四年级乘法的分配律教案(优质12篇)

格式:DOC 上传日期:2023-11-19 08:57:20
四年级乘法的分配律教案(优质12篇)
时间:2023-11-19 08:57:20     小编:文轩

编写教案要注重教学理念的体现,选择适合学生的教材和教具,并根据学生的实际情况进行个性化教学。教案的分享和交流对于教师的成长和教学改进具有重要意义,教师可以通过分享教案获得更多的反馈和建议。最后,祝大家在编写教案的过程中能够有所收获,取得满意的结果。

四年级乘法的分配律教案篇一

教学目标:

1、借助画图的方式理解、掌握乘法分配律并会用字母表示。

2、能够运用乘法分配律进行简便运算。

3、利用几何直观,培养学生观察、归纳、概括等初步的逻辑思维能力。

4、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索,自己得出结论的学习意识。

教学重、难点:

理解并掌握乘法分配律。难点是乘法分配律的推理及运用。

教学过程:

一、情境导入:

二、探究发现,归纳总结。

(一)借助图形,感知模型。

1、引导:想象一下,如果用一幅图来表示题目的意思,这幅图会是什么样的呢?

请把想象的图画出来。交流学生作品后,课件出示。

60米                  30米。

2、你会独立解决吗?(学生尝试解决)说说你是怎么想的?

评价:刚才大家用自己喜欢的方法从不同的角度出色地解决了同一个问题。现在请观察一下:(60+30)×20=1800,60×20+30×20=1800,你有什么发现?师相机板书等号。

(二)借助图形,抽象模型。

1、出示几何图形:用两种方法解决问题。

60米                ( )米。

原面积                 增加的部分      。

2、交流:你想增加几米?怎样算?结论是什么?

师相机板书。

引导:孩子们,现在黑板上有那么多算式,你是否能结合图2来说一说它们有什么共同的特点?先同桌互说。再集体交流。

3、出示图3,要求:先把自己猜测的数据填入下面的面积模型中,然后对自己的猜测进行计算、验证、自主完成任务单项2。

(  )米               (  )米。

原面积            增加的部分。

4、交流:你是怎么猜测和验证的?结论是什么?

讨论:这个规律在数学上叫——?(板书课题——乘法分配律)。

(三)借助图形,逆用模型。

1、出示计算题:

(50+6)×25、8×(25+125)、102×45学生独立计算,汇报反馈交流。

引导学生展开想象,看着这些算式,结合刚才长方形的面积模型,你想到了什么?

2、46×25+54×25、98×20+98×80。

请闭上眼睛想象一下两个长方形拼成一个大正方形的过程,教师大屏幕演示。

(四)借助图形,拓展模型。

你们能解决这个问题吗?试着算一算。

反馈交流:说说你们是怎么解决的?

我们可以把所求问题想象成是两个长方形,沿着宽重合,然后求出多余的部分就可以了。大屏幕演示。

谁能用字母来表示这个新规律呢?

师板书:(a-b)×c=a×c-b×c。

三、科学练习:

董笑。

四年级乘法的分配律教案篇二

理解并掌握乘法分配律——发现问题、提出假设、举例验证、探索出乘法分配律。

乘法分配律的推理及应用。

一、发现问题。

1.出示情境图,让学生估计墙面上贴了多少块瓷砖。

2.用不同方法验证结果。让学生用不同方法计算,并引导讨论为什么方法不同结果却一样,这其中是否蕴含着某些规律。

二、提出假设、举例验证、建立模型。

1、根据上题的规律提出假设。

2、验证提出的假设是否适合其它数据。

观察上题算式的特点,小组内举一些数据来验证,可借助计算器,用一些较大的数据验证。

全班交流,并用字母表示分配律。

1、试一试。

让学生尝试用乘法分配律解决运算中的简算问题。然后进行交流,概括出简算的方法。

(10+7)×6=____×6+_____×6。

8×(125+9)=8×_____+8×_____。

7×48+7×52=______×(_____+_______)。

2、练一练:

进一步尝试用用乘法分配律解决运算中的简算问题。

板书设计:

