北师大版的倍数的特征教学设计(热门14篇)

格式:DOC 上传日期:2023-11-19 15:42:05
北师大版的倍数的特征教学设计(热门14篇)
时间:2023-11-19 15:42:05     小编:字海

总结是一种积累的过程,可以为未来提供宝贵的经验。写一篇完美的总结需要从客观的角度来看待问题,做到客观、真实、全面。这些范文可能涵盖了一些你之前从未接触过或思考过的内容。

北师大版的倍数的特征教学设计篇一

“能被3整除数的数”一课,能体现新的教育理念、教育思想。仔细分析,有以下几个特点:

1、确立了基本技能目标和发展性目标并重的教学目标。

本节课不仅重视学生掌握能被3整除数的特征,并能运用特征进行正确判断,同时十分重视学生学习过程的体验和方法的渗透,让学生通过“猜测——验证——提出新的假设——验证”的探索过程来发现知识,获得结论,并感悟方法。

2、理性处理教材,使教学内容生活化。

教科书只是提供了学生学习活动的基本线索。教学中,教师要充分发挥主观能动性,创造性的使用教科书,本节课重新设计例题,通过用“0——9”十个数字组成能被整除的`三位数让学生探索特征,这样处理使教学内容有较强的灵活性,促进了学生思维的发展。教学内容生活化不仅能激发学生兴趣,产生亲切感,而且使学生认识到现实生活中蕴藏着丰富的数学问题。开课时收集的数据一方面激发了学生学习的兴趣,同时也缩短了教师和学生的距离,课后“你再长几岁,这个岁数就能被3整除”这一开放题富有情趣,给学生留下了深刻的印象。

3、着力改变学生的学习方式。

学习方式的转变是本节课的主要特色。本节课始终以自主探索、合作交流为主要的学习方式,让学生通过自主选教学内容,举例验证等独立思考和小组讨论等合作探究活动,获得教学知识、感悟方法。如在课的第二阶段,设计三个层次的教学活动,让学生充分探索、讨论、交流,使学生真正成为学习的主人。第一层通过学生猜测、举例、选数字组数,使学生产生两次认知冲突;第二层通过交换三位数数字的位置,仍然没能发现特征,产生第三次认知冲突;第三层次通过计算各位上的数的“和、差、积、商”使结论逐渐显露。这一过程不仅培养了学生探究精神,磨练了意志,同时也使学生品尝了成功的喜悦。

4、合理定位教师角色,营造民主、和谐的学习氛围。

北师大版的倍数的特征教学设计篇二

教学目标:

探索2、5倍数的特征,初步理解奇数、偶数的概念。

教学重点:

发现2、5倍数的特征并灵活运用。

教学过程:

一、导入新课。

(学生认真看表演情况。)。

二、探究新知。

1、活动一:师:从图中你们知道了哪些信息?还能提出什么问题?

学生观察情境图,说出自己通过观察发现的信息,提出问题,全班交流。

2、活动二:师:我们首先解决“各项表演分别可以选派几人参加”这个问题。请你们想一想,每个方队得人数有没有规律?到问题时要仔细分析、验证,不能轻易下结论。

3、活动三;

师:在1—100的自然数中,2的倍数有那些?5的倍数有哪些呢?3的倍数有哪些呢?先独立思考,然后小组讨论。

学生自主思考后,可能采用无序排列、有序列举、在百数表中圈出或涂色等解决问题的方法。

4、活动四。

师:像2、4、6、8、10、12……都是偶数,1、3、5、7、9、11……都是奇数。

师:你能再说出几个偶数、奇数的例子。

学生认真听讲。

学生举例,相互交流。

三、课堂练习。

自主练习第1、2题。学生自主练习,教师巡视指导,全班交流。

第3题数学游戏:应用今天学到的知识,看数字卡片说一句话。如:20是偶数,是2的倍数,同时也是5的倍数等。同位两人轮流出卡片,参与游戏。

四、课后小结。

师:请同学们说一说这节课你学到了些什么?还有什么问题?你对自己有什么评价?

北师大版的倍数的特征教学设计篇三

教学内容:

教学目的:

1、通过观察、探究、交流等活动,让学生经历发现3的倍数特征的过程。

2、在理解的基础上,掌握3的倍数的特征,并能利用特征进行判断。

教学重点:

理解3的倍数的特征。

教学难点:

教具准备:

实物投影仪、数字卡片等。

学具准备:

每人几张数字卡片。

教学过程:

一、谈话导入,揭示课题。

我们能不能通过观察个位上的数来确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。

板书课题:3的倍数的特征。

二、探索交流、获取新知。

(一)活动一:复习巩固。

1、前面我们研究了2和5的倍数的特征,能用你的话说一说他们的特征呢?

