数学建模课程论文(精选15篇)

格式:DOC 上传日期:2023-11-19 06:55:06
数学建模课程论文(精选15篇)
时间:2023-11-19 06:55:06     小编:飞雪

每个人都需要时不时地对自己的表现进行总结和概括,以了解自己的成长和进步。写总结时,要注意用词准确、语言简练,尽量避免冗长的描述。以下是小编为大家整理的一些总结案例,供大家参考和借鉴。

数学建模课程论文篇一

[摘要]随着国家经济建设的突飞猛进,我国的高等职业艺术院校也得到了蓬勃发展。无论是综合大学,还是传统的艺术院校都对设计专业关怀备至。每年成千上万的设计专业毕业生走向社会,大多被政府部门和企事业单位聘用。而另一方面,传统的教育体制则偏重于数量,忽视了教育质量,同时认为平面设计只是手工劳作,忽略了平面设计的创造性和创新性。本文就现代高等职业艺术学院的平面设计专业存在的教学问题进行了分析并提出相应的改进建议和措施。

[关键词]高等职业艺术学院平面设计现状措施。

高职教育已走向快速发展的道路,高职教育在学习内容上具有“专业化程度较高,职业定向性很强”、“实践知识丰富,动手能力很强”等特点。高职学生的特长在于较强的职业技能,平面设计是一门动手能力很强的课程,随着社会不断发展,平面设计受到更多的关注。

一、平面设计教育的现状。

平面设计教育作为高职类及师范类毕业生综合素质的一个方面,在开设目的、开设时间、开设条件、开设课程上有很大的局限性。另一方面,扩招以后的生源素质大大降低,学生进校的专业水平相对较低,有的甚至没有基本的造型能力。学生学习宽泛基础课程,因为平均课时量少,都没能较深入地学习,使得学生没有较为突出的专业方向,较全面的综合能力更无从谈起,离师范类毕业生的“一专多能”的培养目标相去甚远。

根据对现在的从业设计师的比例调查,平面设计师的数量达到了所有种类设计师的52.44%。中国在商品经济空前发展的今天,平面设计行业起步较晚,起点较低。社会急需大量的平面设计人才,这样巨大的从业空间一方面给我们的平面设计教育提供了良好的大环境,也给建立平面设计专业提供了可行性支持。艺术院校重艺术轻技能,理工院校重技能轻艺术,这两种平面设计的人才观都略有偏颇。如何才能在重技能和重艺术之间找到一个合理的平衡点是现在许多专家考虑的问题。

二、高职平面设计教学存在的问题。

直至1998年,国家教育部才正式将艺术平面设计教育归入艺术设计专业学科,仅在艺术院校和普通高校开设相应的专业课程。在高等职业技术院校中,艺术平面设计教育起步较晚,在这样的背景和传统教学观念的制约下,高等职业艺术平面设计课程还存在着以下一些问题。

1.落后的教学方法。传统观念认为“学习”就是“死记”。在这种思想的影响下,形成了满堂灌的教学方法。学生失去了思维和行为的主动性,创新意识也被抑制了。而平面设计需要创新,只有注入新观念、新想法,才能设计出新的东西来。

2.被动的学习态度。学生虽然系列地修完了各专业基础课,但并不等于已具备了全面、准确地理解和掌握这门课程所涉及的专业知识结构,并将其融会贯通到设计实践中。学生在学习习近平面设计课程时,只仅仅把它当作一门必修课来完成,大部分同学只是想考试及格,拿到学位即可。高职学生被动的学习态度严重影响平面设计的教学效果。

3.泛滥的电脑设计。计算机特技是电脑软件中最引人注目的部分之一,合理地利用它能产生传统方法无法达到的奇特效果。但是大家不假思索,不加控制地利用就会泛滥。

4.较差的动手能力。由于课时少、教学任务重的原因,往往忽视学生动手能力和实践能力的培养。结果学生只是学到了一些死知识,而很少有机会进行设计训练。其实平面设计这门课程完全是一门试验课程,老师在讲解要点的同时,不能忽视学生动手能力的培养。

高职平面设计教学存在着不少问题,如何解决这些问题,提高教学效果成为平面设计课程教学教师需要考虑的首要问题。我以为应该从以下方面进行尝试:

1.制定详细的教学大纲。高职课程的教学大纲应以课程目标为依据,根据理论知识必须、够用,并在进行教学分析的基础上确定。通过课程的学习使学生能做到掌握软件的操作要点,掌握知识结构框架,理解各章节的重点和难点。

2.强调积累和实践。艺术平面设计不能忽视学生平时的实践经验积累。长期处在封闭的训练中,学生不了解社会、企业的发展状况,不能及时根据社会企业需要调整自己的知识结构。可利用课余时间,采用多种途径,使学生得到锻炼,吸取经验,达到提高实践能力的目的。可组织学生参加平面设计、动画设计、板报设计大赛,进一步培养学生的实践能力。

3.激发学生的学习情趣。让学生明白学好平面设计课程对学生将来的`发展的重要性,在课堂教学中还可以适当举例说明其重要性,让学生从心理上重视该门课程。在教学过程中,枯燥的讲述必然导致学生对该门课程索然无味,应该结合案例教学,加上幽默风趣的讲解,让学生在轻松的课堂气氛中学习难以掌握的知识。要让学生在平时的练习中将书本知识转化为作品,以激发学生的学习兴趣。

4.树立现代设计观念。观念决定一切,用什么观念指导办学和学习,就会产生什么样的效益和质量。因此,作为艺术设计专业的学生,从一踏进美术系的大门,就应该牢固地树立设计意识,明确自己的专业目标,以现代设计意识来统帅学习期间的全部过程,明确每门课程要解决的问题及它在专业教学中的地位和作用,增强学习的主动性、积极性和参与意识。

5.注重学生个性化的培养。设计的本质是创造,设计创造源于设计师的创造性思维。个性化是设计师对平面设计个性差异的独到见解。平面设计教学应通注重培养学生设计创意个性化的表达,倡导设计风格,挖掘个人与众不同的创造性思维,使设计具有鲜明、独特的个性表达和强烈的视觉冲击力。在教学中,教师要鼓励学生大胆想象,培养学生个性化思维,只有这样培养出来的学生才具有个性,才具有创新力。

四、思考与总结。

虽然平面设计越来越受关注,但是目前我国的高等职业艺术学院的艺术设计教育才刚刚起步,我认为不能照搬照套外国的教育模式。以往平面设计教学普遍存在着以知识为本位、教师为中心和以传授、灌输为主要特征的课堂教学模式。这样的课堂教学模式,阻碍着创新人才和技能型应用人才的培养。这就意味着教师应当在教学过程中,采用全新的教学模式,因而必然要对传统的教学理论、教学观念提出挑战。所谓“教学相长”,正是在师生双方相互交流、相互沟通、相互理解、相互启发、相互补充的过程中,逐步达到教师与学生,分享彼此的思想、交流彼此的情感、设计的观念与理念,从而达到共识、共享的效果。

参考文献:

[1]张葳,李海冰.艺术理论课在设计教育的重要性[j].包装与设计,2005,(12).

