x+y=5;。
(5)3m+2=1-m;。
(6)x+2>1。
2、请你说出一元一次方程2x=4的解是。.。.。.。.。解是x=-2的一元一次方程:
3、练习本每本0.8元,小明拿了10元钱买了y本,找回4.4元,列方程是。
4、设某数为x,根据题意列出方程,不必求解:
(1)某数比它的2倍小3;
(2)某数与5的差比它的2倍少11;
(3)把某数增加它的10%后恰为80.
5、若x=1是方程kx-1=0的解,则k=。
通过本节课的学习你学到了什么?还有没有要提醒同学们注意的。?
课本83页习题3.1第1题。
解一元一次方程的教案人教版篇二
1、能根据题意用字母表示未知数,然后分析出等量关系,再根据等量关系列出方程。
2、理解什么是一元一次方程。
3、理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。
【重点难点】体会找等量关系,会用方程表示简单实际问题,能验证一个数是否是一个方程的解。
【导学指导】。
一、温故知新。
1:前面学过有关方程的一些知识,同学们能说出什么是方程吗?
答:叫做方程。
解一元一次方程的教案人教版篇三
2.在对实际问题情景的分析过程中感受方程模型的意义。
二、自主学习。
1、请同学们阅读p79至p80第4段,然后用算术方法解此问题,列算式为___________;然后用设未知数列方程的数学思想来解决此问题,设王家庄到翠湖的路程为千米,可列方程为:
像上面含有未知数的等式,叫__________(读三遍)。
2、自学p80例1至p81归纳部分,根据下列问题,设未知数并列出方程.
(1)用一根长20cm的铁丝围成一个正方形,正方形的边长是多少?
分析:设正方形的边长为(cm),那么周长为__________(cm),列方程:__________.
(2)某校女生占全体学生数的61℅,比男生多61个,这个学校有学生多少个?
(3)一台计算机已使用1200小时,预计每月再使用123小时,经过多少月这台计算机的使用时间达到规定的检修时间2612小时?(自主分析并列出方程)。
像上面(1)、(2)、(3)所列的方程,只含有一个__________数,并且未知数的次数都是__________,这样的方程叫做__________元__________次方程(读三遍)。
注意:“一元”是指一个未知数;“一次”是指未知数的指数是一次(理解)。
上面的分析过程归纳如下:
(1)分析实际问题中的__________关系,利用__________关系列出方程(一元一次方程),是用数学解决实际问题的一种方法。
(2)列方程经历的几个步骤。
a、设__________数;b、找出题中的__________关系;c、列出含有未知数的等式——()。
3、阅读p81,理解列方程是解决实际问题的一种重要方法,利用方程可以求出未知数。
当=6时,4值是24。这时,方程4=24等号左右两边相等,所以=6,叫做方程4=24的解;同样,当x=10时,2x+3=23,这时方程2x+3=23等号两边_______相等,所以,x=10叫做方程2x+3=23的_______;像这样,解方程就是求出使方程中等号左右两边_______的未知数的值,这个值就是方程的_______(读三遍)。
思考:x=4与x=3中,哪一个是方程7x+1=15的解?答:_______。
解一元一次方程的教案人教版篇四
去括号,移项,合并同类项,系数化为1。
4、巩固练习。
(1)解方程(2)当y为何值时,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)。
(巩固练习,抽两个同学上黑板去完成,其余的同学在演草纸上完成,待同学们完成后给予点评。)。
5、小结:和同学们一起回顾我们这节课学习了什么?
解一元一次方程的教案人教版篇五
2.掌握等式的性质,理解掌握移项法则。
3.会用等式的性质解一元一次昂成(数字系数),掌握解一元一次方程的基本方法。
5.初步学会用方程的思想思考问题和解决问题的一些基本方法,学会用数学的方法观察、分析、归纳和总结现实情境中的.实际问题。
难点重点:
解方程、用方程解决实际问题。
难点:用方程解决实际问题。
教学流程。
二、典例回顾。
(1).x=5(2).x2+3x=2(3).2x+3y=5。
判断下列x值是否为方程3x-5=6x+4的解.