6×9+4×9=9040×25+4×25=1100。

(6+4)×9=90(40+4)×25=1100。

乘法分配律:(a+b)×c=a×c+b×c。

四年级乘法的分配律教案篇三

探索乘法分配律,应用乘法结合律进行简便运算。(课文第45页的内容,及第46页的“试一试”,“练一练”等)。

重点:指导学生探索乘法的分配律。

关键:指导观察分析算式的特征。

通过探索乘法分配律中的活动,使学生进一步体验探索规律的过程。

使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

实物投影仪或挂图(课文插图)。

教师:同学们,通过探索活动我们已经发现了一些数学规律,并应用如乘法结合律等解决问题。这一节课,我们再一起去探索,看看我们又会发现什么规律。

今天,又有什么发现呢?让我们一起走上探索之路。

呈现课文插图(实物投影或挂图)。

教师:一共贴了多少块瓷砖?你怎么算?

先让学生独立思考,然后在小组中交流,让每一个学生都在小组中说一说是怎么想的。

反馈交流情况。

由小组派代表汇报交流结果(有选择地板书)。

学生a:6x9+4x9=54+36=90(块)。

学生b:(6+4)x9=10x9=90(块)。

要求学生结合插图说明算式的意义。

指导学生结合观察算式的特点。

让学生根据算式特征,再举一些类似的例子。

如:(40+4)x25和40x25+4x25。

42x64+42x36和42x(64+36)。

交流学生的举例是否符合要求:

交流不同算式的共同特点;

还有什么发现?(简便计算)。

教师:如果用a、b、c分别表示三个数,你能写出你的发现吗?

学生先独立完成,然后小组交流。最后教师板书。

(a+b)xc=axc+bxc。

应用规律,解决问题。

课文第46页的“试一试”。

1、(80+4)x25。

呈现题目。

指导观察算式特点,看是否符合要求,能否应用乘法分配律计算简便。

鼓励学生独自计算。

2、34x72+34x28。

呈现题目。

指导观察算式特点,看是否符合要求。

简便计算过程,并得出结果。

课文第46页的“练一练”。

第2题,注意指导一些算式的`计算方法。

38x29+38应该把算式看作:38x29+38x1。

第3题,这是一道解决实际问题的练习,在计算中可以应用乘法的分配律使计算简便。

第一个问题“一共有多少瓶?”可以直接扳书让学生进行练习,然后进行交流。

第二个问题“付1500元够吗?”学生可以算出这些饮料的总价,然后与1500元进行比较,可以用估算的方法。

2、选用课时作业设计。

乘法结合律。

3x(5x4)=6015x25x4=1500。

(3x5)x4=6015x(25x4)=1500。

乘法结合律:(axb)xc=ax(bxc)。

教学挂图。

四年级乘法的分配律教案篇四

评价:刚才大家用自己喜欢的方法从不同的角度出色地解决了同一个问题。现在请观察一下:(60+30)×20=1800,60×20+30×20=1800,你有什么发现?师相机板书等号。

(二)借助图形,抽象模型。

1、出示几何图形:用两种方法解决问题。

60米()米。

四年级乘法的分配律教案篇五

教学内容:

教学目标:

1、使学生理解并掌握乘法分配律,并会用字母表示。

2、能够运用乘法的分配律进行简便计算。

3、培养学生观察发现、猜想、举例验证,得出结论等初步的逻辑思维能力。

4、培养学生独立自主、主动探索、自己得出结论的学习意识。

教学重点:

教学难点:

教学准备:

多媒体,题单。

教学过程:

一、创设情境,调动参与。

师:以往上课只有老师和同学们,今天还有谁来了?

生:爸爸妈妈。

师:爱爸爸妈妈吗?

生:爱。

师:把这一句话,分成两句话,怎么说。(我爱爸爸和妈妈)。

生:我爱爸爸,我爱妈妈。

师:能把下面两句话合成一句话吗?(我喜欢语文课,我喜欢数学课。)。

师:中国语言真神奇,同样的意思,可以一句话来说,也可以两句话来说。而在数学中,也有类似的思考方法。今天,就让我们一起走进探索与发现(三)。

二、新授,根据两种计算方法探索形成等式。

1、出示例1,学生独立计算,然后上台板演两种不同的方法。

(市场上的苹果每千克8元,罗老师先买了6千克,又买了4千克,罗老师一共花了多少钱?)。

2、读每种方法的算式,说一说每一步在算什么。

3、口答。

4、算式答案一样,用等号连接,写成一个等式。

5、生读一读等式。

6、观察这个等式,从等式中你发现了什么?

