七年级数学教案湘教版(实用16篇)

格式:DOC 上传日期:2023-11-19 09:54:08
七年级数学教案湘教版(实用16篇)
时间:2023-11-19 09:54:08     小编:HT书生

教案是教师组织教学活动的重要依据和指导工具。编写教案时需要灵活运用各种教学方法和手段,使教学更加多样化和生动化。以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。

七年级数学教案湘教版篇一

重点:邻补角与对顶角的概念.对顶角性质与应用。

难点:理解对顶角相等的性质的探索。

一.创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角。

在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。

观察剪刀剪布的过程,引入两条相交直线所成的角。

学生观察、思考、回答问题。

二.认识邻补角和对顶角,探索对顶角性质。

1.学生画直线ab、cd相交于点o,并说出图中4个角,两两相配。

共能组成几对角?根据不同的位置怎么将它们分类?

学生思考并在小组内交流,全班交流。

当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用。

几何语言准确表达;。

有公共的顶点o,而且的两边分别是两边的反向延长线。

2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?

(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)。

3学生根据观察和度量完成下表:

两条直线相交所形成的角分类位置关系数量关系。

教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗?

4.概括形成邻补角、对顶角概念和对顶角的性质。

三.初步应用。

练习:

下列说法对不对。

(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角。

(2)邻补角是互补的两个角,互补的两个角是邻补角。

(3)对顶角相等,相等的两个角是对顶角。

学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象。

四.巩固运用例题:如图,直线a,b相交,求的度数。

七年级数学教案湘教版篇二

一。教学目标:

1、认知目标:

1)了解二元一次方程组的概念。

2)理解二元一次方程组的解的概念。

3)会用列表尝试的方法找二元一次方程组的解。

2、能力目标:

1)渗透把实际问题抽象成数学模型的思想。

2)通过尝试求解,培养学生的探索能力。

3、情感目标:

1)培养学生细致,认真的学习习惯。

2)在积极的教学评价中,促进师生的情感交流。

二。教学重难点。

重点:二元一次方程组及其解的概念。

难点:用列表尝试的方法求出方程组的解。

三。教学过程。

(一)创设情景,引入课题。

1、本班共有40人,请问能确定男_几人吗?为什么?

(1)如果设本班男生x人,_人,用方程如何表示?(x+y=40)。

(2)这是什么方程?根据什么?

2、男生比_了2人。设男生x人,_人。方程如何表示?x,y的值是多少?

3、本班男生比_2人且男_40人。设该班男生x人,_人。方程如何表示?

两个方程中的x表示什么?类似的两个方程中的y都表示?

象这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。

4、点明课题:二元一次方程组。

[设计意图:从学生身边取数据,让他们感受到生活中处处有数学]。

(二)探究新知,练习巩固。

1、二元一次方程组的概念。

(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。

[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解。]。

(2)练习:判断下列是不是二元一次方程组:。

x+y=3,x+y=200,。

2x-3=7,3x+4y=3。

y+z=5,x=y+10,。

2y+1=5,4x-y2=2。

学生作出判断并要说明理由。

2、二元一次方程组的解的概念。

(1)由学生给出引例的答案,教师指出这就是此方程组的解。

(2)练习:把下列各组数的题序填入图中适当的位置:

x=1;x=-2;x=;-x=。

y=0;y=2;y=1;y=。

方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。

2x+3y=2。

(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。

(4)练习:已知x=0是方程组x-b=y的解,求a,b的值。

y=0.55x+2a=2y。

(三)合作探索,尝试求解。

现在我们一起来探索如何寻找方程组的解呢?

1、已知两个整数x,y,试找出方程组3x+y=8的解。

2x+3y=10。

学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。

提炼方法:列表尝试法。

一般思路:由一个方程取适当的xy的值,代到另一个方程尝试。

2、据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。

(1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。

由学生独立完成,并分析讲解。

(四)课堂小结,布置作业。

1、这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)。

2、你还有什么问题或想法需要和大家交流?

3、作业本。

教学设计说明:

1、本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。

2、“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。

3、本课在设计时对教材也进行了适当改动。例题方面考虑到数_代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。

七年级数学教案湘教版篇三

1.理解加减消元法.

2.用加减消元法解二元一次方程组.

【过程与方法】。

由具体的简单的用加减消元法解二元一次方程组的例子,体验加减消元法,在此基础上学习加减消元法的概念,再运用加减消元法解方程组,最后使同学们认识到解二元一次方程组时,要先观察,再选择合适的方法解二元一次方程组.