(1).x=3(2)x=3。
4.解决问题的基本步骤。
解:设先安排x人工作4小时。根据两段工作量之和应是总工作量,由此,列方程:
去分母,得4x+8(x+2)=40。
去括号,得4x+8x+16=40。
移项及合并,得12x=24。
系数化为1,得x=2。
答:应先安排2名工人工作4小时.
注意:工作量=人均效率人数时间。
本题的关键是要人均效率与人数和时间之间的数量关系.
三、基础训练:课本第113页第1.2.3题.
四、综合训练:课本113页至114页4.5.6.7.8。
五、达标训练:3.7。
五、课堂小结:收获了哪些?还有哪些需要再学习?
解一元一次方程的教案人教版篇六
一、教材分析。
地位:本节位于青岛版七年级上册第八章第4节第三课时,在研究了解简单的一元一次方程的基础上进行的,其后是第5节一元一次方程的应用。
作用:是一元一次方程解应用题的基础,也是解其他方程的基础。
2、教学目标。
(1)知识与技能:让学生掌握解一元一次方程的基本步骤,会解一元一次方程。
(2)过程与方法:让学生经历解一元一次方程的探索过程,总结出解一元一次方程的一般步骤。
(3)情感、态度与价值观:通过自主学习、合作交流,培养学生的自信心与团结互助精神,让学生体会到解方程中分析与转化的思想方法。
3、重难点与关键。
关键:每一步的`依据及应注意的问题。
二、学情分析。
学生已经历了两节简单的解一元一次方程,大部分学生应已经初步了解了去括号、移项、合并同类项、系数化为1等方法,对本节学习大有帮助,但在去分母及其余各步骤中都有易错点,是学生难以全面掌握的。
三、教学思想。
新课改理念强调学生的主体地位,把课堂还给学生,学生是每一环节的主体。数学是思维的体操。这节课的目的是让学生真正思考,将知识与技能内化成自己的东西,同时养成良好的行为、学习习惯。
四、教学过程教学环节教师活动学生活动设计目的一、师生定向。
了解学情出示上节。
习题练习了解具体学情确定新旧知识的衔接点三、自主预习。
预习检测布置任务。
巡视督导。
板书例题。
预习检测。
抽查学生。
指导学生自改自评。
自学课本内容,思考解方程的每一步变化的名称及具体做法,思考易错点。
闭卷答题。
自改、自评预习效果。
教师指明做法,帮学生走进教材,理解文本,把握重点。
通过学生阅读思考让学生将部分知识内化。
检查预习情况,暴晒问题。
让学生将技能内化,培养学生独立学习能力。
四、合作探究。
展示交流指导学生互评。
引导学生讨论总结步骤及具体做法,易错点小组合作解决自学未能解决的问题。
由会的同学展示。
小组讨论总结每一步的易错点兵教兵。
在互动中提高学生的分析能力、判断能力,培养团结互助精神五、达标自测。
拓展应用引导学生完成相应学案上的问题。
独立完成。
自评互评。
小组交流后当堂完成检验学生学习成果用以确定课后作业六简谈收获。
布置作业引导学生谈谈这节课的收获。
布置作业。
从知识、方法、情感等方面谈课堂收获了解学生收获情况。
布置课下任务,让学生继续牢固学习成果。
解一元一次方程的教案人教版篇七
教学设计思想:
本节知识是探究如何用一元一次方程解决实际问题。在前面我们结合实际问题,讨论了如何分析数量关系、利用相等关系列方程以及如何解方程,在此基础上我们才可以进一步探究用一元一次方程解决实际问题。在课堂中教师出示例题,启发学生思考,师生共同探讨,学生找等量关系,列出方程,教师出示巩固性练习,学生解答,达到巩固所学知识的目的。
教学目标:
1.知识与技能。
利用相等关系建立数学模型列方程;。
2.过程与方法。
会用方程解决简单的实际问题,认识到建立方程模型的重要性;。
在建立方程解决实际问题时,我们体会到设未知数的意义。
3.情感、态度与价值观。
体会数学建模与实际的相互密切联系,加强数学建模思想。
教学重点:解决相关问题时,利用相等关系列方程。
教学难点:解决相关问题时,利用相等关系列方程。
重难点突破:关键是弄清问题背景,分析清楚有关数量关系,特别是找出可以作为列方程依据的主要相等关系。
教学方法:采用直观分析法、引导发现法及尝试指导法充分发挥学生的主体作用,使学生在轻松愉快的气氛中掌握知识。
课时安排:1课时。
教具准备:投影仪。
教学过程:
一、创设情境。
师:通过前几节课的学习,同学们回忆一下,列方程解应用题的第一步是什么?