7、出示例2。这个组合图形的面积是多少平方厘米?(a长方形:长7厘米,宽5厘米;b长方形:长3厘米,宽5厘米。)。

默读题目,用两种方法计算。

8、展示学生的算法。

第一个算式每一步分别在算什么?

第二个算式每一步分别在算什么?

这两个算式都在算组合图形的面积。答案相同,这两个算式也可以写成一个等式,((7+3)x5=7x5+3x5)。

三、观察等式,发现规律。

1、师:下面,请大家带着这两个问题,仔细观察这两个等式。(“观察发现”)。

1、等号左右两边算式有什么相同的地方?有什么不同的地方?

2、你能从乘法的意义来说明左边和右边的算式结果为什么会相等吗?

2、先独立思考,然后和四人小组的同学交流你的想法。

3、汇报。

(1)数字相同,符号相同。运算顺序不同。(运算顺序是怎样的不同)。

(2)第一个等式的左边和右边都表示10个8相加是多少,第二个等式的左边和右边都表示10个5相加是多少,所以结果相同。

4、根据这些特点,你有什么发现。

生汇报自己的想法。

师:我听明白了,大家发现了这个规律:两个数的和乘一个数,等于把这两个加数分别乘这个数,再把积相加。是这个意思吧?这只是我们的猜想。(“猜想”)。

你能举出一些有这样规律的例子吗?(“举例”)。

5、你们在草稿本上举个例子来试试,为了方便计算和节约时间,大家可以选择小一点的数字。

6、学生汇报。

生口答,师板书学生的两个例子。

还能举出其他的例子吗?(能)刚才我们用举例的方法验证了这个猜想,在举例的过程中有没有发现结果不一样的例子。(没有)。

看来这个规律是普遍存在的,在数学上,我们把这个规律叫做乘法分配律。(板书)(“得出结论”)。

刚才我们举了很多有这个规律的例子,这样的例子能举完吗?(不能)加上省略号。

四、得出结论,揭示课题。

用字母表示。

学生口答:(a+b)xc=axc+bxc。

这个等式反过来也成立。学生从左往右读一次,再从右往左读一次。

师:a和b都与哪个数相乘了?(c),c就是a和b共同的乘数。

五、运用。

1、判断下面各题。

(25+8)x4=25x4+8x4。

(10+5)x18=10x18+5。

6x(a+b)=6xa+axb。

生口答,错在哪儿?

课件出示:(10+7)x6=()x6+()x6。

8x(125+9)=8x()+8x()。

7x48+7x52=()x(+)。

学生口答,1、2题学生直接做判断。3题追问,48和52都同(7)相乘了,那么(7)就是48和52共同的乘数。

3、计算。

出示练习题:(40+4)x2534x72+34x28。

第一题:展示两种算法。比较算法,用乘法分配律,可以使计算更简便。

第二题:展示算法。

小结:运用乘法分配律,可以使一些计算更简便。以后再遇到这样的题目时,我们就要先思考,是直接按题目的运算顺序算呢,还是可以用简便方法来算。

六、课堂小结。

师:通过今天的学习,大家有收获吗?你学到了什么?还有其他的收获吗?

生谈谈自己的收获。

师:是的,今天我们学习了乘法分配律,利用这个规律,可以使一些计算变得更简便。在学习乘法分配律时,我们的学习方法是:先观察发现,然后猜想,再举例验证,最后得出结论。学习数学知识,可以使我们的学习和生活变得更简单。

七、回归课本,翻书阅读,完成课堂作业。

四年级乘法的分配律教案篇六

乘法分配律是北师大版小学数学四年级的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。

学生基础较差、有的学生学习习惯不好,所以在设计教学过程时,我注意做到面向全体学生,尽量关注每个学生的发展。在前面教学中发现学生对于用字母表示规律的掌握是比较牢固的,而对于一些有规律的数字也只是进行简单的'竖式计算,没有发现有些数字相乘之后积的特点,没有发现简算的意义。因此,要让学生在计算中体会出简算的必要和方便,让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力方面得到进步和发展。

知识与能力:

1、在探索的过程中,发现乘法分配律,并能用字母表示。

过程与方法:

1、通过探索乘法分配律的活动,进一步体验探索规律的过程。

2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

情感、态度与价值观:

1、在这些学习活动中,使学生感受到他们的身边处处有数学。

2、增加学生之间的了解、同时体会到小伙伴合作的重要。

3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。

四年级乘法的分配律教案篇七

乘法分配律是人教版小学数学四年级下册的教学内容,本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课的难点。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。

学生在前面学习了加法和乘法的交换律、结合律,以及应用这些运算律进行简便计算,已经初步具备探索和发现运算定律并运用运算律进行简便计算的经验,为学习新知识奠定了基础。同时新知识学生在已经学习的知识中也有所体现,只是没有揭示这个规律罢了,比如学生在计算长方形的周长时,周长=长×2+宽×2,周长=(长+宽)×2。从平时我班学生的表现来看,他们的概括、归纳能力还是一个薄弱的环节。

1、通过探索乘法分配律的活动,进一步体验探索规律的过程,并能用字母表示。

2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

通过讲学练相结合,设计相应的练习题,逐步理解抽象的乘法分配律。

激趣导入。

(约3分钟)。

一、创设情境,提出问题:

2、学生思考:(1)有几种搭配方案。

(2)选择你喜欢的一种方案,并算出总价。

(学生自己选择方案并在练习本上完成。师强调:是买4套衣服)。

自主学习。

(约7分钟)。

(一)组内研讨,确定方案。

1、组内研讨:

(1)一共有几种搭配方案?

(2)介绍自己的方案,并说一说,你推荐的理由。

(3)说说你推荐的方案,需要花多少钱?你是怎么算的'?

合作交流。

(约10分钟)。

2、汇报交流:

师:哪一个同学想先来给老师推荐他的方案?

师:要想求4套这样的衣服需要多少元?可以先求什么,再求什么?

分别列式解答。

师:因为总价相等,这两个算式我们可以用什么符号把它们连接起来?(学生回答后,师在两个算式中间用等号连接)。

师:这个等式怎么读呢?

生尝试读等式。

(预设学生读法:a.225加上75的和乘4等于乘225乘4加75乘4。

b.225加上75的和乘4等于225和75分别与4相乘的积再相加。)。

3、研究其它方案。

由学生依次汇报出其余3种不同的搭配方案,并引导说出是怎么想的。计算后分别加上等号。

教师板书:

一套×4=4件上衣+4条裤子。

(225+75)×4=225×4+75×4。

(225+125)×4=225×4+125×4。

(175+75)×4=175×4+75×4。

(175+125)×4=175×4+125×4。

精讲点拨。

(约8分钟)。

(二)、观察比较、猜测验证。

1、观察比较。

2、提出猜想。

师:观察上面的等式,左右两边的算式什么变了什么没变?

你们有什么发现?

3、举例验证。

让学生再举出一些这样的例子进行验证,看看是否也有这样的规律?

学生汇报,教师根据汇报板书。

(三)、总结规律,概括模型。

1、总结规律:

师:刚才同学们发现了数学中的一个规律,很了不起。大家知道这是什么规律吗?(生猜测)。

师:这个规律就是我们今天学习的乘法分配律。(齐读)你能说一说什么叫乘法分配律吗?

2、用字母表示:

测评总结(约12分钟)。

三、巩固应用,训练提升。

(12+40)×3=()×3+()×3。

15×(40+8)=15×()+15×()。

78×20+22×20=(+)×20。

66×28+66×32+66×40=(++)×40。

教师结合学生回答,介绍前两道为乘法分配律的正向应用,后三道属于乘法分配律的反向应用。

2、火眼金睛辨对错。

56×(19+28)=56×19+56×28。

(18+15)×26=18×15+26×15。

(11×25)×4=11×4+25×4。

(45-5)×14=45×14-5×14。

强调:两个数的差与一个数相乘,也可以把它们分别与这个数相乘,再相减。

(40+4)×2539×8+39×6-4×39。

4、拓展提高。

86×101。

四、说一说,今天我们研究了什么?你有什么收获。

板书设计。

一套×4=4件上衣+4条裤子。

(225+75)×4=225×4+75×4。

(225+125)×4=225×4+125×4。

(175+75)×4=175×4+75×4。

(175+125)×4=175×4+125×4。

乘法分配律:两个数的和与一个数相乘,可以用这两个数分别和这个数相乘,再相加。

将本文的word文档下载到电脑,方便收藏和打印。

四年级乘法的分配律教案篇八

1、使学生在解决问题的过程中发现并理解乘法分配律,初步体会应用乘法分配律可以使一些计算简便。

2、使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

3、使学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

一、创设情境,谈话导入。

谈话:同学们,我们学校有5个同学就要去参加“无锡市少儿书法大赛”了,书法组的张老师准备为他们每人买一套漂亮的服装,我们一起去看看好吗?(课件出示例题情境图)。

二、自主探究,合作交流。

1、交流算法,初步感知。

提问:从图中你获得了哪些信息?