【情感态度】。

体验先观察,再选择合适的方法是做数学题的重要技巧,也是今后解决工作、科学问题的重要技巧.

【教学重点】。

加减消元法.

【教学难点】。

选择合适的方法解二元一次方程组.

问题3_________法和_________法都是二元一次方程组的两种解法,它们都是通过消元使方程组转化为________方程,只是消元方法不同.解二元一次方程组时,应根据方程组的具体情况选择更________它的解法.

【教学说明】对问题1,可鼓励学生独立作业,但也不反对分组讨论.然后交流成果,引导学生归纳加减消元法.在此基础上可组织学生完成教材p96练习1.

对问题2,这是本节课的重点和难点,要让学生知道本题有两种方法:(1)用加法消元法消去y.(2)用减法消元法消去x.

对问题3,可指导学生在阅读教材p97后填空,然后加以正确理解.

二、思考探究,获取新知。

思考什么叫做加减消元法?

【归纳结论】两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.

七年级数学教案湘教版篇四

2.会用上的点表示有理数,会利用比较有理数的大小;。

3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

教学建议。

一、重点、难点分析。

本节的重点是初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与上点的对应关系。的概念包含两个内容,一是的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用解决问题的方法,为今后充分利用“”这个工具打下基础.

二、知识结构。

有了,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:

定义。

三要素。

应用。

数形结合。

规定了原点、正方向、单位长度的直线叫。

原点。

正方向。

单位长度。

帮助理解有理数的概念,每个有理数都可用上的点表示,但上的点并非都是有理数。

比较有理数大小,上右边的数总比左边的数要大。

在理解并掌握概念的基础之上,要会画出,能将已知数在上表示出来,能说出上已知点所表示的数,要知道所有的有理数都可以用上的点表示,会利用比较有理数的大小。

三、教法建议。

小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念.是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是的根本依据。与它所在的位置无关,但为了教学上需要,一般水平放置的,规定从原点向右为正方向。要注意原点位置选择的任意性。

关于有理数与上的点的对应关系,应该明确的是有理数可以用上的点表示,但上的点与有理数并不存在一一对应的关系。根据几个有理数在上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。

四、的相关知识点。

1.的概念。

(1)规定了原点、正方向和单位长度的直线叫做.

这里包含两个内容:一是的三要素:原点、正方向、单位长度缺一不可.二是这三个要素都是规定的.

(2)能形象地表示数,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数.

以是理解有理数概念与运算的重要工具.有了,数和形得到初步结合,数与表示数的图形(如)相结合的思想是学习数学的重要思想.另外,能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小.因此,应重视对的学习.

2.的画法。

(1)画直线(一般画成水平的)、定原点,标出原点“o”.

(2)取原点向右方向为正方向,并标出箭头.

(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。

(4)标注数字时,负数的次序不能写错,如下图。

3.用比较有理数的大小。

(1)在上表示的两数,右边的数总比左边的数大。

(2)由正、负数在上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

(3)比较大小时,用不等号顺次连接三个数要防止出现“”的写法,正确应写成“”。

五、定义的理解。

1.规定了原点、正方向和单位长度的直线叫做,如图1所示.

2.所有的有理数,都可以用上的点表示.例如:在上画出表示下列各数的点(如图2).

a点表示-4;b点表示-1.5;。

o点表示0;c点表示3.5;。

d点表示6.

从上面的例子不难看出,在上表示的两个数,右边的数总比左边的数大,又从正数和负数在上的位置,可以知道:

正数都大于0,负数都小于0,正数大于一切负数.

因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用,表示是正数;反之,知道是正数也可以表示为。

同理,,表示是负数;反之是负数也可以表示为。

3.正常见几种错误。

1)没有方向。

2)没有原点。

3)单位长度不统一。

七年级数学教案湘教版篇五

1、通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系。

2、培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想。

3、养成学生积极主动的学习态度和自主学习的方式。

重点:认识点、线、面、体的几何特征,感受它们之间的关系。

难点:在实际背景中体会点的含义。

圆柱、圆锥、正方体、长方体、球、棱柱、棱锥模型。

观察、讨论.让学生共同体会“点动成线、线动成面、面动成体。

让学生举出更多的“点动成线、线动成面、面动成体”的例子。

小组合作学习,学生利用学具完成教科书第114页练习(动手转一转)。

设计意图:教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力。学生自己动手实践操作,加深学生印象,化解难度。