生:分析题意,设未知数。
师:很好。我们以前学的应用题大多是求一个未知量,因而设一个未知数我们今天要学的内容需要求两个未知量,这又如何解决呢?通过今天的学习,这些问题将得到很好的答案。
[教法说法]:此节内容与前边内容联系不大,所以开门见山直接提出问题,同时也引起学生的注意和好奇,使学生带着问题进入今天的学习,激发了学生的求知欲。
解一元一次方程的教案人教版篇八
教学目标:
1.知识目标。
(1)通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力。
(2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。
2.能力目标。
(1)通过学生观察、独立思考等过程,培养学生归纳、概括的能力;。
(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。
3.情感目标:
(2)培养学生严谨的思维品质;。
(3)通过学生间的互相交流、沟通,培养他们的协作意识。
教学重点:1.弄清列方程解应用题的思想方法;。
教学难点:1.括号前面是“-”号,去括号时,应如何处理,括号前面是“-”号的,去括号时,括号内的各项要改变符号。
2.在小学根深蒂固用算术方法解应用题的基础上,让学生逐步树立列方程解应用题的思想。
教学过程:
一、创设情境,提出问题。
问题1:我手中有6、x、30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快又对。
学生思考,根据自己对一元一次方程的理解程度自由编题。
问题2:解方程5(x-2)=8。
解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。
(教学说明:给学生充分的交流空间,在学习过程中体会“取长补短”的涵义,以求在共同学习中得到进步,同时提高语言组织能力及逻辑推理能力)。
二、探索新知。
1.情境解决。
问题1:设上半年每月平均用电x度,则下半年每月平均用电________度;上半年共用电__________度,下半年共用电_________度。
问题2:教师引导学生寻找相等关系,列出方程。
根据全年用电15万度,列方程,得6x+6(x-2000)=150000.
问题3:怎样使这个方程向x=a的形式转化呢?
6x+6(x-2000)=150000。
去括号。
6x+6x-12000=150000。
移项。
6x+6x=150000+12000。
合并同类项。
12x=162000。
系数化为1。
x=13500。
问题4:本题还有其他列方程的方法吗?
用其他方法列出的方程应怎样解?
设下半年每月平均用电x度,则6x+6(x+2000)=150000.(学生自己进行解题)。
归纳结论:方程中有带括号的式子时,根据乘法分配律和去括号法则化简。(括号前面是“+”号,把“+”号和括号去掉,括号内各项都不改变符号;括号前面是“-”号,把“-”号和括号去掉,括号内各项都改变符号。)。
去括号时要注意:(1)不要漏乘括号内的任何一项;(2)若括号前面是“-”号,记住去括号后括号内各项都变号。
例题:解方程3x-7(x-1)=3-2(x+3)。
解:去括号,得3x-7x+7=3-2x-6。
移项,得3x-7x+2x=3-6-7。
合并同类项,得-2x=-10。
系数化为1,得x=5。
三、课堂练习。
1.课本97页练习。
四、总结反思。
1.本节课你学习了什么?
2.通过今天的学习,你想进一步探究的问题是什么?