2、请你举例说明。(请学生说,教师把学生的举例板书在黑板上。)。

3、说说能同时被2和5整除的数有什么特征?(观察特征。用自己的话说一说。)。

(二)活动二:探索研究3的倍数的特征。

1、在书上第6页的表中,找出3的倍数,并做上记号。

(先独立完成,看谁找的快?)。

2、观察3的倍数,你发现了什么?

教师参与到讨论学习中。

先独立思考,想出自己的想法。

然后与四人小组的同学说说你的发现。

生1:3的倍数个位上的数有0、1、2、3、4、5、6、7、8、9没什么规律。

生2:十位上的数也没有什么规律。

生3:将每个数的各个数字加起来试试看。

3、你发现的规律对三位数成立吗?找几个数来检验一下。

(1)自己先找几个数试一试。

(2)然后在小组内说说你验证的结论。

(三)活动三:试一试。

在下面数中圈出3的倍数。

284553873665。

(先自己圈,然后说说你是怎样判断的?)。

(四)活动四:练一练。

1、请将编号是3的倍数的气球涂上颜色。

361754714548。

(自己独立完成,在小组内说说自己的想法。)。

2、选出两个数字组成一个两位数,分别满足下面的条件。

3045。

(1)是3的倍数。

(2)同时是2和3的倍数。

(3)同时是3和5的倍数。

(4)同时是2,3和5的倍数。

(独立完成,说说你的窍门和方法。)。

(五)活动五:实践活动。

在下表中找出9的倍数,并涂上颜色。

(可以在自主实践以后再交流。)。

三、总结。

通过这节课的学习,你有什么收获?

板书设计:

1、在下面数中圈出3的倍数。

284553873665。

2、选出两个数字组成一个两位数,分别满足下面的条件。

3045。

(1)是3的倍数。

(2)同时是2和3的倍数。

(3)同时是3和5的倍数。

(4)同时是2,3和5的倍数。

北师大版的倍数的特征教学设计篇四

教学过程:

一、复习引入,预习反馈:

(1)欣赏下面的图形,并找出各个图形的对称轴。

(2)学生反馈你们还见过哪些轴对称图形?

(3)反馈轴对称图形的概念:

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

(4)通过例题探究轴对称图形的性质:

例题1。

同学们用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,你能发现什么规律。

学生交流。

教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。

二、课内练习。

1.判断下面各图是否是轴对称图形,如果是,请指出它们的对称轴。

三、教学画对称图形。

例题2:

(1)引导学生思考:

a、怎样画?先画什么?再画什么?

b、每条线段都应该画多长?

(2)在研究的基础上,让学生用铅笔试画。

(3)通过课件演示画的全过程,帮助学生纠正不足。

四、练习:

1、课内练习一-----第1、2题。

2、课外作业:找出下图的对称轴。

板书设计:

轴对称。

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

北师大版的倍数的特征教学设计篇五

教学目的:

1、结合教材提供的具体情境,认识自然数和整数,并联系乘法认识倍数和因数。

2、探索找一个数的倍数的方法,能在1-100的自然数中,找出10以内某个自然数的所有倍数。

3、学生经历认识倍数和因数的含义,能对生活中有关的数字作出合理的解释。

4、在教师的帮助下,初步学会选择有用的信息进行简单地归纳与类比,发展合情推理能力。

5、在老师、同学的帮助下,对身边与数学有关的某些事物有好奇心,参与数学活动。

6、体验数学与日常生活密切联系。

教学重点:

探究因数与倍数。

教学难点:

倍数与因数的关系的理解。

教具准备:

实物投影仪等。

教学过程:

一、创设情境,导入新课。

1、导入谈话。

师:我们生活在一个充满数的世界里。

板书课题:数的世界。

2、呈现情境图。(略)。

二、组织活动,探索新知。

(一)活动一:看一看:

1、师问:图中有哪些数?谁愿意扮演小小售货员介绍一下水果的价格?

(1)说给你的同桌听听。

(2)指名汇报。

2、你知道这些表示水果的价格的数,分别是什么数呢?