[2]陈基才.现代高等职业艺术平面设计教育的二元制[j].2004,(3).

[3]彭建祥.创建具有特色的艺术设计教育体系探讨[j].2006,(6).

[4]华勇.论高校艺术设计教育如何适应市场[j].2006,(8).。

[5]尹定邦.设计学概论[m].湖南科学技术出版社.2002.。

[7]秋蕾.对平面设计课程教学的几点思考[m].陕西教育出版社.

数学建模课程论文篇二

数学建模就是用数学语言描述客观系统的过程.根据参加数学建模竞赛和授课经验,本文分析了数学建模课程与当代大学教育之间的关系.根据当代大学特点,给出了数学建模的'授课方法以及具体的实施方法.本文将数学建模活动划分为三个阶段,经过逐个阶段的教学,学生可以学会如何对模型进行数学形式的刻画和构造,并且提高学生的应用能力、创新能力及科研论文的写作能力.

作者:刘建国陈兴文作者单位:刘建国(上海理工大学复杂系统研究中心,上海,93)。

陈兴文(大连民族学院教务处,辽宁,大连,116600)。

刊名:中国科技博览英文刊名:zhongguobaozhuangkejibolan年,卷(期):“”(1)分类号:u01关键词:数学建模创新案例教学大学教育

数学建模课程论文篇三

摘要:思想道德修养与法律基础课程是高校思想政治理论课程的主要组成部分,也是高校思想政治教育体系的主要渠道和主要阵地,思想道德修养与法律基础课程主要对大学生在思想道德观以及法律基础知识上起到塑造与完善的重要作用。

关键词:互联网;思想道德修养与法律基础;体验式教学;策略。

一、引言。

思想道德修养与法律基础课程对大学生高尚人格的形成、大学生社会责任感的增强、大学生法律意识的形成具有重要的作用,该课程也是高校思想政治理论课的重要课程,显示出国家对培养人才的重视,以及高校在培养人才上的重视程度。随着素质教育的推进,以及国家对培养全面发展人才的要求,高校在教学方法以及教学内容上面进行了大刀阔斧的改革,然而效果并不明显。尤其是思想政治理论教学方法的好坏直接关系到教学质量的高低,也直接影响到思想政治理论学生的塑造与影响。在发达的互联网时代,传统与单一的灌输式教学方法,已经不能适应时代的要求,高校思想政治理论课程在教学方法方面的改革显得尤为迫切。

二是,互联网上丰富的内容给思想政治理论课程带来了挑战,原有的教学内容显得捉襟见肘,互联网上多元化的信息资源,更能够激发起学生的学习兴趣;三是以互联网为载体的信息传递方式给传统的教学带来了极大的挑战,传统的老师讲、学生听的授课方式已经完全不能够适应互联网时代学生发展的需求,教师应该开展多元化、多种方式的教学来感染学生、激发学生的兴趣。体验式教学是一种能够让学生参与课堂,并且尊重学生的主体地位,让学生产生兴趣的情感,学生进行情感共鸣,他能够积极调动学生在道德情感以及道德行为上的塑造。

因此,体验式教学是实现学生知行统一的有效渠道,它也可以增强学生之间的合作学习以及情感互动,对高校思想政治课程教学改革、提高教学效果具有重要的作用,也是当前高校思想道德修养与法律基础课程应对互联网对该课程提出挑战的主要解决办法。

二、网络对思想道德与法律基础课程产生的影响。

三是互联网的出现,使得思想道德修养与法律基础课程教学更加凸显了学生的地位。网络的出现,使得教育主体与客体之间的地位趋向平等,从而突出了学生的主体地位。比如,在互联网上进行信息的共享,可以自由平等的获取,学生可以拥有主动权,教师不再是权威者,而与学生的地位趋向于平等。同时,网络互动性的特点,更加容易激发学生的学习欲望,为大学生进行自我教育,自我塑造自我学习,提供了更加开阔的空间与平台,教师的地位从讲授转换到了引导。

然而,互联网的出现也对思想道德修养与法律基础课程的教学产生了一定的负面影响,主要有以下几个方面:

一是大学生过于依赖网络。据调查,我国大学生是互联网使用的主体,这给高校思想道德修养与法律基础课程的教学提出了极大的挑战,学生可以通过互联网了解各种事情和信息,而教师的讲授则难以起到太大的知识传递的作用。但是,网络上的信息不仅有积极向上的,还有消极扭曲的,如果大学生长期沉迷于网络,则很容易将一些鱼龙混杂的信息深入自己的道德观念中,这不仅会削弱大学生对道德思考的问题,还会给大学生的人格形成带来阻碍,很容易让大学生对自身现实生活与网络的虚拟性形成混淆,充满误解,从而形成不健康的人生观与价值观。

二是互联网环境下高校思想道德修养与法律基础课程的.教师缺乏对学生进行积极的引导。主要是由于部分教师对于互联网以及互联网环境下体验式教学存在一定的偏见,对其不完全了解,忽视了课堂中学生的情感体验,只是按照自己的思路进行教学,没有将学生所需要得到的东西融入课堂之中,因此起不到道德教育的作用。

三、利用网络环境提升思想道德与法律基础的教学策略。

第一,高校思想道德修养与法律基础课程的教师,应该加强学习和运用体验式教学方法,树立以学生为本,运用体验式教学的理念,在互联网日益发展的今天,高校思想道德修养与法律基础课程教师应该转变教学观念,让互联网成为一种新的教学方式,让体验成为学生学习的主要方式,让学生在参与体验中真正了解感受,并且塑造积极向上的思想道德修养。二是,高校思想政治教师应该学习和提高运用网络信息的技能,为了更好的利用互联网的优势,高校教师首先应该整合提高自己的互联网修养,能够敏锐地接受互联网信息,并且形成较强的信息处理能力,将这种能力完全融入到思想道德修养与法律基础课程的教学中,将网络优势与体验教学的优势整合发挥,取长补短,促进教学效果的提升。

第二,高校思想政治教师应该为学生创造丰富的体验教学模式。比如,课堂讨论、讲座、演讲、案例教学等等,都是有效的体验教学模式。课堂讨论可以增加师生之间学生之间的互动交流,具有较强的互动性以及合作性,而且具有互补性,通过课堂讨论,可以提高学生课堂参与度,并且升华师生的情感,达到体验教学的目的。演讲是一种更为真切的体验教学方式,学生可以将自己的真情实感,自己个人对思想道德修养与的见解敞开心扉的演讲出来,应该会更加具有吸引力,更加具有情感。

参考文献:

[1]徐雁.基于网络环境下高校思想政治理论课教学模式的创新[j].中国成人教育.(12).