教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等。

让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子。

1、课本112页观察,并回答它的问题。

引导学生观察后得出结论:面与面相交得到线,线与线相交得到点。

2、113页练习(提供实物,议一议,动手摸一摸),思考以下问题:

让学生自己体会并小组讨论得出点、线、面、体之间的关系。

2、阅读教科书第119页的实验与探究,并思考有关问题。

七年级数学教案湘教版篇六

一:教材分析:

1:教材所处的地位和作用:

以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。

2:教育教学目标:

(1)知识目标:

(a)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。

(b)通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。

(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。

(3)思想目标:

通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。

3:重点,难点以及确定的依据:

根据题意寻找和;差;倍;分问题的相等关系是本课的重点,根据题意列出一元一次方程是本课的难点,其理论依据是关键让学生找出相等关系克服列出一元一次方程解应用题这一难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。

二:学情分析:(说学法)。

1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。

2:学生在列方程解应用题时,可能存在三个方面的困难:

(1)抓不准相等关系;

(2)找出相等关系后不会列方程;

(3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。

3:学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。

4:学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。

5:学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。

三:教学策略:(说教法)。

如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:

1:“读(看)——议——讲”结合法。

2:图表分析法。

3:教学过程中坚持启发式教学的原则。

教学的理论依据是:

1:必须先明确根据应用题题意列方程是重点,同时也是难点的观点,在教学过程中帮助学生抓住关键,克服难点,正确列方程弄清楚题意,找出能够表示应用题全部含义的一个相等关系,并列出代数式表示这相等关系的左边和右边。为此,在教学过程中要让学生明确知晓解题步骤,通过例1可以让学生大致了解列出一元一次方程解应用题的方法。

2:在教学过程中要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表示应用题全部含义的一个相等关系,分析的过程可以让学生只写在草稿上,在写解的过程中,要求学生先设未知数,再根据相等关系列出需要的代数式,再把相等关系表示成方程形式,然后解这个方程,并写出答案,在设未知数时,如有单位,必须让学生写在字母后,如例1中,不能把“设原来有_千克面粉”写成“设原来有_”。另外,在列方程中,各代数式的单位应该是相同的,如例1中,代数式“_字串7”“—15%_”“42500”的单位都是千克。在本例教学中,关键在于找出这个相等关系,将其中涉及待求的某个数设为未知数,其余的数用已知数或含有已知数与未知数的代数式表示,从而列出方程。在例1中的相等关系比较简单明显,可通过启发式让学生自己找出来。在例1教学中同时让学生巩固解一元一次方程应用题的五个步骤,特别是第2步是关键步骤。

3:针对学生在列方程解应用题中可能存在的三个方面的困难,在教学过程中有意识加以解决,特别是学生抓不准相等关系这方面,可以让学生通过表格,图表等形式帮助学生找出相等关系表示成方程。如例1在分析过程中通过表格让学生明了清楚直观解决列方程的难点。

4:通过图表对比使学生更直观,理解更深刻,同时,降低了理论教学的难度和分量,提高课堂教学效益(教学手段)。

5:在课后习题的安排上适当让学生通过模仿例题的思想方法,加深学生解应用题的能力,这主要由于学生刚刚入门,多进行模仿,习惯以后,再做与例题不一样的习题,可以提高运用知识能力,同时让学生进行一题多解,找出共同点,区别或最佳列法,以开阔学生的思路。

四:教学程序:

(一):课堂结构:复习提问,导入讲授新课,课堂练习,巩固新课,布置作业五个部分。

(二):教学简要过程:

1:复习提问:

(1):什么叫做等式?

(2):等式与方程之间有哪些关系?

(3):求_的15%的代数式。

(4):叙述代数式与方程的区别。

(理由是:通过复习加深学生对等式,方程,代数式之间关系的理解,有利于学生熟练正确根据题意列出一元一次方程,从而有利降低本节的难度。)。

2:导入讲授新课:

(1):教具:

一块小黑板,抄212例1题目及相对应的空表格。

左边右边。

(2):新课引述:

(3):讲述课文212例1:

(目的是:要求学生认真读懂题目,寻找反映题目的全部含义的相等关系,必须根据题目关系,切勿盲目性)通过理解启发学生寻找出以下关系:原来重量—运出重量=剩余重量(a)(在指导学生分析寻找题意相等关系时,可能存在学生分析问题思路不同,会找出如下关系:原来重量=运出重量+剩余重量,原来重量—剩余重量=运出重量的相等关系来,这主要由于学生思路不同,得出的关系表面不同,但思路是正确的,应加以鼓励培养学生这种发散思维能力。)。

指导学生设原来重量为_千克。这里分析等式左边:原来重量为_千克,运出重量为15%_千克,把以上填入表格左边。字串7分析等式右边:剩余重量为42500千克,填入表格右边。

(目的是:通过分析使学生易看出,先弄懂题意,找出相等关系,再按照相等关系来设未知数和列代数式,有利于降低列方程解应用题的难度)。

把以上左边和右边的代数式分别代入(a)中,同时要求学生注意方程的左边和右边的单位要一致,就可以列出方程。

同时要求学生在解答过程中勿漏写“答”和“设”,且都不要漏写单位。

结合解题过程向学生介绍一元一次应用题解法的一般步骤:

课本215黑体字。

3:课堂练习:

课文216练习1,2题。

(目的是:让学生通过适当的模仿例题的解题思想方法从而加深对本课的内容的理解掌握。)。

4:新课巩固:

学生对本节内容进行要小结:

列方程解应用题着重于分析,抓住寻找相等关系。解一元一次应用题的一般步骤及注意事项。

(目的:让学生加深对应用题的解法的认识和该注意事项的重视。)。

5:作业布置:

课文221习题4-4(1)a组1,2,3题。

(目的:在于检验学生对本节内容的理解和运用程度,以及实际接受情况,并促使学生进一步巩固和掌握所学的内容。)。

五:板书设计:

4_4一元一次方程的应用:

例题:小黑板出示例1题目解:设原来有_千克面粉,那么运。

相等关系:原来重量—运出重量=剩余重量出了15%_千克,依题意,得。

等式左边:等式右边:_—15%_=42500。

原来重量为_千克,剩余重量为42500千克。解这个方程:

运出重量为15%_千克。85/100__=42500。

解一元一次方程的一般步骤:_=50000(千克)。

小黑板出示课文215黑体字内容提要答:原来有50000千克面粉。

七年级数学教案湘教版篇七

一、选择题:(本题共24分,每小题3分)。

在下列各题的四个备选答案中,只有一个答案是正确的,请你把正确答案前的字母填写在相应的括号中.

1.若一个数的倒数是7,则这个数是().

a.-7b.7c.d.

2.如果两个等角互余,那么其中一个角的度数为().

a.30°b.45°c.60°d.不确定。

3.如果去年某厂生产的一种产品的产量为100a件,今年比去年增产了20%,那么今年的产量为()件.

a.20ab.80ac.100ad.120a。

4.下列各式中结果为负数的是().

a.b.c.d.

5.如图,已知点c是线段ab的中点,点d是cb的中点,那么下列结论中错误的是().

a.ac=cbb.bc=2cdc.ad=2cdd.

6.下列变形中,根据等式的性质变形正确的是().

a.由,得x=2。

b.由,得x=4。

c.由,得x=3。

d.由,得。

7.如图,这是一个马路上的人行横道线,即斑马线的示意图,请你根据图示判断,在过马路时三条线路ac、ab、ad中最短的是().

a.acb.abc.add.不确定。

8.如图,有一块表面刷了红漆的立方体,长为4厘米,宽为5厘米,高为3厘米,现在把它切分为边长为1厘米的小正方形,能够切出两面刷了红漆的正方体有()个.

a.48b.36c.24d.12。

二、填空题:(本题共12分,每空3分)。

9.人的大脑约有100000000000个神经元,用科学记数法表示为.

10.在钟表的表盘上四点整时,时针与分针之间的夹角约为度.

11.一个角的补角与这个角的余角的差等于度.

12.瑞士的教师巴尔末从测量光谱的数据,,,…中得到了巴尔末公式,请你按这种规律写出第七个数据,这个数据为.

三、解答题:(本题共30分,每小题5分)。

13.用计算器计算:(结果保留3个有效数字)。

14.化简:

15.解方程。

16.如示意图,工厂a与工厂b想在公路m旁修建一座共用的仓库o,并且要求o到a与o到b的距离之和最短,请你在m上确定仓库应修建的o点位置,同时说明你选择该点的理由.