(3.6和5.8是小数,6和4是整数。)。

3、问:我买5千克梨,需要多少钱?(生答:4×5=20(元))。

(二)活动二:试一试:

1、看书自学什么是自然数和整数。

(1)指名说说什么是自然数,什么是整数。

(2)同桌俩人一人说一个数。

(3)师:任意说一个数,学生判断它是什么数?

2、自学什么是因数和倍数?

问:在什么范围内研究倍数和因数呢?

3、师任意写一个乘法算式,先判断符合倍数和因数的范围吗?再判断()是()的因数,()是()的倍数。

(三)活动三:说一说。

1、根据算式,说说哪个数是哪个数的倍数,哪个数是哪个数的因数。

(1)同桌俩人一人说一人判断。

(2)指名汇报。

25×3=7514×6=8420×5=100。

(四)活动四:找一找:

下面哪些数是7的倍数?

14172577。

(1)师:用什么方法来判断这些数是不是7的倍数呢?

(2)生答:14÷7=214是7的倍数。

17÷7=2……3,17不是7的倍数。

(五)活动五:练一练:

1、你写我说:

45×2=9045和2是90的因数,

90是45和2的倍数。

(同桌2人,一人写算式,一人说倍数和因数。)。

2、看谁找得快。

(1)24691218203048。

师问:先找哪些是4的倍数?

再找哪些是6的倍数?

哪些数既是4的倍数、又是6的倍数?

(2)请写出100以内全部6的倍数。

师:100以内6的倍数的个数是有限的还是无限的?如果不限制在100以内呢?

你发现6的最小的倍数是几呢?能找到最大的6的倍数吗?

三、总结。

师:通过这节课的学习,你有了什么收获?

板书设计:

数的世界。

我买5千克梨,需要多少钱?

4×5=20(元)。

答:需要20元钱。

先找哪些是4的倍数?再找哪些是6的倍数?哪些数既是4的倍数、又是6的倍数?

4的倍数:4122048。

6的倍数:612183048。

既是4的倍数、又是6的倍数:1248。

教学内容:书4-5页。

教学目的:

1、经历探索2,5的倍数特征的过程,理解2,5的倍数的特征,能正确判个数是不是2或5的倍数。

2、知道奇数、偶数的含义,能判断一个数是奇数或偶数。

3、在观察、猜测和小组合作学习讨论的过程中,提高探究问题的能力。

教学重点:

理解2、5的倍数的特征。

教具准备:

0-9的数字卡片、信封等。

北师大版的倍数的特征教学设计篇六

教学目标:

1.使学生认识和掌握3的倍数的特点,能判断或写出3的倍数,并能说明判断理由。

2.使学生经历探索和发现3的倍数的特征的过程,培养观察、比较和分析、概括等思维能力,积累数学活动的经验,提高归纳推理的能力,进一步发展数感。

3.使学生主动参与探索、发现规律的活动,获得探索数学结论的成功感受;体验数学充满规律,体会数学的奇妙,增强学习数学的积极情感。

教学重点:

教学难点:

教学准备:

准备计数器教具和学具。

教学过程:

一、激活经验。

1.复习回顾。

提问:2和5的倍数有哪些特征?

回顾一下,我们是怎样发现2和5的倍数的特征的?(板书:找出倍数——观察比较——发现特征)。

2.引入课题。

谈话:我们上节课通过找2和5的倍数,对找出的倍数进行观察、比较,分别发现了2和5的倍数的特征。今天,我们就按照这样的过程,探索、寻找3的倍数的特征。(板书课题)。

二、学习新知。

1.提出猜想,引导质疑。

引导:我们知道2的倍数,个位上是0.2.4.6.8;5的倍数,个位上是5或o.那你能猜想一下3的倍数会有什么特征吗?为什么这样想?说说你的想法。(按思维惯性,可能许多学生会猜测个位上是3的倍数)。

许多同学认为,3的倍数可能是个位上是3.6.9的数。(板书:3的倍数,个位上是3、6、9)。

质疑:利用以前的经验学习新内容,是不错的学习方法。今天大家联系2和5的倍数的特征这样猜想,想法是很好的,数学学习经常可以这样类推。那这一次的猜想还对不对呢?大家来看几个数:13是3的倍数吗?26和49呢?(根据回答擦去板书内容后半部分)。

2.利用经验,组织探究。

(1)找3的倍数。

(2)探索特征。

3.学生归纳,强化认识。

让学生读一读板书的结论。

强调:同学们通过自己的思考、探索,发现了一个数各个数位上数字的和是3的倍数,这个数就是3的倍数;反之,一个数各个数位上数字的和不是3的倍数,这个数就一定不是3的倍数。