[2]佘双好.关于思想政治理论课体验式教学的思考[j].思想教育研究.2012(04).

[3]萨日娜,原丽红.网络普及化对高校思想政治理论课课堂教学的挑战[j].中国成人教育.2012(05).

[4]邱靖.网络对高校思想政治理论课教学的挑战及对策思考[j].教育探索.2011(11).

数学建模课程论文篇四

多年以来,高职数学的课堂教学被学生认为是抽象、单调和枯燥的。在高职数学教学中,几支粉笔一堂课的现象还相当普遍。尽管许多教师都意识到了现代教育技术的重要性,但是很多时候,教学条件的改变是不尽如意的。现实中存在的教法过于陈旧死板,不便于理解和接受。另外,由于高职数学教学有它自身的特点,传统的教学方式还不能完全丢弃,因此,如何将传统的教学方式和现代教育技术做到有机结合是需要研究的问题。

二、高职数学教学中的对策与建议。

1.结合专业课内容,着重培养学生应用能力。

高职数学教学内容必须与专业相结合。由于专业趋向专门化,各专业对数学的需求也必然不同。所以,高职院校的数学教学和教材的选用有必要结合本专业的知识进行设置,针对不同的专业,给出适应专业需要的教学内容。为了更好的服务专业、适应专业、融于专业,必须对传统的高职数学教学内容做必要的取舍,使学生拥有与专业培养目标紧密结合的高职数学知识,突出培养专业人才的能力。它的主要特点是体现专业性,其内容要体现一个“用”字,让学生感受到学习数学是发展的需要。授课方式相对灵活,可以采用“讨论式”或“双向式”教学,也可由某一专业领域实际问题的数学应用展开。从某种意义上说,这样做是符合培养应用型人才的需要。

2.取舍教学内容,做到重点突出。

由于高职院校办学特点所决定的,高职数学的课程学时减少是一种普遍现象。在这种情况下,高职数学教学要结合高职院校的特点,适当增删内容,保留传统教材的基本结构,更新部分概念和理论的表达形式,只有在有限的课时环境下调节好难易度、把握好重难点,做到教学内容重点突出,才能将高职院校的数学教学提升到一个更高的台阶,教学效果才能有所改善。

3.培养自学能力,重视学法指导。

当同学们进入到高职院校以后,以往那种仅靠教师讲解、题海战和反复训练的情况已经不存在了,更多的时候还是要靠学生自己来合理支配学习时间;所以,应当着力培养高职生自学能力。不少学生很不适应高职数学教学中教师讲授快节奏的教学方式,依然留恋中学里所接受的“题型教学”、“题海战术”,但是,大学更加强调学生在学习中的独立思考和自学能力。所以,学生要转变观念,尽快适应中学到高职院校的'教育教学模式的转变,教学内容的转变,争取做到合理支配学习时间,将高职数学能够做到学以致用。

4.运用合理的教学方法。

高职数学教学也有必要打破传统教学法,开拓教学新思路,让教师“变主动为被动”,学生“变被动为主动”。教师可以采用灵活的教学互动式教学方法,使学生通过教师的讲授、小组的讨论,提高自信心、主动性和分析思考能力,使每个学生增强学习兴趣。另外,教师有必要以社会需求为基本出发点,紧扣专业需求,充分了解学生专业及将来从事岗位的有关情况,制定授课目标,达到学生满意的授课结果,使授课切实满足学生合理需求。另外,高职院校的数学教学还有必要做好以下几点:一是遵循教育部制定的《高职高专教育高职数学课程基本教学要求》,因地制宜,突出实用性。二是必须保证一定的课时。三是对基础太差的学生,在做好课外辅导的前提下,让他们在心理上减轻对高职数学的学习压力。只有爱学,才能学得更好。

数学建模课程论文篇五

数学建模是指利用数学符号对数学实践问题以公式形式表述出来,再通过相关计算解决实际问题。数学建模可以为学生创设适宜的学习条件,让学生在假设、研究、分析、比对中形成学习结论。教师要借助教学内容展开渗透操作,利用实际问题为学生创设实践机会,根据教法改进渗透建模思想,从而促进建模思想的全面渗透,提升学生的数学核心素养。

一、借助教学内容渗透建模思想。

在数学教学过程中,教师要对教材内容进行筛选和剖析,找到文本思维和生本思维的对接点,让学生顺利介入数理讨论学习之中。教师利用教学内容对学生渗透数学建模思想,利用教辅手段创设教学环境,可以有效唤醒学生的数学思维。利用多媒体创设教学情境,运用数学公式进行数学推演操作,都涉及数学建模思想的渗透。因此,教师要积极整合教学内容。借助教学内容渗透建模思想时,教师要结合多种教学调查情况展开相关操作。筛选教学内容时,教师需要观照不同群体学生的不同学力基础。如解读定积分概念时,教师可以通过推导曲边梯形的面积公式,鼓励学生对曲边梯形进行分割、归类、求和、取极限等实际操作,建立定积分数学模型,并让学生在实际操作中完成对物体体积和质量的具体计算。这些数学模型具有广泛性,学生在实践中再遇到类似情境时,也会运用相关模型进行实际操作。推演数学公式时,教师可引入建模思想,让学生参与问题的设计、推演、验证,并利用推演结果反过来解决实际问题,给学生带去全新的学习体验。教师根据教学内容渗透数学建模思想,能够为学生提供更清晰的学习渠道,能够促使学生运用现成的数学模型来解决数学问题,进而加深对知识的理解。