拓展知识。

七年级数学教案湘教版篇八

本节教学的重点是掌握解一元一次不等式的步骤.难点是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.掌握一元一次不等式的解法是进一步学习一元一次方程组的解法以及一元二次不等式的解法的重要基础.

1、一元一次不等式和一元一次方程概念的异同点

相同点:二者都是只含有一个未知数,未知数的次数都是1,左、右两边都是整式.

不同点:一元一次不等式表示不等关系,一元一次方程表示相等关系.

(3)同方程类似,我们把或叫做一元一次不等式的标准形式.

2、一元一次不等式和一元一次方程解法的异同点

相同点:步骤相同,二者都是经过变形,把左边变成,右边变为一个常数.

注意:(1)解方程的移项法则对解不等式同样适用.

三、教法建议

七年级数学教案湘教版篇九

从简单的转盘游戏开始,使学生在生活经验和试验的基础上,进一步体验不确定事件的特点及事件发生的可能性大小。

能用实验对数学猜想做出检验,从而增加猜想的可信度。 解决问题

在转盘游戏过程中,经历猜测结果,实验验证,分析试验结果等数学活动,增加数学活动经验。

情感态度与价值观

在合作与交流过程中,体验小组合作更有利于探究数学知识,敢于发表自己观点,提高个人认识。

在实验中,体会不确定事件的特点及事件发生可能性大小;使每个学生都能积极认真参与课堂设计中的实验,真正在实验中获得知识上的认识。

创设情境,切入标题

请同学们猜测,当我自由转动转盘时,指针会落在什么颜域呢?

请各小组分别派一名代表,看哪组能转出红色。

结果,8小组有6组转出了红色。

为什么会出现这样的结果呢?

因为,在这个转盘中,红域的面积大,白域的面积小,因此,当转盘停上转动时,指针落到红域的可能性大。

大家同意这种看法吗?下面我们亲自动手感受一下。

学生按照题目要求进行实验。

请各组组长把你组的实验数据汇报一下(教师把数据填写在表格里) 实验结果:六个小组每组实验16次,全班共实验96次,指针落在红域的次数分别如下9,6,10,5,8,12。共计50次。

请同学们对我们的实验结果进行分析交流,谈谈你在试验中有哪些心得。

根据观察,转盘上红域的面积为总面积的一半,指针落在红域的可能性也应该是一半。通过对我们全班的实验结果分析,指针落在红域的比例是50∶96,结果接近百分之五十。

在小组内实验结果不明显,实验次数越多越能说明问题。

通过实验,我们确定感受到,转盘游戏中各区域的面积的可能性大小与指针落在什么区域的可能性大小有直接关系。以后在生活中再遇到转盘游戏问题可要想想今天的实验结论。

下面我们利用转盘做一下数学游戏(出示幻灯片),学生按教学设计中要求进行游戏,教师巡回指导。

每组每人游戏一次,全班共游戏48次。其游戏结果是,平均数增大1的,共35次,平均数减小1的,共13次。

请同学们对下列问题进行交流(幻灯片出示教材206页4个问题)。 这个转盘转到“平均数增大1”区域的可能性大,从面积大小就可以看出。

如果平均数增大1,我是在卡片上增加一个数,这个数等于卡片上数字的个数加1,如果是平均数减小1,我就在每个数上都减去1。

同学们说出很多种方法,不一一列举。

“平均数增大1”的次数占总次数的百分之七十三,“平均数减小1”占百分之二十七。

如果将这个实验继续做下去,卡片上所有数的平均数会增大。

同学们说的都很好,课后能不能自己也利用转盘设计一个新的游戏,感兴趣的同学可以在课下与我交流。

以下过程同教学设计,略去。

指导学生完成教材第206页习题。

学生可从各个方面加以小结。 布置作业

仿照课堂游戏,自编一个新的游戏。 能否利用扑克牌设计本节转盘游戏。

七年级数学教案湘教版篇十

1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;。

3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。

正确分析实际问题中的不等关系,列出不等式组。

建立不等式组解实际问题的数学模型。

出示教科书第145页例2(略)。

问:(1)你是怎样理解“不能完成任务”的数量含义的?

(2)你是怎样理解“提前完成任务”的数量含义的?

(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?

师生一起讨论解决例2.

1、教科书146页“归纳”(略).

2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?

在讨论或议论的基础上老师揭示:

步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。

七年级数学教案湘教版篇十一

师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).

问题2:在生活中,仅有整数和分数够用了吗?