4.阅读“你知道吗”。

谈话:是的,数学很神奇、神秘,3的倍数居然和它各个数位上数字的和有这样密切的关系!数学有许多神奇、有趣的规律,只要我们具有一定基础,认真探究,这一条条神奇的秘密和规律就会被发现和应用。下面请大家阅读课本第34页的“你知道吗”,看看会有什么神奇的规律告诉你。

三、练习巩固。

1.做“练一练”第1题。

2.做“练一练”第2题。

3.做练习五第8题。

4.做练习五第9题。

5.做练习五第10题。

四、课堂总结。

提问:今天的学习你又有什么收获和体会?

判断3的倍数的方法,和判断2、5的倍数不同在哪里?

北师大版的倍数的特征教学设计篇七

2,引入:我们已经知道看一个数是不是2或5的倍数,只要看这个数的个位,那么你能从个位上发现3的倍数的特征吗今天我们一起来研究3的倍数的特征.(揭示课题:3的倍数的特征)。

二,排列中感受奇妙。

1,谈话:我们班有50个同学,现在每个同学手中都有一张写有自己学号的卡片,请大家判断一下,自己的学号数是3的倍数吗(稍停,让学生完成判断)请学号数是3的倍数的同学把卡片贴在黑板的左边,不是3的倍数的,卡片贴在黑板的右边.

3,抽取黑板左边3的倍数12和21.

(1)谈话:比较这两个数,你能发现什么有趣的现象(数字相同,数字排列的顺序不同)。

(2)提问:在左边3的倍数中,再找几个数,把他的数字顺序改变一下,看看还是不是3的倍数你有什么发现(一个3的倍数,改变数字的顺序后,仍然是一个3的倍数.)。

(3)在右边不是3的倍数的数中,也有这样的数,你能把他们一组一组地排列起来吗(13,31;14,41;23,32;25,52;34,43;)这里又说明什么呢(一个不是3的倍数,改变数字的顺序后,仍然不是3的倍数)。

三,操作中发现规律。

1,活动:每个同学手中都有一些小棒和一张数位表,我们在数位表上分别来摆几个3的倍数,看看分别用了几根小棒,现在请你在3的倍数中任意选几个来摆一摆,开始.

2,学生在小组中完成并记录,然后汇报,教师板书如:12:1+2=3;。

3,提问:对于小棒的根数你有什么发现(都是3的倍数)。

4,下面我们反过来试试看,请你数出3的倍数根小棒,摆成一个两位数或三位数,看看这个数是不是3的倍数.(学生操作后汇报结果)。

5,提问:摆每个数所用的小棒根数就是这个数的什么现在你觉得什么样的数一定是3的倍数(3的倍数,它的各位数的和一定是3的倍数)。

6,教学试一试:如果一个数不是3的倍数,这个数各数位上数字之和会是3的倍数吗请你找几个不是3的倍数算一算看.你得到什么结论(各数位上数字的和不是3的倍数,这个数就不是3的倍数)。

7,你能把刚才发现的结论和现在这个结论连起来说一说吗。

四,练习中提升认识。

1,完成"想想做做"第1题。

学生独立完成判断,并把题中3的倍数圈出来.

组织交流:哪些数是3的倍数你是怎样判断的。

明确方法:判断一个数是不是3的倍数,可以先把这个数各位上的数相加,看得到的和是不是3的倍数.

2,完成"想想做做"第2题。

学生各自做出判断,在组织交流.

3,完成"想想做做"第3题。

4,完成"想想做做"第4题。

先让学生按要求操作,交流:你是怎么找9的倍数的9的倍数都是3的倍数吗反过来,3的倍数都是9的倍数吗请举例说明.

5,完成"想想做做"第5题。

学生动手选一选,并把每次组成的三位数记下来.

五,全课总结。

3的倍数有什么特征判断一个数是不是3的倍数,你会怎么判断。

教学目标:。

2,使学生在探索3的倍数的特征的过程中,进一步培养观察,比较,分析,归纳以及数学表达的能力,感受数学思维的严谨性及数学结论的确定性,激发学生学习兴趣.

教学重点:使学生掌握3的倍数的特征,会判断一个数是否是3的倍数。

教学准备:有学号的卡片;学生准备小棒若干.