二、利用实际问题渗透建模思想。

教师在数学建模教学实施过程中,需要有接轨生活的意识。数学来源于生活,教师结合生活实际问题渗透建模思想,可以有效提升学生的数学概念意识,并使学生在假设、推理、验证过程中形成数学能力。利用生活实际问题渗透数学建模思想,符合学生数学认知成长的`实际需要,教师要结合学生的数学知识掌握情况展开设计,让学生利用已知数学等量关系解决实际问题,这势必能促使学生形成数理认知基础。高职数学教学中,教师不妨鼓励学生展开质疑活动,让学生列举疑惑问题,对这些问题进行整合优化处理,并结合数理知识进行实践探索。这些也属于数学建模思想的渗透。如教学“假设检验”时,教师可让学生展开假设创设,并通过多重操作实践进行检验。另外,教师设计课外作业时,也可渗透数学建模思想,让学生运用建模思想解决实际问题,以提升学生的数学综合素质。数学建模思想不仅是一种数学认知理论,还是一种解决数学问题的方法和措施。学生结合生活实际和学习认知基础展开相关操作,自然能够促进数学基本技能的提升。高职数学具有较强的抽象性,教师要针对学生的学力基础,为学生布设适宜的学习任务。结合学生生活实际提出问题,利用建模思想解决问题,需要关涉很多专业理论,教师应该进行示范操作,让学生有学习的榜样,这样才能提升数学课堂教学效度。

三、借助教法改进渗透建模思想。

教师要重视数学学法的传授,增加教学的灵活性、针对性和实践性。由于高职学生学力基础、学习悟性、学习习惯等存在差距,所以教师需要做好学情调查,降低数学学习难度,运用简单通俗的语言解读抽象的数学概念。这样,学生才能听得明白、学得好。渗透建模思想时,教师需要鼓励学生主动参与数理讨论互动,这不仅能引导学生展开质疑、释疑活动,还有利于学生树立数学建模理念,形成良性学习认知。教师打破传统教法束缚,采用先进的计算工具、数学软件、多媒体等教学辅助手段,或者利用网络搜集平台展开教学设计,都可以为学生提供难得的学习契机。高职学生通常拥有一定的信息技术应用能力,教师可借助信息媒体展开教学设计,与学生的生活认知接轨。如翻转课堂的适时介入,便属于数学建模典范设计。多数学生都有智能手机,可以随时随地参与网络信息共享活动,因此,教师应具备信息共享和网络互动意识,为学生布设相关学习任务,让学生在多元互动操作中逐渐达成学习共识,进而建立数理综合认知体系。将数学建模思想渗透到教学过程之中,每一个环节都有可能,教师要做好全面考量,针对学生实际进行科学设计。教师要加强对数学建模思想方法的研究,并将这些方法与学生学习实践相结合,从而调动学生的数理学习思维,提升学生的数学应用品质。总之,高职数学教学中渗透建模思想时,教师需要具备整合意识,对建模资源信息展开搜集整理,对学生学力基础进行全面判断,为建模思想的顺利渗透创造良好条件。数学教学设计应不断更新,教师教学水平也亟待提升,而建模思想的全面渗透,给教师的教学带来了全新契机。教师要根据教学实际展开创新设计,有效提升数学课堂教学效率。

参考文献:

[1]李建杰.数学建模思想与高职数学教学[j].河北师范大学学报,2013(06).

[2]刘学才.高职数学建模教学的现状及对策[j].湖北职业技术学院学报,2012(07).

数学建模课程论文篇六

目前大部分高职院校均将礼仪课程作为必修或选修课程普遍开设,但就教学效果而言并不理想,高职院校的部分学生在学习和生活中缺乏礼仪修养的现象屡见不鲜;礼仪素质诸要素发展水平不平衡,礼仪的认识、情感、品质、言行四者之间,有的成分超前,有的成分滞后,有的逆向发展;尤其是“知而不行,知行不一”的现象非常普遍和突出。纵观校园,不文明、低素养的现象时有发生。

一、目前我国高职学生礼仪教育存在的问题。

(一)对礼仪内涵认识不到位,忽视礼仪教育。

礼仪是在人类历史发展中形成的一种文化,是对他人表示尊重的一种形式。然而,目前高职院校礼仪教育忽视礼仪中蕴含的文化内涵,仅注意礼仪表象的学习,狭隘理解礼仪。

同时,由于高职教育将培养学生就业技能作为教学的主要目标,重视专业学生的专业技能、专业课程学习,在礼仪课程方面仅开设一些与专业相关的职业礼仪、秘书礼仪、商务礼仪等,且教育流于形式,授课时间短,教育质量不佳。

此外,一些高职院院校忽视基本礼仪教育,认为学生基本礼仪教育是家庭教育、其他教学单位的责任,不应由高职院校进行教育,教育观念片面。

(二)缺乏教师礼仪素质培养,教师素养有待提高。

从高职院校教师来源看,教师多来自于师范院校、贸易、金融、数学等专业学科。对于来自师范院校的教师,接受过教育心理学、教态等培养,而来自于专业学科的教师,接受的师范教育少,可能会缺乏一定的教育心理、学生心理、教师职业素养等方面知识。这样,如果其自身修养不够,将直接影响教学质量,对学生造成不利影响。

(三)职业礼仪教育体系不完善,环境不理想。

高职学生未来的职业受科学职业礼仪教育影响,因此,对于高职院校而言,职业礼仪教育体系建设必不可少,需要完善的职业礼仪教育体系。但是,目前我国许多高职院校仍没有深刻认识职业礼仪教育的重要性,在整个教育环境中,院校忽视职业礼仪教育,教育环境不理想。

二、高职学生礼仪教育的重要性。

(一)促进学生身心健康,提高道德水平。

身心健康对高职学生成才具有重要作用,对于高职学生而言,习惯影响性格,而性格决定命运。由于高职学生来自不同的文化背景、生活环境,学生具有爱好、兴趣、性格差异性,加上学习压力、就业压力、感情困惑、竞争失利,学生易产生心理失衡,从而影响人际交往、自信心。

在此背景下,加强高职学生的礼仪教育,指导学生如何规范个人的言行举止,装扮自己,塑造良好的个人形象。而得体的装扮、优雅的举止则可表现一个人的积极与自信,从而赢得别人的信任、尊重,进而树立自信心。

同时,面对新的环境、同学、同事,如果学生不懂得如与人沟通、相处,则会影响人际交往,产生无聊、寂寞情绪,不利于身心发展。通过礼仪教育,学生掌握求职就业的礼节、见面施礼问候的礼节等,培养交际能力,且通过诚信的交往、优雅的举止向对方表达自己的善意、友好,增强彼此了解,建立和谐的人际关系。