请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)。

学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有-的新数。

七年级数学教案湘教版篇十二

比较正数和负数的大小。

1、借助数轴初步学会比较正数、0和负数之间的大小。

2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

负数与负数的比较。

一、复习:

1、读数,指出哪些是正数,哪些是负数?

—85。6+0。9—+0—82。

2、如果+20%表示增加20%,那么—6%表示。

二、新授:

(一)教学例3:

1、怎样在数轴上表示数?(1、2、3、4、5、6、7)。

2、出示例3:

(1)提问你能在一条直线上表示他们运动后的情况吗?

(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

(6)引导学生观察:

a、从0起往右依次是?从0起往左依次是?你发现什么规律?

(7)练习:做一做的第1、2题。

(二)教学例4:

1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

2、学生交流比较的方法。

3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

4、再让学生进行比较,利用学生的具体比较来说明“—8在—6的左边,所以—8〈—6”

5、再通过让另一学生比较“8〉6,但是—8〈—6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

6、总结:负数比0小,所有的负数都在0的'左边,也就是负数都比0小,而正数比0大,负数比正数小。

7、练习:做一做第3题。

三、巩固练习。

1、练习一第4、5题。

2、练习一第6题。

3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是摄氏度。

四、全课总结。

(1)在数轴上,从左到右的顺序就是数从小到大的顺序。

(2)负数比0小,正数比0大,负数比正数小。

第二课教学反思:

许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

例3——两个不同层面的拓展:

1、在数轴上表示数要求的拓展。

数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1。5。建议此处教师补充要求学生表示出“+1。5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1。5和—1。5绝对值相等。同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

2、渗透负数加减法。

教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

例4——薄书读厚、厚书读薄。

薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)。

例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。

将厚书读薄——无论哪种类型,比较方法万变不离其宗。

无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“86,所以—8—6”来阐述其原因,其实也与数轴相关。因为当绝对值越大时,表示离原点的距离越远,那么在数轴上表示的点也就在原点左边越远,数也就越小。所以,抓住精髓就能以不变应万变。

在此,我还补充了—3/7和—2/5比较大小的练习,提升学生灵活应用知识解决实际问题的能力。

七年级数学教案湘教版篇十三

教师在备课时,应充分估计学生在学习时可能提出的问题,确定好重点,难点,疑点,和关键。根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。

非常高兴,能有机会和同学们共同学习

昨天,老师在七年级三班上课时,把他们分成七个小组,每个小组回答问题的情况以抢答赛的形式记分。你们看(出示投影)这是七年级三班七个小组回答问题的表现情况。答对一题得一分,记作+1分;答错一题扣一分,记作1分。第几组最棒?老师还没来得及计算出每个小组的最后得分,咱们班哪位同学能帮老师算出最后结果?(学生在教师引导下回答)

我们已得出了每个小组的最后分数,那么哪个小组是优胜小组?(第一小组),回去以后,老师就把小奖品发给他们,相信他们一定会很高兴。

同学们,这节课你们愿不愿意也分成几个小组,看一看那个小组的同学表现得最出色?(原意)那么老师就按座次给同学们分组,每一竖排为一组。老师把组号写在黑板上,以便记分。

希望各组同学积极思考、踊跃发言。同学们有没有信心得到老师的小奖品?(有)同学们加油!

我们已得到了这7个小组的最后得分,那位同学能试着用算式表示?(学生在教师指导下列算式)

以上这些算是都是什么运算?(加法),两个加数都是什么数?(有理数),这就是我们这节课要学习的有理数的加法(板书课题)。

刚才老师说要给七年级三班的优胜组发奖品,老师手里有12本作业本,优胜组共6人,老师将送出的作业本数占总数的几分之几?(二分之一)分数最低的一组共7人,他们每人交给老师一个作业本,占总数的几分之几?(十二分之七)如果,老师得到的作业本记为正数,送出的作业本记为负数,则老师手里的作业本增加或减少几分之几?同学们能列出算式吗?(学生列式)对于这个算式,同学们还能轻易的感知出结果吗?(不能)

对于有理数的加法,有的同学们能直接感知得到结果,有的靠感知是不够的,这就需要我们共同探索规律!(出示投影),观察这7个算式,每一个算式都是怎样的两个有理数相加?(引导学生回答)你们还能举出不同以上情况的算式吗?(不能),这说明这几个算式概括了有理数加法的不同情况。