北师大版的倍数的特征教学设计篇八

目标预设:

1.让学生经历探索2、5倍数特征的过程,理解2、5倍数的特征,能熟练判断一个数是不是2或5的倍数。

2.知道奇数与偶数的含义,能熟练判断一个数是奇数或偶数。

3.在观察、猜测过程中提高探究问题的能力。

教学重点、难点:

教学过程。

一、复习导入。

1.到目前,你认识了哪些数?请举例说明。

2.怎样能迅速找出一个数的倍数?你能很快说出下列各数的倍数吗?

二、探索新知。

(1)5的倍数有什么特点?请你在教科书第4页的数表中用自己喜欢的方式做上记号,找出5的倍数。

(2)观察、思考。

刚才画出来的数都有什么特点?

(3)合作交流。

先在小组内把自己的想法与同伴交流,语言不要做统一要求。

(1)验证。

(2)引导学生说出几个较大数,对观察、发现的结果进行检验,看是否正确。

(1)独立学习。

(3)验证。

3.揭示奇数和偶数。

三、巩固应用,拓展提高。

1.猜数游戏。

规则:同桌两人一组,一名同学说一个数,另一个同学说出是否为2或5的倍数还是奇数、偶数。

2.是2的倍数又是5的倍数这个数具备什么条件?

3.用0、5、8组成三位数。

这个三位数有因数2。

这个三位数有因数5。

这个三位数有因数2又有因数5。

四、全课小结。

一、作业。

课本相关练习。

板书:

是2的倍数的数叫偶数,不是2的倍数的数叫奇数。

北师大版的倍数的特征教学设计篇九

知识目标:

1、在解决具体问题的过程中,探索2、5倍数的特征,能找出100以内的2,5的倍数,能迅速判断一个数是否是2、5的倍数。

2、初步理解奇数、偶数的概念。

能力目标:

1、经历探究2,5倍数的特征的过程,能举出生活中的数,再判断是奇数还是偶数。

3、在探索活动中,发现观察、分析和归纳概括能力,培养类推能力及主动获取知识的能力。

情感目标:通过探索活动,感受数学思考过程的条理性,发展初步的归纳、推理能力,激发探索规律的兴趣。

教学难点:1、掌握既是2的倍数,又是5的倍数的特征。

2、利用所学知识解决生活中的数学问题。

教学方法:引导探究法、练习法、讨论法、讲解法。

教学过程。

(一)情境导入。

预设:跳交谊舞的一共有多少人?圆圈舞和叠罗汉的一共有多少人参加。

师:那么跳交谊舞的选多少人参加合适呢?你大胆猜一猜。

预设:“参加交谊舞表演的人数应该是2的倍数。”接着再让学生说一说圆圈舞的人数应该是多少人?用一句话概括一下,板书5的倍数。

观察,2的倍数,5的倍数,它们都有什么特征?是不是所有的2的倍数都有这样的特征呢?这节课我们就来研究2,5的倍数特征。

(二)探究学习。

1、探究2的倍数。

2、交流:说明要求,先说你是用什么方法找到2的倍数的,再说说2的倍数由什么特征。

预设:我用百数表来找到了2的倍数,我发现……。

师:谁也是用百数表来找的举手?说说你们的发现。

预设:都是双数。

师:是双数吗?是一个个算的,还是一眼就看出来的。

能说说是怎么一眼看出来的吗?

预设2:个位上是0,2,4,6,8。

像这些2的倍数都是偶数,不是2的倍数的数就是奇数。

3、探究5的倍数。

师:找到5的倍数特征了吗?把你的想法在小组交流一下。

预设:我用列举法找到。

预设:我在百数表上找的。

大家同意他的看法吗?是不是所有的5的倍数个位上都是0或5呢?能举个多位数的例子来验证一下吗?再来个反例。

通过举例验证,我们得出了5的倍数特征:(板书:个位上是0,,5。

3、对比观察。

比较一下2和5的倍数特征有哪些共同点?

预设1:都要看个位。

预设2:个位上是0的数是2的倍数,也是5的倍数。

教师总结:大家自己归纳的结论,在实际应用中肯定会得心应手的。

(三)分层练习。

1、初显身手。

找2,5的倍数。

说一说你是怎么找的。

评价:对呀,掌握了2,5的倍数特征可以帮助我们很好的解决问题。

奇数偶数分类练习。

说说你是怎么分类的。(根据奇数偶数的概念。)。

评价:学以致用,很好!

说说为什么一班选择跳二人舞?