(二)提高学生职业素养,增强就业竞争力。

高职礼仪教育直接关系着学生的道德修养与劳动者素质。高职学生只有具备职业理论,提高整体素质,才能更好地适应工作岗位。同时,学生只有具备了职业礼仪,在职业中遵守礼仪,形成人与人交际的规范,才能具备职业竞争力,获得职场青睐。在就业形势日趋激烈的今天,高职教育应思考如何增强学生的就业“软实力”。

例如,在就业形势日趋激烈的职场,刚毕业的高职大学生想在职场上立于不败之地,就需要重视职业形象的塑造,熟悉和正确运用礼仪,以恰当的语言、优雅的举止在面试中脱颖而出,增强双方友谊,为步入职场奠定良好基础。

此外,现代礼仪源于实践、用于实践,其符合当下人们的心理需求、生活方式、道德观念等。当高职毕业生迈入社会后,文明自律、彬彬有礼的表现则容易被社会接纳,培养学生的社会适应能力,进而提高社会心理承受力,工作承压力、实力增强。

三、采取合理措施,完善高职学生素质教育中礼仪教育。

(一)优化礼仪教育环境,加强教师队伍建设。

首先,高职院校应充分认识礼仪教育的内涵和重要性,对礼仪教育环境进行优化。例如,加大礼仪教育方面的财力、物力、人力投入,积极利用社会资源,对学生进行日常礼仪、各专业职业礼仪等方面的教育,对学生进行定期职业礼仪培训,逐渐提高职业素养。

同时,高职院校可通过校园广播、社团活动等方式在学生中间宣传、普及各种礼仪知识,强化礼仪教育氛围,潜移默化地使学生形成职业礼仪、公共场合礼仪意识。

其次,在师资队伍建设方面,高职院校要建设一支专业化、职业化的`礼仪指导队伍。如院校可通过聘用、兼职方式,积极引进长期从事职业研究的专家到我校做讲座、授课,丰富学生礼仪知识。

此外,建立专门的大学生职业规划教育教研室、就业指导中心,设置专门的职业礼仪指导部门,分派专业的指导老师,对学生职业礼仪进行专门的指导。而对于教师自身而言,高职院校应加强对教师的培训、进修,指导教师保持良好的教风,注重自身礼仪,以身作则,以自己的高素质影响学生。

(二)根据学生特点,科学设计礼仪教学。

礼仪教学质量与学生素质密切相关,因此,在礼仪教学中,教师不能采取传统的教学方法,应创新教学,改革教育,提高礼仪教育效率。首先,教师对学生进行全面了解,分析学生存在的礼仪问题及学习兴趣点,利用学生兴趣培养其学习积极性。在具体礼仪教学中,结合学生兴趣,利用多媒体手段,组织情景练习,保持课堂生动、轻松,提高教学效率。

例如,结合学生年龄特点,请一些本专业、本行业的先进青年现身说法,并利用多媒体播放各种礼仪大赛、礼仪讲座等,示范礼仪规范示演,让学生感受礼仪对自我风采展示的作用及魅力。此外,由于一些学生认为礼仪就是几句简单的话、动作,无需进行训练,从而没有形成礼仪意识。

因此,在礼仪教学中,教师应加强礼仪实践,组织情景练习,为学生自我训练提供平台。例如,在请校友到班级做客时,教师应对学生分组,要求学生接待客人,担当不同角色。在学习礼仪理论之前,学生面对客人可能不知该如何安排与自处,没有微笑,站姿不对,慌慌张张,忘记打招呼等。在此情况下,学生会意识到自己失礼及礼仪学习、训练的重要性,会在以后客人接待中提升自身礼仪。

(三)完善礼仪教育内容,加强日常训练。

在高职学生素质教育过程中,不仅需要在课程体系中纳入礼仪教育,还需训练学生在职业礼仪、社会礼仪、个人礼仪中注重自己的穿衣打扮、言行举止,在日常生活、工作中展示自己风采、魅力。在具体礼仪教育中,结合学生实际情况,使学生在学生示范、典型案例分析中养成与工作、学习、生活相关的礼仪,提高学生的综合素质。

例如,指导、训练学生的电话礼仪、握手礼仪、着装礼仪、电梯礼仪等。如在接电话时,需面带微笑、备好纸笔,合理利用电话礼貌用语,这样当对方传达重要信息时,第一时间记录,提高工作效率,并以合适的用语表示对对方的尊敬。

在握手礼仪方面,长辈伸手后,晚辈才能伸手相握;上级伸手后,下级才能接握。礼仪教育是高职教育的关键内容,有助于培养学生的心理素质、职业素质、公共素质等。因此,高职学校应注重对学生礼仪的培养,根据社会的发展需求,结合学生的特点,通过提高教师素质、改革课堂教学、加强礼仪训练等方式,逐渐提高学生的综合素质,向社会输出高素质人才。

数学建模课程论文篇七

大量的应用型技能型人才,有效满足了社会各行各业的用工需求。随着国家对高职教育的重视和不断投入,提高教育的教学质量势在必行[1]。数学建模的核心是以数学模型为基础的实际运用,鉴于数学建模的这种特点,国内高职数学教育逐步把数学建模理念融入到课题教学中,提高学生的应用能力。以数学建模理念的告知书明确教学改革要求学生结合计算机技术,灵活运用数学的思想和方法独立地分析和解决问题,不仅能培养学生的探索精神和创新意识,而且能培养学生团结协作、不怕困难、求实严谨的作风[2]。笔者结合自身的教学工作经验,对基于数学建模理念的高职数学教学改革进行了探索,对教学实践中出现的问题进行了分析梳理,以期为高职数学教学改革提供新思路,推动高职数学教学水平的不断提高,培养出具有良好数学素养和专业技能的新型高职人才。

近年来,随着国内产业结构的不断调整,对于高等职业技术人才需求不断增大,社会对高等职业技术教育寄予厚望。但是传统的高职教育由于专业设置不合理,使用教材落后,实训实践场地不足,培养出的学生动手能力差、专业能力不足,面对社会发展的新形势,高职教育必须进行教学改革,提高学生的职业能力和就业竞争力。高职教育不同于普通本科教育,它有以下几方面的特点。

1人才培养目标不同。

高职教育和本科教育人才培养目标不同,高职教育是以技术应用型高技能人才为培养目标,所有的教学课程设计和人才培养体系设计都是基于此目标展开的,高职教育主要是为了向产业发展提供生产、服务、管理等一线工作的高级技术应用型人才,专业能力培养和目标职业匹配度高,所以高职教育教学成果最直接的评价就是毕业生的就业竞争力和上岗后的适应能力。