前两个算式的加数在符号上有什么共同点?(相同),那么我们就可以说这是什么样的两数相加?(同号两数相加)同学们还能观察出那几个算式可归为一类吗?(3、4、5、异号两数相加,6、7一个数同0相加)

同学们已把这7个算式分成了三种情况,下面我们分别探讨规律。

(2) 异号两数相加,其和有何规律呢?大家观察这三个式子回答问题。(引导学生分成两类,容易得到绝对值相同情况的结论。再引导学生观察绝对值不相同的情况,回答问题)哪位同学能概括一下这个规律?(引导学生得出)

(3) 一个数同0相加,其和有什么规律呢?(易得出结论)

同学们经过积极思考,探索出了解决有理数加法的规律,顾一下(出哪位同学能带领大家共同回顾一下?(出示投影,学生大声朗读)我们把这个规律称为有理数的加法法则。

同学们都很聪明,积极参与探索规律,每个组都有不错的成绩。个别落后的组不要气馁,继续努力,下面老师就给大家一个得分的机会,看哪一组能[出题制胜]!(出示)

(活动过程1后评价、加分;教师以其中一题为例,讲解题格式及过程;活动过程2后:让每组第三排同学评价加分)

同学们已经基本掌握了有理数的加法法则,并会运用它,但七年级三班有几位同学对这一内容掌握的不是太好,以致在作业中出了毛病,他们为此很苦恼。希望咱们同学能帮帮他们,看哪位同学能像妙手回春的神医华佗一样药到病 除!(师生共同治病)

看来同学们对有理数的加法已经掌握得很好了,大家还记得前面那个难倒我们的有理数的加法题呢?那位同学能解决这个问题呢?(学生口述 师板书)。在大家的努力下,我们终于攻破了这个难关。

通过这节课的学习,大家有什么收获?(学生回答)同学们都有很多收获,老师认为收获最多的是优胜组的同学,因为他们能得到老师的小奖品,大家赶紧看看那一组获胜?欢迎优胜组上台领奖,大家掌声鼓励!

同学们,希望你们在未来的学习和生活中都能积极进取,获得一个又一个的胜利。

七年级数学教案湘教版篇十四

2.初步培养学生观察、分析及概括的能力;。

3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学建议。

一、教学重点、难点。

重点:通过具体例子了解公式、应用公式.

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析。

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构。

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议。

1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

教学设计示例。

公式。

五、教具学具准备。

投影仪,自制胶片。

六、师生互动活动设计。

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.

七年级数学教案湘教版篇十五

学习目标:

1.会用正.负数表示具有相反意义的量.

2.通过正.负数学习,培养学生应用数学知识的意识.

3.通过探究,渗透对立统一的辨证思想。

学习重点:

用正.负数表示具有相反意义的量。

学习难点:

实际问题中的数量关系。

教学方法:

讲练相结合。

教学过程。

一.学前准备。

通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.

问题1:“零”为什么即不是正数也不是负数呢?

引导学生思考讨论,借助举例说明.

参考例子:温度表示中的零上,零下和零度.

二.探究理解解决问题。

问题2:(教科书第4页例题)。

先引导学生分析,再让学生独立完成。

(2)20xx年下列国家的商品进出口总额比上一年的变化情况是:

美国减少6.4%,德国增长1.3%,

法国减少2.4%,英国减少3.5%,

意大利增长0.2%,中国增长7.5%.

写出这些国家20xx年商品进出口总额的增长率.

解:(1)这个月小明体重增长2kg,小华体重增长―1kg,小强体重增长0kg.

(2)六个国家20xx年商品进出口总额的增长率:

美国―6.4%,德国1.3%,

法国―2.4%,英国―3.5%,

意大利0.2%,中国7.5%.

三.巩固练习。

从0表示一个也没有,是正数和负数的分界的角度引导学生理解.

在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.

在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.

通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.

四.阅读思考1页。

(教科书第8页)用正负数表示加工允许误差.

问题:1.直径为30.032mm和直径为29.97的零件是否合格?

2.你知道还有那些事件可以用正负数表示允许误差吗?请举例.

五.小结。

1.本节课你有那些收获?

2.还有没解决的问题吗?

六.应用与拓展。

1.必做题:

教科书5页习题4.5.:6.7.8题。

2.选做题。

1).甲冷库的温度是―12°c,乙冷库的温度比甲冷酷低5°c,则乙冷库的温度是.