(由学生自主归纳,最后老师总结)。
四、作业布置。
1.课本102页习题3.3第1、4题。
2.配套资料相关练习。
解一元一次方程的教案人教版篇九
2、理解方程的解的概念,会判断一个数值是否是已知方程的解。
环节一自主学习——对于疑惑的问题尽量小组互助解决。
课前至少阅读课本两遍,完成例题与习题,熟知本节课学习目标与重点难点。
环节二生生互动——课堂5分钟练习并与小组成员相互交流心得。
a。b。c。d。
2、方程的概念:含有的等式叫做方程。
a。b。c。d。
4、一元一次方程的概念:只含有个未知数,并且未知数的次数都是,这样的整式方程叫做一元一次方程。
5、根据下面所给的条件,能列出方程的是()。
a与的'差的b甲数的2倍与乙数的的和。
c一个数的是6d与的差的。
6、由第5题可知,问题中必须含有才能列出方程,这正是列方程的关键!
a。b。c。d。
8、解方程与方程的解的概念:解方程就是求出使方程中等号的值,而这个值就是。
环节三师生互动——你惑我释,合作交流,知识提升。
解一元一次方程的教案人教版篇十
教学目标:
2、知道“元”和“次”的含义;
能力目标:
1、培养学生准确运算的能力;
2、培养学生观察、分析和概括的能力;
3、通过解方程的教学,了解化归的数学思想.。
德育目标:
1、渗透由特殊到一般的辩证唯物主义思想;
2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;
3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;
重点:
2、最简方程的解法;
难点:正确地解最简方程。
教学方法:引导发现法。
教学过程。
一、旧知识的复习:
1.什么叫等式?等式具有哪些性质?
2.什么叫方程?方程的解?解方程?
二、新知识的教学:
(1)只含有一个未知数;
(2)未知数的次数都是一次。
想一想:
(2)怎样求最简方程(其中是未知数)的解?
三、巩固练习。
1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。
2、检测:
3、课堂小结:
四、本节学习的主要内容。
2、最简方程(其中是未知数);
3、解最简方程的主要思路和解题的关键步骤及依据。
五、课堂作业。
解一元一次方程的教案人教版篇十一
2.掌握等式的性质,理解掌握移项法则。
3.会用等式的性质解一元一次昂成(数字系数),掌握解一元一次方程的基本方法。
5.初步学会用方程的思想思考问题和解决问题的一些基本方法,学会用数学的方法观察、分析、归纳和总结现实情境中的实际问题。
难点重点:
解方程、用方程解决实际问题。
难点:用方程解决实际问题。
教学流程。
二、典例回顾。
(1).x=5(2).x2+3x=2(3).2x+3y=5。
判断下列x值是否为方程3x-5=6x+4的解.
(1).x=3(2)x=3。
4.解决问题的基本步骤。
解:设先安排x人工作4小时。根据两段工作量之和应是总工作量,由此,列方程:
去分母,得4x+8(x+2)=40。
去括号,得4x+8x+16=40。
移项及合并,得12x=24。
系数化为1,得x=2。
答:应先安排2名工人工作4小时.
注意:工作量=人均效率人数时间。
本题的关键是要人均效率与人数和时间之间的数量关系.
三、基础训练:课本第113页第1.2.3题.
四、综合训练:课本113页至114页4.5.6.7.8。
五、达标训练:3.7。
六、课堂小结:收获了哪些?还有哪些需要再学习?