2两者的教学内容不同。

高职教育的教学重点是学生要掌握与实践工作关系较为密切的业务处理能力、动手能力与交流能力,把学生的职业能力建设列为教学重点,课程设计专业性强,一旦就业能为企业创造明显的效益,高职教育各专业课程差别较大。

3生源情况不同。

在当前的教育教学体系下,高职教育的生源普遍较差,大多是没有希望考上大学,转而进入高职学习,希望通过掌握一定的技术来实现就业,所以高职学生的基础知识普遍较差,学习兴趣不高。数学建模给高职数学教学改革开辟了新思路,数学建模为数学理论学习和工程实践应用搭建了桥梁,在工学结合的基本原则下,采取数学建模教学理念,培养学生的数学素养及动手应用能力是一个非常有效的手段[3]。

1数学建模的概念数学建模是将数学理论和现实问题相结合的一门科学,它将实际问题抽象、归纳成为相应的数学模型,在此基础上应用数学概念、数学定理、数学方法等手段研究处理实际问题,从定性或者定理的角度给出科学的结果[4]。数学建模的发展为数学知识的应用提供了途径,对于现实中的特点问题,可以用数学语言来描述其内在规律和问题,运用数学研究的成果,结合计算机专业软件,通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,转化成为数学问题,借助数学思想建立起数学模型,从而解决实际问题。2基于数学建模思想的教学理念基于数学建模的这种学科特点,可以把数学知识应用化,因此,基于数学建模思想的教学理念可以概括为三个层次:首先,确立提高学生数学应用能力为目标,以提高学生数学学习兴趣为手段,以学习数学建模为途径;其次,结合教学内容,开发相应的数学建模案例,因地制宜、因生制宜,根据专业不同编写相应的校本教材;最后,改进教学方法,创新课堂教学模式,建立课外数学建模学习兴趣小组,带领学生进行数学应用实践活动,鼓励学生参加各种数学建模竞赛[5]。

传统的数学教学模式以教师课堂讲授为中心,学生只能被动的接受,由于学生的基础知识水平不同,掌握新知识的能力也不同,这种没有区分的教学模式教学效果差,往往带来的结果是造成基础差的学生跟不上,对数学感兴趣的学生失去兴趣。基于数学建模理念的高职数学教学改革,是以学生数学应用能力提高为目标,以数学学习兴趣培养为出发点,以数学建模为途径,以教学方式改革为保障,打造高职数学教学改革新模式,全面提高高职教育应用型人才培养水平。

1结合专业特色,突出数学教育的应用性。

数学作为高职教育的基础性学科,理论性强,体系性强,对于基础知识薄弱、学习兴趣差的高职生来说感觉难学、枯燥,这是因为高职数学教育没有教会学生如何在专业学习中和以后的工作中如何去用学到的数学知识,学生感觉知识无用自然也就不会主动去学,之所以引入数学建模的思想就是为了让学生利用学到的数学知识去解决实际问题,让学生认识到数学不只是纸面上的写写算算,数学可以把实际问题抽象化,变成数学问题,利用数学的研究方法给实际问题进行科学的指导,这样高职数学教育就不再是课堂上的照本宣科,课下的演算作业,将基础数学教育和学生的专业教育相结合,带来学生用数学解决专业问题是大幅度提高学生专业能力的有效途径。

2结合学生能力,因材施教、因地制宜。

高职学校的生源不如普通高校,一般学习基础较差,对于专业实训课并不明显,但是在基础学科教学过程特别突出,很多基础知识掌握不牢,甚至一点印象都没有,教师在上课时要充分考虑到这种情况,在课堂授课时给予实时的补充,以助于知识的过渡。因材施教是我国传统的教育思想,在掌握学生知识水平的基础上,教师要根据不同学习层次学生的具体情况,安排教学内容和设置教学目标,对于基础知识水平不高、学习兴趣较差、学习能力较弱的学生要进行课外辅导。高职基础课教育是专业课学习的基础,授课教师要根据学生的专业学习情况和专业特点,把迁移知识运用能力在课堂上结合学生的专业背景进行辅导,高职数学教育不仅仅是为了学习数学,更多的是发挥数学知识在其专业能力培养中的作用。

3培养学生学习兴趣,促进整体教学质量提高。

高职学校的学生学习兴趣普遍不高,尤其是对于学了十几年都感觉头痛的数学,要想提高数学的教学质量,首先必须要培养学生的学习兴趣,长期以来学生在数学学习上已经有了根深蒂固的认识,培养数学学习兴趣很难,但是如果学生没有学习兴趣,教师授课内容、授课方式改革都起不了太大的作用,学生对于数学学习兴趣低由于低年级学习时受到的挫败感,因此要让学生建立学习数学的自信心,让他们体验学会数学的成就感,这样才能逐步培养他们的学习兴趣。教师可以采取以点带面的方式,先选择有一定基础的学生,再从全部课程学习中发现表现优秀的个体,组织参加建模竞赛,进行单独赛前加强指导,用这些榜样的力量提高全体同学的学习积极性。数学建模作为提高高职数学教育教学水平的“点”,能够以其趣味性强,带动学生的学习兴趣,促进高职数学教育教学水平的全面提高。

4改革教学及评价方式,建立面向应用的数学教育体系。

由于基于数学建模思想的高职数学教学改革打破了以往的课堂教学方式和考核方式,学生面对的不再是期末的一张试卷,而是一个个数学建模案例,需要学生运用本学期学到的数学知识解决实际问题,教师根据学生对案例的理解程度,数学模型运用能力,实际过程分析和解题技巧等多方面给出评价,同时积极评价、鼓励学生的创新思维,并将其纳入到考核体系当中。通过以上各个方面评价的加权作为最后的评价指标。这种以数学知识应用为基础,直接面向应用的高职数学教育模式能极大的激发学生的学习积极性和知识应用能力,符合高职应用型人才培养理念,对提高高职学生的专业能力也打下了坚实的基础。基于数学建模理念的高职数学教学改革是推动高职应用型人才培养体系建设的新举措,也是推动高职基础课教学水平的重要内容,能有效解决学生学习兴趣低,基础知识掌握不牢,数学知识应用能力低等问题,通过“案例驱动法+讨论法”,引导学生再次对课本知识进行思考和应用,有利于培养学生的创新思维和应用能力。引入数学建模理念教学,把课堂学习的主动权交回给学生,既保证了高等数学原有的知识体系的完整,也可以提高教学效率。通过教学方式和评价方式改革,学生的学习主动性增强,也改变了以往对于数学学习的学习态度。高等数学作为高职教育学生必修的基础课,在培养学生基本数学素养上具有重要作用,是理工类专业课程体系的重要组成部分,基于数学建模理念的高职数学教学改革也为同类基础理论课改革提供了新思路和范例。

[1]孙丽.在高职数学教学改革中应注重数学建模思想的渗透[j].科技资讯,20xx(22):188.