预设:因为他们班的人数是2的倍数。怎么确定是2的倍数?(2的倍数特征)。

适合跳三人舞?你是怎么判断的?能不能不计算就可以判断出一个数是不是3的倍数呢?下节课我们来研究。

苹果一共有多少个?说说你猜测的依据。

3、慎思细想。

只要符合什么条件就可以?(个位上是0,2,4,6,8)(个位上是0,5)。

师评:规律掌握很牢固。

(不是2的倍数,换句话说呢?个位上是1,3,5,7,9)(个位上是0)。

师评:活学活用,了不起!

4、猜数游戏。

说说你的想法:

这么多的知识混在一起,你还能保持思路这么清晰,大家应该送他一点掌声了。

课堂小结:

用今天学到的知识,看数字卡片说一句话。

例如:20是4的倍数;31是奇数,90既是2的倍数,也是5的倍数。

北师大版的倍数的特征教学设计篇十

1、让学生经历2和5的倍数特征的探索过程,理解并掌握2和5的倍数的特征,会运用这些特征判断一个数是不是2和5的倍数;知道偶数和奇数的意义,会判断一个自然数是偶数还是奇数。

2、在学习活动中培养学生的观察、分析、比较、概括能力和合情推理能力,增强学生的探索意识,进一步感受数学的奇妙。

北师大版的倍数的特征教学设计篇十一

1、经历和体验“3的倍数的特征”的规律的探索过程,初步感知3的倍数特征的原理。

2、理解和掌握3的倍数的特征,并能正确、较迅速地判断什么样的数是3的倍数。

3、初步体会到初等数论的抽象性、严密性和逻辑性,感受到数学的魅力所在。

一、复习引入。

1、复习。

把24、35、75、120、345、780、276、434填入相应的集合圈中。

为什么2、5的倍数只要看个位数字就可以了?

2、猜想特征。

(1)个位上是3、6、9的数。

(2)各个数位上的数的.和是3的倍数。

3、导入新课。

1、圈一圈,想一想。

2、交流。

(二)拓展与验证。

(三)得出结论。

一个数各位上的数的和是3的倍数,这个数就是3的倍数。

四、练习拓展。

1、把复习题8个数中3的倍数填在相应的圈内。

2、判断各数是否是3的倍数?

332666876264111222。

3、判断各数是否是3的倍数?你是怎么想的?

96332、24153、56093。

4、综合应用。

(1)一个数,同时是2、3、5的倍数,这个数最小是几?

(2)一个三位数,同时是2、3、5的倍数,最小又是多少?

北师大版的倍数的特征教学设计篇十二

建构主义认为,学习是学生建构自己知识的过程,而学生的自主建构离不开教师的有效引领。教师能否适时采用适宜的方法引导学生探索,决定学生自主构建的效果。因此,教师不仅要为学生提供自主建构的机会,也要认识到自身对学生建构的促进意义,并采用行之有效的方法及时给学生提供积极的引导。作为知识载体的学习材料是学生获得感性经验的基础和前提,材料的选择、加工和使用,在学生自主建构新知过程中有着重要意义,更是教师开展有效引领的关键点。有时,呈现材料方式的调整和变化会成为有效引领的“金钥匙”,帮助学生走出认知的困顿和迷途,实现新知的自主建构。

如“3的倍数的特征”,学生自主建构的难度较大。其原因,一是容易产生定势。受先前。

2、5倍数的特征复杂、需要关注的范围更广。研究3的倍数特征,不仅要看每一个数位上的数以及各个数位上数的和,还要分析和与3之间的关系。三是没有现成的经验可用。由个位数的特点确定倍数的特征,学生有这方面的经验,但是从各位数的和上把握倍数特征的经验缺乏,所以学生自主探索,发现特征的可能性较小。

2、5倍数的特征猜想3的倍数的特征,并通过质疑引导学生举例否定猜想,排除只看个位数的判定办法。但是就后两个问题则很难找到有效的引领对策。

【教学片断一】。

(随即交换各个数位上数的位置,写下1。

32、213、2。

31、312、321等数,引导学生逐个判断。)。

师:奇怪了,这些数怎么都是3的倍数呢?观察这些数,你发现了什么?生:都是由。

1、2、3这3个数组成的。生:„„。

师:为了便于我们观察和发现,咱们请计数器帮忙,看看能不能有新的发现。师:在计数器上拨出上面各数,会不会?各需要用几颗珠子?(依次出数,逐个鉴定珠子总数)师:数拨完了,你有没有什么发现?生:用到的珠子总数相同,都是6颗。

师:我们发现当所需的珠子总颗数是6时,是3的倍数。那么,珠子总数还可以是几呢?想一个珠子总数,任意组一个数,并判断它是不是3的倍数。(学生自主活动)。

师:发现了什么?