解一元一次方程的教案人教版篇十二
(1)本节课是七年级第七章《用一元一次方程解决实际问题》的第3课时,主要学习用一元一次方程解决路程问题。通过上两节课的学习,学生已经初步掌握了用一元一次方程解决实际问题的方法,本节课在此基础上,结合路程问题,进一步学习如何从实际问题中分析数量关系,用一元一次方程解决实际问题。对学习函数、不等式与其他方程解实际问题都具有重要的意义和作用。
2、教学目标(认知、能力、情感)。
(1)知识目标。
能借助“列表”的方法审题、找等量关系,进而用一元一次方程解决路程问题。
(2)能力目标。
进一步培养学生分析问题,解决实际问题的能力。
(3)情感目标。
通过实际问题的解决,让学生认识数学的价值和学习数学的必要性;通过问题情境的设置,让学生热爱生活、热爱体育。
3、教学重点:
引导学生经历借助“列表法”找等量关系,用一元一次方程模型解决路程问题的过程。
知识、方法重要,其获取过程更重要,在教学中不能只重结果而忽视过程中学生经历的观察、分析、交流等活动,不然学生就不具备主动建构知识的能力和持续发展的动力,只会成为解题工具,所以我把方法获取过程作为本课的重点。
4、教学难点。
掌握用列表的方法审清题意,抽象具体问题中的数学背景,建立数量间的等量关系。
用一元一次方程解决实际问题的关键是找到等量关系。体会“列表法”在把握路程问题等量关系的优越性,进而掌握这种方法是学生感到困难的,所以把它是本节课的难点。
5、教法学法。
优选教法。
指导学法。
学生不是被动的接受信息,而是在“结合具体情景、设计解决策略、与他人合作交流、自我反思”的过程中学习。
二、教学环节。
我把本节课设计为5个环节:
1、情境引入相遇问题,初步感知列表方法。
通过救人情境的创设,既对学生已有知识的检测,又激发学生解决问题的兴趣,在不知不觉中引入路程问题――相遇问题。
引入问题后,学生独立思考如何确定问题中的等量关系,然后课堂交流理清题意、找到等量关系的方法(画图或列表)。在此基础上,引导学生探究如何用列表的方法理清题目中的数量,让学生初步感受“列表”表示数量关系的优越性。
本环节让学生在独立思考、交流探讨中感受“列表法”,让学生参与的`知识获取过程,真正体现了学生是数学学习的主人。
2、感悟故事中的追及问题,拓展提高对列表的认识。
以同学们熟悉的故事为背景,配以形象生动的动画,引入路程问题――追击问题。然后让学生应用列表法表示追击问题的数量关系,思考解决问题的多种方法(根据不同等量关系,设不同未知数,列出不同的方程),进一步体会“列表”表示数量关系的威力。
教学过程不能简单地重复,学习过程也不能使机械地模仿,而应在螺旋上升的过程中不断提高。由相遇问题到追击问题,由一种方法到两种方法,就是这一理念的直接体现。学生在应用“列表”法的过程中,提高对“列表”法表示数量关系优越性的认识。
3、回归现实,梳理新知。
本环节让学生应用所学知识解决现实生活中的问题。
本题以“奥运”为背景,不仅反映了数学来源于实际生活,同时也体现了知识的实用价值,而且解决问题的过程也是一个“数学化”的过程。这一环节既对路程问题进行了巩固练习又渗透了爱国主义教育。
4、合作互动,深化提高。
编写一道应用题,使它的题意适合一元一次方程60x=40x+100,要求题意清楚、联系生活、符合实际、有一定的创意。
本环节让学生以小组为单位编写题目。
前面的环节是由实际问题到数学模型,现在是由数学模型到实际问题,不仅有利于学生获取知识,而且也有利于学生展示聪明才智、形成独特个性和发展创新。以小组为单位编写题目不仅可以发挥学生的集体智慧,而且还可以培养他们的合作和团队意识。
5、畅谈收获,内化提高。
这节课体验到了什么?