数学建模课程论文篇八

众所周知,高等数学是所有自然学科的基础,一个大学生要想在以后的工作、学习中大展宏图,那么就一定少不了坚实的高等数学基础。如何解决大学生在学习高等数学时碰到的问题?如何调动大学生学习高等数学的积极性?让学生们了解高等数学的用途,真正愿意静下心来好好学习高等数学,努力为以后的发展打好数学基础。一直以来,各所高校的教师们都在努力的想办法、找对策,一些实用有效的方法已经提出并且在逐步推广,比如,问题驱动式的教学方法和基于pbl的教学方法等。笔者从所在学校的学生实际学习情况出发,根据几年来的教学心得和积累,打算提出一种较为实用的教学方法——利用数学建模的思想调动大学生学习高等数学的积极性。该方法在笔者所教授的班级中已经实际应用过几届,学生普遍反映效果较好,任课老师也认为该方法确实能极大地调动学生的学习积极性。

提到高等数学,学生们的第一反应往往是:各种公式塞满黑板,各种运算充斥脑海;定义、定理、推论一个连着一个;极限、连续、可导可积一个涵盖另一个[1]。和高中数学相比,记忆的负担轻了(实际上是知识点太多,记不住了),而对思维的要求却提高了。对大学生来说,每一次的高数课,都是一次大脑的思维训练,时刻要求精神高度集中,一定要紧跟老师的步划,一旦走神,后面的内容就不知所云了。这样的要求短时间可以达到,长久下去学生们会觉得很辛苦,很有压力,会出现抱怨。笔者碰到过这样的学生,刚开始时,兴致勃勃,雄心万丈,可到后来兴趣索然,马虎应对。怪学生吗?诚然学生有责任,但任课老师也该负很大的责任。作为高等数学的老师我们经常要面对学生提的这些问题:(1)我学的专业和高等数学相差甚远,有可能这一辈子都不会用到高等数学的知识,那我学高等数学的目的何在?(2)老师您天天鼓吹高等数学的强大功能和广泛用途,但是通过一学期的学习,我发现除了对付考试有用,真不知高等数学可以用在何处?这些问题不及时解决,时间长了一定会影响到大学生对高等数学的学习积极性,甚至有可能会产生厌学的情绪和氛围。有些极端的学生,期末考试之后,一听到自己高等数学考过了,立马将高等数学的课本给撕了,可想而知高等数学对其造成的压力有多大[2]。如何解决大学生在学习高等数学时碰到的问题?如何调动大学生学习高等数学的积极性?让学生们了解高等数学的用途,真正愿意静下心来好好学习高等数学,努力地为以后的发展打好数学基础。笔者从所在学校的学生实际学习情况出发,根据几年来的教学心得和积累,打算提出一种较为实用的教学方法——利用数学建模的思想调动大学生学习高等数学的积极性。

一、以实际问题反推解决问题时我们需要的高等数学知识。

有这样一个实际问题:报童每天清晨从报社购进报纸零售,晚上将没卖掉的报纸退回给报社。假设报纸每份的购进价为b元,零售价为a元,退回价为c元,自然地有abc。这就是说,报童每售出一份报纸赚a-b元,每退回一份报纸赔b-c元,报童每天如果购进的报纸太少,那么会不够卖,就会少赚钱;如果每天购进的报纸太多,那么会卖不完,将要赔钱。请为报童规划一下,他该如何确定每天购进的报纸份数,以获得最大的收入[3]。

现在我们来反推该问题涉及到的高等数学的知识:首先,通过分析题目可知,问题解决的关键在于——如何确定每天的报纸需求量,注意每天的报纸需求量是随机变化的?解决这个关键问题的知识我们早就掌握了,分别是数理统计中的频率连续化、概率论中的概率密度与期望和高等数学中的定积分[4]。

二、利用高等数学的解决实际问题。

f(r)[4]。如果求出了f(r),那么。

g(n)=[(a-b)r+(b-c)(n-r)]f(r)+(a-b)nf(r).(1)。

现在我们来求f(r),假定报童已经通过自己的经验和其他渠道掌握了一年(365天)中每天报纸的售出份数,那么在他的销售范围内,每天报纸日需求量r的概率f(r)为:

f(r)=,r=(0,1,2,3,…)。

其中k表示为卖出r份的天数。

g(n)=[(a-b)r+(b-c)(n-r)]p(r)dr+(a-b)np(r)dr.(2)。

通过上面的分析,可知实际问题归结为,在p(r)和a,b,c已知时,求n使得g(n)最大。

=-(b-c)p(r)dr+(a-b)p(r)dr.(3)。

令=0,得到=,又因为p(r)dr+p(r)dr=1,所以p(r)dr=.(4)。

在等式(4)中,p(r)和a,b,c均为已知,所以利用定积分的知识一定可以求出n。也即可以确定每天购进的报纸份数,使报童每天获得最大的收入。

三、利用现实问题,让学生学会思考,给他们提供创造成就感的机会。

通过上面碰到的实际问题,可以很容易地说服同学们静下心来好好学习高等数学。因为通过实际问题的求解,学生们了解到了,要想解决一个实际问题(哪怕是很小的问题),也需要大量的高等数学知识的储备;学生们也大概领略到了高等数学的用途与功能。这样的教学方法简单、直接,胜过老师课堂上反复的唠叨与强调。有了这样的一些实际问题,老师们就可以大胆地将数学建模思想引入高等数学的教学当中,让学生们在解决实际问题中学会思考,掌握知识,提高能力。

通过训练后,碰到实际问题,同学们会自然的想到我们的教学方法:(1)这些实际问题涉及到的高等数学知识?那些自己掌握了,那些还没有弄明白,学要加强学习。(2)知识点找到后,如何建立起数学与实际问题求解之间的关系?也即如何建立数学模型。(3)除了老师给的题目,自己本专业中的实际问题,能否用高等数学的知识去解决?通过思考、分析、解决这些问题,学生们会有一种创造创新的成就感,会愿意自主学习,自然而然其学习高等数学的积极性也会大大提高了。