再问:买5件上衣和5条裤子,一共要付多少元呢?你能解决这样的问题吗?请同学们在自己的本子上列出算式,再算一算。

反馈:你是怎样解决这一问题的?为什么这样列式?

组织学生交流自己的解题方法,再分别说说两个算式的意义。根据学生回答,教师利用课件演示,帮助解释。

学生在自己的本子上写,教师板书,让学生读一读。

谈话:刚才我们算的买5件夹克衫和5条裤子,一共要付多少元?如果张老师不这样选择,还可以怎样选择?(买5件短袖衫和5条裤子)。

提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?

根据学生回答,列出算式:32×5+45×5和(32+45)×5。

再问:这两个算式有什么关系?可以用什么符号把它们连接起来?

启发:比较这两个等式,它们有什么相同的地方?

2、深入体验,丰富感知。

要求:你能写出一些这样的等式吗?先试一试,再算一算你写出的等式两边是不是相等。

学生举例并组织交流。

3、揭示规律。

提问:像这样的等式,写得完吗?

谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)。

三、实践运用,巩固内化。

1、“想想做做”第1题。

谈话:下面我们利用乘法分配律解决一些简单的问题。

出示“想想做做”第1题,让学生在书上填一填。

学生完成后,用课件反馈。

2、“想想做做”第2题。

你能运用今天所学的知识解决下面的问题吗?课件出示题目,指名口答。

回答第2小题时,让学生说一说理由。

3、“想想做做”第3题。(略)。

四、梳理知识,反思总结。

提问:今天这节课,你有什么收获?有什么感受想对大家说?

五、布置作业。

“想想做做”第4、5题。

四年级乘法的分配律教案篇九

教材分析:

乘法分配律是北师大版小学数学四年级上册第三单元最后一节的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元教学的一个重点,也是本单元内容的难点,教材是按照发现问题--提出假设--举例验证--归纳结论等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。

2.在此基础上,我并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会:“请你再举出一些符合自己心中规律的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。

3.本节课有一定的亮点,但其中出现了不少问题:学生参与的积极性没有预想中那么高。可能与我相对缺乏激励性语言有关。也有可能今天的题材学生不太感兴趣。

乘法分配律是第三单元的一个难点。在理解、掌握和运用上都有一定难度。因此如何上好这一课,让学生真正地理解乘法分配律,并在理解的基础上运用好它?我觉得要注重形式上的认识,更要注重意义上的理解。因为单从形式上去记住乘法分配律是有局限性的,以后在运用乘法分配律的时候,遇到一些变式如:99×24+24会变得难以解决。注重意义的理解,能让学生从更高的层面上去理解乘法分配律,那么将来无论形式上怎么变化,学生都能轻松运用乘法分配律。

北师大版的教材注重学生的探索活动,在探索中让学生自己去发现的规律,才能让他们真正地理解。本课是“探索与发现”的第三节课了,学生已经有了一定的探索能力。因此本课的设计完全围绕着学生的自主活动在进行。

总体上我的教学思路是由具体——抽象——具体。在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在学习中大胆放手,把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去发现规律,验证规律,表示规律,归纳规律,应用规律。

在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还不够,因此在归纳乘法分配律的内容时,学生难以完整地总结出乘法分配律,另外还有部分学困生对乘法分配律不太理解,运用时问题较多等。

四年级乘法的分配律教案篇十

乘法分配律教学是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上进行的。它是学生较难理解与叙述的定律。因此我在教学中让学生在不断的感悟、体验、练习中理解乘法分配律,从而达到熟练掌握的效果。

一、从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。

二、在本课教学过程的设计上,我尽量想体现新课标的一些理念,注重从实际出发,把数学知识和实际生活紧密联系起来,让学生在体验中学到知识。举例:设计学校买书的情景。让学生帮助出主意。出示:“一套故事书45元,一套科技书35元,各买3套书。一共需要多少元钱?”让学生尝试通过不同的方法得出:(45+35)×3=80×3=240(元)、45×3+35×3=135+105=240(元)。此时,让学生观察通过计算方法得到了相同的结果,这两个算式可用“=”连接。使之让学生从中感受了乘法分配律的模型。从而引出乘法分配律的概念:“两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。”用字母形式表示:(a+b)×c=a×c+b×c.