生:珠子总数是3的倍数,这个数就是3的倍数。生:各位数的和是3的倍数,这个数就是3的倍数。从以上教学过程看,采用拨珠的办法对发现特征有一定的作用。学生通过观察珠子总数不仅联想到了各位数的和,还能根据和形成各位数的和是3的倍数的猜想。但是仔细分析后,很容易发现这种引导方式的存在很大的缺陷。学生对各位数和的替代物——珠子总数的关注并不是自发的,而是教师直接告知的,这就极大地削弱了学生建构的成分。换句话说,这样的教学方式只是从表面上解决了自主建构的问题,却并没有触及本质,因而不是真正意义上的自主建构。

那么,除了拨珠的方法还有没有其他的引导方式呢?众所周知,采用对百数表中各个3的倍数特征的观察、分析,进而发现共同特征的策略,虽然符合研究特征的一般规律,但由于各个对象过于分散,而且各个数位上数的和不尽相同,不利于学生聚焦,进而发现各数的共同的本质特点。因此,常常会把百数表的研究作为感知材料,而不作深入探究。然而,如果对百数表内各数作进一步观察、思考和梳理,就会发现根据不同的和可以将3的倍数分成具有相同特质的几组:

3、12、21、30;

感知组合律表明,空间上接近、时间上连续的事物,易于构成一个整体为人们所清晰地感知。如果改变这些学习材料的呈现方式,使之符合组合律提出的空间和时间的要求,那么就能实现有效引领。在教学时,我设计了如下的呈现方式。

【教学片断二】。

师:3的倍数究竟有怎样的特征呢?你们说该怎么研究?生:找一些3的倍数观察。

师:3的倍数有很多,我们就列举40以内的数吧。生:

912。

1821。

2730。

39师:发现了什么?

生:我发现第一列各位上数的和都是3,第二列是6,第三列是9,第4列是12。生:各位上数的和是3的倍数。

生:一个数是3的倍数,它各位上数的和是3的倍数。

以上案例中,在学习材料呈现时做了三个方面调整和变化。首先,只出示3的倍数,不出示非3的倍数,使学生排除非3倍数特征的干扰,集中注意力研究3的倍数特征。其次,去掉百数表的外框,使各数重新组合成为可能。再次,改变从左往右的顺序,将数按固定的结构分组,并依次按从上至下的顺序排列,使得各位数和具有相同特点的自然上下对应,构成一个纵向观察的整体。同样的学习材料,不一样的呈现方式,带来了不一样的引领作用。没有改动之前的学习材料不能为学生提供任何的探究和发现特征的线索,而改动后的学习材料有着明确的导向,使学生主动发现3的倍数与各位数的和的特征有关,从而主动建构倍数特征。

以上教学实践表明,引导学生自主建构3的倍数的特征并,关键是要进行有效的引领。要实现有效引领,途径有很多,其中学习材料的选用不容忽视。根据心理学研究成果,深度挖掘学习材料的价值,打破原有的思维定势,适当改变材料的呈现形式是提高引导针对性和有效性的有力举措,能为学生自主探索新知扫除障碍,使学生走出建构受阻的困境,进而推动新知的自主建构进程。

北师大版的倍数的特征教学设计篇十三

1、让学生通过猜想、观察、比较、验证等一系列数学活动,自主探索并掌握3的倍数的特征。

2、使学生在具体的探索活动中,培养自主探索的意识,发展初步的推理能力。

1、重点:知道3的倍数的特征,能判断一个数是不是3的倍数。

2、难点:让学生通过观察讨论自主发现3的倍数的特征。

一、知识链接。

按要求填一填。

1230352401860728590。

既是2的倍数又是5的倍数()。

指生交流答案。

师:说说你是怎么做的。是呀,我们已经学习了2和5的倍数的特征,2的。

倍数的'特征是什么?5的倍数的特征呢?那么既是2的倍数又是5的倍数的数你是怎么找的?对了,只要个位上是0就可以了。

想一想,我们用什么方法来研究2和5的倍数?(列举、观察、验证的方法)这节课我们用猜想、观察、探究、验证等方法来研究3的倍数的特征,好不好?板书课题。

二、新知学习。

师:在学习新课之前,先来猜猜3的倍数的特征是什么?