让学生本节学习收获和感受,全体同学交流。
对学生数学学习的既要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,课后设计的畅谈收获,把课堂还给了学生,他们收获,交流疑问,当堂消化本节内容,让每一个学生都体验到成功的喜悦,学生的主体地位得以充分体现。
设计亮点。
(1)本节课在情境的创设上,突出了现实性、趣味性和挑战性,学生喜闻乐见,使他们能快速进入问题的解决。
(2)让学生经历实践―c认识――再实践――再认识的过程,在这个过程中,学生分析问题和解决问题的能力螺旋上升,符合学生学习数学的心理规律。
解一元一次方程的教案人教版篇十三
3.使学生初步养成正确思考问题的良好习惯.。
教学重点和难点。
课堂教学过程设计。
一、从学生原有的认知结构提出问题。
为了回答上述这几个问题,我们来看下面这个例题.。
例1某数的3倍减2等于某数与4的和,求某数.。
(首先,用算术方法解,由学生回答,教师板书)。
解法1:(4+2)÷(3-1)=3.。
答:某数为3.。
(其次,用代数方法来解,教师引导,学生口述完成)。
解法2:设某数为x,则有3x-2=x+4.。
解之,得x=3.。
答:某数为3.。
二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤。
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原先重量-运出重量=剩余重量)。
上述分析过程可列表如下:
解:设原先有x千克面粉,那么运出了15%x千克,由题意,得。
x-15%x=42500,
所以x=50000.。
答:原先有50000千克面粉.。
(还有,原先重量=运出重量+剩余重量;原先重量-剩余重量=运出重量)。
(2)例2的解方程过程较为简捷,同学应注意模仿.。
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的状况,教师总结如下:
(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);
(4)求出所列方程的解;
(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)。
解:设第一小组有x个学生,依题意,得。
3x+9=5x-(5-4),
解这个方程:2x=10,
所以x=5.。
其苹果数为3×5+9=24.。
答:第一小组有5名同学,共摘苹果24个.。
学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.。
(设第一小组共摘了x个苹果,则依题意,得)。
三、课堂练习。
3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数.。
四、师生共同小结。
首先,让学生回答如下问题:
1.本节课学习了哪些资料?
3.在运用上述方法和步骤时应注意什么?
依据学生的回答状况,教师总结如下:
(2)以上步骤同学应在理解的基础上记忆.。
五、作业。
1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?
2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?
解一元一次方程的教案人教版篇十四
1、知识与技能:
运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。
2、过程与方法:
(1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。
(2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。
3、情感态度与价值观:
通过数学活动,激发学生学习数学兴趣,增强自信心,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度。
1、重点:经历探索具体情境的数量关系,体会一元一次方程与实际问题之间的数量关系会用方程解决实际问题。
2、难点:以上重点也是难点。
3、关键:明确问题中的已知量与未知量间的关系,寻找等量关系。
投影仪,每人一根质地均匀的直尺,一些相同的棋了和一个支架。
一种商品售价为2.2元件,如果买100件以上超过100件部分的售价为2元/件,某人买这种商品n件,讨论下面问题:
这个人买了n件商品需要多少元?
教师活动:
(1)把学生每四人分成一组,进行合作学习,并参入学生中一起探究。
(2)教师对学生在发表解法时存在的问题加以指正。
学生活动:
(1)分组后对活动一的问题展开讨论,探究解决问题的方法。
(2)学生派代表上黑板板演,并发表解法。
解:2.2nn100。
2.2100+2(n-100)n100。
问题转换:
一种商品售价为2.2元/件,如果买100件以上超过100件部分的售价为2元/件,某人买这种商品共花了n元,讨论下面的问题:
(1)这个人买这种商品多少件?
(2)如果这个人买这种商品的件数恰是0.48n,那么n的值是多少?
教师活动:同上学生活动:同上。
解:(1)n220。
100+n220。
(2)=0.48nn=0。
100+=0.48nn=500。
本活动课前布置学生做好活动前的准备工作:
1、准备一根质地均匀的直尺,一些相同的棋子和一个支架。
2、分组:(4人一组)。
开始做下面的实验:
(1)把直尺的中点放在支点上,使直尺左右平衡。
(2)在直尺两端各放一枚棋子,这时直尺还是保持平衡吗?
(3)在直尺的一端再加一枚棋子,移动支点的位置,使两边平衡,然后记下支点到两端距离a和b,(不妨设较长的一边为a)。
(4)在有两枚棋子的一端面加一枚棋子移动支点的位置,使两边平衡,再记下支点到两端的距离a和b。
(5)在棋子多的一端继续加棋子,并重复以上操作。根据统计记录你能发现什么规律?