本节课气氛活跃,学生积极性高。可通过练习发现孩子们掌握得并不如意,在下节课我将继续加强练习。

四年级乘法的分配律教案篇十一

感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。教学重点:乘法分配律的意义和应用。

多媒体课件。

一、复习引入。

前几节我们学习的乘法交换律、结合律及应用它们可以使一些计算简便。

什么是乘法的交换律和结合律?

今天这节课我们再来学习乘法的另一个运算定律。

二、新课探究。

出示主题图:还记得我们提出的第三个问题吗?

参加植树的一共有多少人?

1、你怎样解决这个问题?列式计算。

2、汇报:

第一种算法:先算每个小组里有多少人?

(4+2)×25。

=6×25。

=150(人)。

第二种算法:先分别算出负责挖坑、种树的人数和负责抬水、浇树的人数。

4×25+2×25。

=100+50。

=150(人)。

3、观察这两个算是有什么特点?

4、讨论,你得到什么结论?

5、汇报:两个数的和于一个数相乘,可以先把它们与这个数分别相乘再相加。

7、用字母怎样表示这个规律?

三、巩固练习。

1、p27做一做。

2、拓展:乘法分配律是否也适用于减法?

验证:18x5-5x8(18-8)x5。

结论:适用【2】教材分析:本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的重要基础,对提高学生的计算能力有着举足轻重的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。

学情分析:学生具有很好的自主探究、团队合作、与人交流的习惯,在学习了乘法交换律和乘法结合律知识后,掌握了一些算式的规律,有了一些探究规律的方法和经验,只要教师注意指导和点拨,就一定会获得很好的教学效果。

教学目标:

知识与能力:。

1、在探索的过程中,发现乘法分配律,并能用字母表示。

过程与方法:。

1、通过探索乘法分配律的活动,进一步体验探索规律的过程。

2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

情感、态度与价值观:。

在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。

教学重点和难点:

教学重点:理解并掌握乘法分配律,发现问题、提出假设、举例验证、探索出乘法分配律。

教学过程:

一、复习引入,质疑猜想。

1、出示口算题:

师:前段时间,我们发现了四则运算中的加法交换律、乘法交换律、加法结合律和乘法结合律,我们知道利用这些运算定律可以使一些计算更简便。下面各题看谁算得又对又快。

358+25+7572+493+2825×19×4。

12×125×8168×5×214×2=。

交流:你是怎样想的?

2、分组计算比赛。

师:下面我们再来一场分组计算比赛,好不好?

出示:脱式计算。

第二组题目:45×12+55×1234×72+34×28。

第一、三组:(45+55)×12(72+28)×34。

师:你们觉得这场比赛公平吗?仔细观察两组算式,大家有什么发现?两个算式的结果是相等的,结果为什么相等呢?接下来,我们一起去进一步探究。

二、探究新知,验证猜想。

1、出示:用两种方法计算这两个长方形中一共有多少个小方格?

8×4+5×4(8+5)×4。

思考:为什么两个算式的结果相同呢?

左边算式表示8个4加5个4,(一共13个4),右边也是求13个4,所以结果相等。

2、出示:淘气打一份稿件,平均每分钟打字178个,他先打了6分钟,后又打了4分钟完成这份稿件。

(1)请提一个数学问题(淘气一共打了多少个字?)。

(2)用两种方法解答问题。

(3)思考:为什么两次计算的结果相同呢?

3、师:仔细观察,像上面这样的等式,你能再列出一组吗?在自己练习本上列一列,算一算,验证一下。这样的等式列得完吗?用a、b、c代表三个数,你能写出上面发现的规律吗?(a+b)×c=a×c+b×c大家发现的这个规律其实就是乘法分配律(板书课题)。

能用自己的话说说什么叫乘法分配律吗?(两个加数的和与一个数相乘就等于把两个加数分别与这个数相乘,然后把乘积相加)。

想一想:这里的分配,表示什么意思?(表示分别配对的意思。)。

师:这道等式反过来写,依然成立吗?