七年级数学教案湘教版篇十六

4通过平行公理推论的推理,培养学生的逻辑思维能力和进行推理的能力

1教师教法:尝试法、引导法、发现法

2学生学法:在教师的引导下,尝试发现新知,造就成就感

(一)重点

平行公理及推论

(二)难点

平行线概念的理解

(三)解决办法

通过引导学生尝试发现新知、练习巩固的方法来解决

投影仪、三角板、自制胶片

1通过投影片和适当问题创设情境,引入新课

2通过教师引导,学生积极思维,进行反馈练习,完成新授

3学生自己完成本课小结

(-)明确目标

(二)整体感知

(三)教学过程

创设情境,引出课题

学生齐声答:不是

师:因此,平面内的两条直线除了相交以外,还有不相交的情形,这就是我们本节所要研究的内容(板书课题)

[板书]24平行线及平行公理

探究新知,讲授新课

师:在我们生活的周围,平面内不相交的情形还有许多,你能举例说明吗?

学生:窗户相对的棱,桌面的对边,书的对边……

师:我们把它们向两方无限延伸,得到的直线总也不会相交我们把这样的直线叫做平行线

[板书]在同一平面内,不相交的两条直线叫做平行线

教师出示投影片(课本第74页图2?17)

师:请同学们观察,长方体的棱与无论怎样延长,它们会不会相交?

学生:不会相交

师:那么它们是平行线吗?

学生:不是

师:也就是说平行线的定义必须有怎样的'前提条件?

学生:在同一平面内

师:谁能说为什么要有这个前提条件?

学生:因为空间里,不相交的直线不一定平行

教师在黑板上给出课本第73页图2

学生:两种相交和平行

由此师生共同小结:在同一平面内,两条直线的位置关系只有相交、平行两种

尝试反馈,巩固练习(出示投影)

1判断正误

(1)两条不相交的直线叫做平行线()

(2)有且只有一个公共点的两直线是相交直线()

(3)在同一平面内,不相交的两条直线一定平行()

(4)一个平面内的两条直线,必把这个平面分为四部分()

2下列说法中正确的是()

a在同一平面内,两条直线的位置关系有相交、垂直、平行三种

b在同一平面内,不垂直的两直线必平行

c在同一平面内,不平行的两直线必垂直

d在同一平面内,不相交的两直线一定不垂直

学生活动:学生回答,并简要说明理由

师:我们很容易画出两条相交直线,而对于平行线的画法,我们在小学就学过用直尺和三角板画,下面清同学在练习本上完成下面题目(投影显示)

已知直线和外一点,过点画直线

师:请根据语句,自己画出已知图形

学生活动:学生在练习本上画出图形

师:下面请你们按要求画出直线

注意:(1)在推动三角尺时,直尺不要动;

(2)画平行线必须用直尺三角板,不能徒手画

尝试反馈,巩固练习(出示投影)

1画线段,画任意射线,在上取、、三点,使,连结,用三角板画,,分别交于、,量出、、的长(精确到)

2读下列语句,并画图形

(1)点是直线外的一点,直线经过点,且与直线平行

(2)直线、是相交直线,点是直线、外的一点,直线经过点与直线平行与直线相交于

(3)过点画,交的延长线于

学生活动:学生思考并回答,能画,而且只能画一条

师:我们把这个结论叫平行公理,教师板书

【板书】平行公理:经过直线外一点,有且只有一条直线与这条直线平行

学生:思考后,立即回答,能画无数条

师:请同学们在练习本上完成

(出示投影)

已知直线,分别画直线、,使,

学生活动:学生在练习本上完成

师:请同学们观察,直线、能不能相交?

学生活动:观察,回答:不相交,也就是说

师:为什么呢?同桌可以讨论

学生活动:学生积极讨论,各抒己见

学生活动:教师让学生积极发表意见,然后给出正确的引导

师:我们观察图形,如果直线与相交,设交点为,那么会产生什么问题呢?请同学们讨论

学生活动:学生在教师的启发引导下思考、讨论,得出结论

[板书]如果两条直线都和第三条直线平行,那么这两条直线也互相平行

学生活动:学生思考,回答:不对,给出反例图形,

例如:如图1所示,射线与就不相交,也不平行

师:同学们想一想,当我们说两条射线或线段平行时,实际上是什么平行才可以呢?

生:它们所在的直线平行

尝试反馈,巩固练习(投影)

【本文地址:http://www.xuefen.com.cn/zuowen/13273856.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档