以上实验过程可以由学生填写在预先设计的记录表上。
实验次数棋子数ab值a与b的关系。
右左ab。
第1次11。
第2次12。
第3次13。
第4次14。
第n次1n。
根据记录下的a、b值,探索a与b的关系,由于目测可能有点误差。
根据实验得出a、b之间关系,猜想当第n次实验的a和b的关系如何?a=nb(学生实验得出学生代表发言)。
如果直尺一端放一枚棋子,另一端放n枚棋子,直尺的长为l,支点应在直尺的哪个位置?(提示:用一元一次方程解)。
此问题由学生合作解决并派代表板演并讲解,教师加以指正。
解:设支点离n枚棋子的距离为x得:
x+nx=lx=答:略。
1、课后了解实际生活中的类似活动问题,并举出几个例子。
2、课本,第110页活动2。
解一元一次方程的教案人教版篇十五
(一)教材的地位和作用。
(二)教材的重难点。
二、教学目标分析。
(一)知识技能目标。
1.目标内容。
(2)培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.。
2.目标分析。
(二)过程目标。
1.目标内容。
在活动中感受方程思想在数学中的作用,进一步增强应用意识.。
2.目标分析。
(三)情感目标。
1.目标内容。
2.目标分析。
三、教材处理与教法分析。
解一元一次方程的教案人教版篇十六
4.理解解方程的目标,体会解法中蕴涵的化归思想。
探索1。
等式一边的项可以移到等式的另一边吗?
如果把"3"变号后移到的另一边呢?
换一个等式-6-7=-13试一试。
任写一个等式再试一试。
探索2。
(1)方程x+3=-1的解是多少?
探索3。
怎样求方程x-7=5的解?
有的学生可能还是乐意用算术解法,教师要有足够的耐心。
甲的解法是:这是一个表示减法运算的式子,x是被减数,7是减数,5是差。所以有x=5+7(理由是_______________________),于是x=12.
乙的解法是:这是一个等式,根据等式的性质1,等式两边________,结果仍相等,把方程的两边都加7,得x-7+7=5+7,于是x=12.
丙的解法是:把方程左边的项-7,变号(即变成+7)后移到方程的右边,得x=5+7,于是x=12.
议一议,三种解法,你乐意用哪一种?
归纳。
解方程时,把方程一边的某项变号后移到另一边,这种变形叫移项。
注意:移项的要点不在移动,而在于变号。
想一想:移项为什么要变号?移项的根据是什么?
探索4。
以下各方程的“移项”对不对?为什么?
(1)x+5=7,移项得x=7+5;。
(2)3-x=7,移项得-x=7-3;。
(3)2x=7x,移项得2x+7x=0;。
(4)2x=7x-6,移项得2x-7x=-6.
探索5。
(1)3x+6=0,移项得0=-3x-6;。
(2)3x=5x-7,移项得3x+7=5x;。
(3)3-x=5x,移项得3-x-5x=0;。
(4)3x+20=7x-18,移项得-7x+18=-3x-20.
例题学习。
p81.例1。
练习。
p81.练习。
作业。
p84.习题2,3,9。
补充作业。
1.一个两位数,个位上的数是十位上的数的2倍,如果把十位上的数与个位上的数对调,那么所得到的`两位数比原两位数大36.求原两位数。
解:设原两位数十位上的数为x,。
那么,根据个位上的数是十位上的数的2倍,得个位上的数是________,。
则原两位数记为___________.
因为对调后所得到的新两位数的十位上的数为______,个位上的数为______,新两位数应记为___________________.
根据新两位数比原两位数大36,列方程:_____________________.
解这个方程得__________.答:______________________________.
解一元一次方程的教案人教版篇十七
1、学生通过旅游、选灯、用电、水费、用气、电信等问题的方案设计,弄清各类问题中的等量关系,掌握用方程来解决一些生活中的实际问题的技巧.
2、通过一个开放式的空间,放手让学生去探索,去发现,培养学生分析问题和用方程去解决实际问题的能力.