生可能猜测:个位是3、6、9。

个位是1、3、6、9。

师:是不是这样?谁能举例验证?

学生分别举出正例与反例进行验证。

师小结:看来只看个位并不全面,那么3的倍数的特征跟数的个位到底有没有关系呢?

师:请同学们拿出导学案,在小组里合作用除法计算找出3的倍数,并观察讨论得出3的倍数的特征。(要求:可以分工合作,比如:一生记录,余生计算,大一点的数可以借助计算器来完成。)。

(学生小组合作完成)。

师:哪个小组来交流你们的答案,你们找的3的倍数有哪些?

生交流。

师:同意吗?找得非常准确,那你认为3的倍数的特征是什么?

生可能观察发现这些数的个位包括了0、1、2、3、4、5、6、7、8、9。

生举出反例推翻这个猜测。

生快速口算,得出这些数也是3的倍数。

生交流。

师:加起来的和是3的倍数,它就是3的倍数。是不是这样?谁能举例验证。

那么加起来的和不是3的倍数,就不是3的倍数。举例验证。

师:怎样判断是不是3的倍数,谁来总结一下。

师小结:一个数各个数位上数的和是3的倍数,这个数就是3的倍数。板书。

同桌两个人互相说说。集体说一遍。

完成导学案练一练。师:有的数是2、5、3的共同倍数,哪个数?从表格中一眼就看出来了,是90和120,看看他们有什么特征?(各位是0,其它数位的数加起来是3的倍数。)。

师:那么团体操里跳圆圈舞的,5人一组,交谊舞的2人一组,叠罗汉的三3人一组,那你说应派多少人参加团体操?生回答。

师;就是说这个数得是2、3、5共同的倍数。

三、课堂小结:

学生谈自己的收获。

三、课堂检测。

1、把下面的数填在相应的括号里。

615287520452790100。

2、他们都是3的倍数,方框里该填几?

2、他们都是3的倍数,方框里该填几?

(1)213□213□213□213□。

(2)68□4□356□0□。

北师大版的倍数的特征教学设计篇十四

(1)谁能说一说,什么样的数是2的倍数?什么样的数是5的倍数?并举两个例子。

(2)下面这些数是2或5的倍数吗?

324,153,345,2460,986。

[温故而知新]。

2、悬念激趣。

为迅速提高美术兴趣小组的绘画水平,须加强训练。现有美术纸534张,不通过计算,你能立即说出这些纸能平均分赠给三位同学吗?(如果能判断出这个数是是3的倍数,就能知道这些纸能不能平均分给三个同学了。)这节课,我们就一起来研究3的倍数的特征。(板书:3的倍数的特征)。

1、引导观察,调整思路。

(1)下面各数中,哪些是3的倍数?

214263841536577899。

113253749526476889。

(2)师问:你能从个位上找出一个数是3的倍数的特征吗?从十位上呢?

(3)前后桌四人一小组讨论。[课堂讨论的主要组织形式]。

学生讨论发现:这两组数个位上分别为1-9(有的学生也发现:十位上也分别是1-9),但第一组的数均是3的倍数,第二组的数都不是3的位数,因此无法从个位或十位找出是3的倍数的特征。

通过讨论还发现:是不是3的倍数,已不再取决于个位或十位上的数字了。

(4)教师立即提出:为了找到更好的答案,必须探索新的解决办法。

[师不断伺机激发学生探究学习]。

2、组织活动,探索规律。

(1)插入讨论找3的倍数过程的动画。

出现课本中的数例:

3×1=3。

3×2=6。

3×3=9。

3×4=1212→1+2=3(3是3的倍数)。

3×5=1515→1+5=6(6是3的倍数)。

3×6=1818→1+8=9(9是3的倍数)。

3×7=21。

……。

(2)继续探究。

可以是:123,234,345,456,135,246。

还可以是:126,156。

引导学生讨论:从上面这些三位数中,你能发现3的倍数的特征吗?

讨论发现:一个数是不是3的倍数,只同所选的`数字有关,而与数字的排列位置无关。而且这些3的倍数的数的各位数字和都是3的倍数。

(4)小结。

一个数各位上的数和是3的倍数,这个数就是3的倍数。

[至此,基本上可以水到渠成了。学生的总结,难题已基本攻克。]。

【本文地址:http://www.xuefen.com.cn/zuowen/13390476.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档