三、巩固新知,应用定律。

1、填一填:

4×(25+8)=__×___+___×__。

38×37+62×37=___×(___+___)。

502×19+11×502=___×(___+___)。

48×99+48×1=___×(___+___)。

a×b+a×c=___×(___+___)。

2、判断对错:

8×(125+9)=8×125+9()。

27×8+73×8=27+73×8()。

(12+6)×5=(12×5)×(6×5)()。

(25+9)×4=25×4+9×4()。

3、试一试。

(1)观察(40+4)×25的特点并计算。

(2)观察34×72+34×28的特点并计算。

4、分组计算比赛。

85×16+15×16(40+8)×25。

四、总结全课。

今天,我们又发现了什么?

五、课外思考。

其实,乘法分配律我们并不陌生,大家想一想,以前在什么时候我们用过乘法分配律?

四年级乘法的分配律教案篇十二

乘法分配律是继乘法交换律、乘法结合律之后的新的运算定律,在算术理论中又叫乘法对加法的分配性质,由于它不同于乘法交换律和结合律是单一的运算。从某种程度上来说,其抽象程度要高一些,因此,对学生而言,难度偏大,是计算的一个难点。因为它不仅仅是的乘法运算,还涉及到加法运算。这节课刘老师教学目标定位准确,没有把目标定位局限于探索理解乘法分配律,而是又引导学生应用乘法分配律进行了简便计算,通过学生与学生之间的互相启发与补充,老师的及时点拨,实现对“乘法分配律”这一运算定律的主动建构。整节课的学习氛围轻松愉悦、学生思维活跃、教学效果非常好。基本完成教学任务。

刘老师对本课的教学设计很科学,思路清晰,发现问题--观察比较--举例验证--归纳规律--运用规律,让学生经历了从具体到抽象,再由抽象到具体的知识推理方法,这节课不仅教会了乘法分配律,更教会了学生一种数学思想和数学方法,这也正是新课标强调的对学生其中两基培养的体现。

一共25个小组参加植树活动,每组里8人负责挖坑和种树,4人负责抬水和浇树。重组教材,改变每组的人数,由(4+2)个25,变为(8+6)个25更能凸显出应用乘法分配律后带来的方便,也为乘法分配律的应用打下伏笔和基础。并且把“挖坑、种树”“抬水、浇树”更改为“挖坑和种树”“抬水和浇树”减少了文字对学生理解带来的困难。

通过引入解决问题让学生得到两个算式。先捉其意义,再突显其表现的形式。

借助对同一实际问题的不同解决方法让学生体会乘法分配律的合理性。这是生活中遇到过的,学生能够理解两个算式表达的意思,也能顺利地解决两个算式相等的问题。

让学生亲历规律探索形成过程。对于探索简洁分配律的过程价值,丝毫不低于知识的掌握价值。既然是“规律定律”,就是让学生亲历规律形成的科学过程设计中,不着痕迹的让学生不断观察、比较、猜想、验证,从而概括出乘法分配律,在探索、归纳过程中,渗透着从特殊到一般,又由一般到特殊的数学思想和方法。

相对于乘法运算中的其他规律而言,乘法分配律的结构是最复杂的,等式变

学生主动去设计、解决,调动学生的积极性。让学生根据自己的想法,选择自己喜欢的方案,开放给学生,发挥学生的主体性,通过去发现、猜想、质疑、感悟、调整、验证、完善,验证其内在的规律,从而概括出乘法分配律。让学生能自由地利用自己的知识经验、思维方式去尝试解决问题,在探究这一系列的等式有什么共同点的活动中。

在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。

当然,对乘法分配律的意义还需做到更式形结合解释,那就更有利于模型的建立。

建议:在教学中不仅要注意乘法分配律的外形结构,更要注重其内涵。如两个算式为什么会相等?缺乏从乘法意义的角度进行理解。在理解这一概念时,尤其要抓住关键词“分别”加以分析,以此深化对数学模型的理解。否则,象38×99+38这样的形式,就会成为学生练习中的拦路虎。

【本文地址:http://www.xuefen.com.cn/zuowen/13255509.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档