3、让学生在生动活泼的问题情境中感受数学的应用价值,产生对数学的兴趣,养成认真倾听他人发言的习惯,感受与同伴交流的乐趣。
把生活中的实际问题抽象出数学问题。
引导学生弄清题意,设计出各类问题的最佳方案。
(师生活动)设计理念。
提出问题问题:小江一家三口准备国庆节外出旅游.现有两家。
由学生完成选择旅行社的方案。从学生比较感兴趣的实际生活问题,引入新课,并由学生自己设计出选择旅行社的方案,为新授哪种灯省钱埋下伏笔。
分析问题出示教科书94页探究2:用哪种灯省钱?
师生共同探讨完成下列问题:
1、上述问题中基本等量关系有哪些?
(费用=灯的售价+电费,电费=0.5×灯的功率(千。
瓦)×照明时间(时)。
2、列式表示两种灯的费用各为多少?
(节能灯用t小时的费用(元)为:60+0.5×0-o.11t。
白炽灯用t小时的费用(元)为:3十0.06×0.5t)。
3、当照明时间t取何值时,(1)白炽灯比节能灯省钱,
(2)节能灯比白炽灯省钱?(3)白炽灯与节能灯费用一样?(精确到1小时)。
4、如果计划照明3500小时,则需要购买两个灯,试设计你认为能省钱的选灯方案。
以课本例题中实际生活问题为素材,使学生感受数学来源于生活,激发学生学数学的兴趣,师生共同参与合作完成问题中的探讨的几个问题,体现了以学生为主体,教师作为问题解决的组织者,引导者,合作者的新课程教育理念。
探索创新下面问题是学生课前调查到的与人们生活密切相关的实际问题,每一大组完成一个,分四个小组讨论后设计出最佳方案。
10分钟后,大组派代表交流发言.
1、电价问题。
据我们调查,我市居民生活用电价格为每天早晨7时到晚上23时每度0.47元,每天23时到第二天7时每度0.25元.请根据你家每月用电情况,设计出用电的最佳方案.
2、水费问题。
我市为鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨部分按0.45元/吨收费,超过10吨而不超过20吨部分按0.8元/吨收费,超过20吨部分按0.50元/吨收费,某月甲户比乙户多交水费3.75元,已知乙户交水费3.15元.
问:(1)甲、乙两户该月各用水多少吨?(自来水按整吨收费)。
(2)根据你家用水情况,设计出最佳用水方案.
3、用气问题。
某市按下列规定收取每月的煤气费:用煤气如果不超过60立方米,按每立方米o.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.怎样用气最节约?请设计出方案来.
4、电信支费。
随着电信事业的发展,各式各样的电信业务不断推出,请你通过市场调查,为你家设计出一种通讯方案.
(1)两地间打长途电话所付电费有如下规定:若通话在3分钟以内都付2.4元.超过3分钟以后,每分钟付1元.
根据上述资料,(1)你认为一个月通话多少分钟,两种移动通讯费用相同?(2)某人估计一个月内通话300分钟,应选择哪种移动通讯或用长途电话合算些?提供给学生一个开放的空间,放手让学生去探索、去发挥,通过学生合作交流来设计最佳方案,培养学生用数学的意识和创新意识。
课堂小结可用教师对各小组交流的方案进行简单的评价作为小结。
布置作业1、必做题:课本第98页习题2.4第5、7题。
2、选做题:
分层次布置作业。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
本课以生活中的实际问题引入,以学生为主体,师生共同合作参与完成例中设计的。
几个问题,教师在学生接受新知识的过程中,起到了一个组织者、合作者、引导者的角色.学生的学习始终是主动的.通过学生课前的社会调查,对生活中的一些方案以开放形式设计问题,学生通过小组合作交流,设计出不同的方案,让学生在生动活泼的交流情境中感受到数学的应用价值,产生对数学的兴趣.同时养成认真倾听他人发言的习惯,感受与同伴交流想法的乐趣.通过用电、用水最佳方案的设计,培养学生节约用电、用水的意识.
【本文地址:http://www.xuefen.com.cn/zuowen/13418246.html】