数学建模课程论文篇九

培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。随着科学技术的不断发展,各学科各领域对实际问题的研究日益精确化与定量化,数学在科学研究与工程技术中的作用不断增强,其应用的范围几乎覆盖了所有学科分支,渗透到社会生活中的各个领域。前苏联数学家亚历山大洛夫曾说过,“数学在其它科学中,在技术中,在全部生活实践中都有广泛的应用”。1993年,王梓坤院士发表的著名报告《今日数学及其应用》中也深刻指出:“现代世界国家间的竞争本质上是高技术的竞争,而高技术本质上是一种数学技术。”数学是一门技术已经成为人们的共识。数学技术离不开数学建模,数学建模是把数学作为工具,并应用它解决实际问题的一种活动,它是一个跨学科、跨专业、综合性和应用性都非常强的过程,是数学应用的必由之路,是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介。因此,数学建模的过程是一个全而培养学生综合素质、提高学生各种能力的过程,数学建模是培养生产一线应用型人才的一条重要途径。

应用型人才是将专业知识和专业技能应用于社会实践的专门人才是熟练掌握社会生产或社会活动一线的基础知识和基本技能,主要从事一线生产的技术或专门人才社会对应用型人才的基本要求是具有基础扎实,知识而宽,应用能力强,素质高,有较强的创新精神和团队合作精神。他们的突出特点是既具有宽广的知识而和深厚的基础理论,又能将所学知识应用于本行业相关技术领域,适应产业发展对应用型人才市场需求的不断变化,还有接受继续教育的基础条件和进一步获取新知识的基本能力和扩展与职业相关的学科知识能力。

随着高等教育的不断扩招,高等教育的大众化趋势已越来越明显,在这种背景下,传统的“研究型”、“学术型”人才培养模式受到了严峻的挑战,因此,一些发达国家率先提出了“发展应用型大学”,“培养应用型人才”的口号。德国早在20世纪70年代就成立了应用科技大学,其应用型人才的培养特色鲜明,深受欢迎。美国的工程教育,英国的技术学院,日本的短期大学都以培养应用型人才而著称。近年来,我国高等院校对应用型人才的培养取得了一定的进展,但仍然存在认识上的不足,培养方案和措施仍有许多不尽如人意的地方,应用型人才的培养模式还有待于进一步探索。通过多年的实践和探索,根据应用型人才的特点和社会日益数字化,对应用型人才的要求以及数学在各行各业中的广泛应用、数学建模在应用型人才培养中具有不可替代的重要作用。

数学建模就是用数学语言、方法近似地刻画要解决的实际问题,对于已建立的模型采用推理、证明、数值计算等技术手段及相应的数学软件求解,并利用所得的结果拟合实际问题。数学建模在应用型人才培养中的作用主要体现在以下几个方面:。

由于实际问题的'复杂性,在数学建模过程中要涉及到大量的数据收集和对数据的分析与处理,一个完整的建模过程一般要经历模型的假设、模型的建立与求解、算法的设计和计算机实现、对结果的分析与检验并将所得的结果模拟实际问题等几个阶段。这些过程只靠个人的力量在有限时间内是很难完成的,这就注定了数学建模是一个团队的集体行为,需要有师生之间、学生之间以及学生与社会之间的交流与合作。因此数学建模有利于提高学生的团队合作精神,而团队合作精神又是社会对应用型人才的基本要求。

数学建模所面临的数据是杂乱无章的,这就要求学生对这些数据进行去粗取精,去伪存真,归纳、提炼、整理、加工和总结,还需要对一些已知条件进行符号化和量化,然后从中抽象出恰当的数学关系,从而组建一定的数学模型,再用所学的数学理论和方法去求解数学模型。在对实际问题中的数据进行加工和整理过程中,为使问题简化,有些因素是可以忽略的,但有些因素不能忽略,究竟哪些因素可以忽略、哪些因素不能忽略并没有一定的范式,这要根据建模者对实际问题的理解、研究问题的目的以及数学背景来完成这个过程,应该说这是一个创造性的过程。另外,数学模型是对实际问题的近似刻画,为了使建立的数学模型尽可能完美地表达实际问题,又使模型易于求解,需要对模型进行不断的改进和不断的完善,这就要求学生不断对问题进行深入的了解,深入到知识的更深层面,这样又会产生新的疑问,这个过程多次循环们复,学生的创新能力将不断得到加强。创新能力也是社会对应用型人才的基本要求。

一个完整的数学建模过程是综合运用知识和能力,解决实际问题的过程。这不仅需要学生有较好的数学基础和严密的逻辑推理能力,还要求学生对问题的实际背景有一定的了解,要求学生有广博的知识和深厚的专业基础,并能对这些知识进行融会贯通。数学建模面临的数据}i-.}i是庞大而复杂的,对数据的处理过程是一个分析与综合,抽象与概括,比较与类比,系统化与具体化的过程。在这个过程中,学生的应变能力和多角度分析,多方位思考能力不断得到提高,综合素质不断得到加强。综合素质和能力是应用型人才的基本特征和社会对应用型人才的起码要求。

从实际问题中抽象出来的数学模型一般很复杂,因此模型的求解一般很困难,甚至无法求出模型的解析解,即使能求出模型的解析解,由于其复杂性而无多大的应用价值。所以数学模型的求解通常需要编写算法,运用某些数学软件利用计算机求其数值解,这就要求学生有较强的数学软件应用能力和对计算机的实际操作能力。在操作的过程中,学生的动手能力和实践能力自然而然得到提高。另外在数学建模中,需要进行调查研究,需要对有关的数据进行广泛的采集和补充,这就是应用型人才培养中所强调的实践性。

数学建模本身就是综合运用知识,解决实际问题的过程。数学建模中的很多典型案例,如“最优捕鱼策略”,“投资的收入和风险”,“车灯线光源的优化设计”等就较好地突现了知识的应用性。数学建模是数学应用的必由之路,是联系数学与实际问题的桥梁。一方面数学建模需要用数学语言、方法近似地刻画要解决的实际问题,另一方面数学建模需要利用所得的结果拟合实际问题,所有这些都与应用型人才的突出特点和社会对应用型人才的要求是一致的。

数学建模需要学生亲自参与问题的研究与探索,数据的收集和补充需要学生的积极参与,数据的处理和模型的建立需要学生的主动参与,模型的求解需要学生独立完成。数学建模一般需要综合运用多方面的知识,需要了解相关问题的背景材料,需要对相关的数据进行合理的取舍和有效的筛选,有些知识和相关的资料需要学生自己去查询,所有这些都为学生的自主学习提供了一个良好的“下台。另外,数学建模需要用自己的语言描述问题的解决过程,需要广泛的交流与合作,还需要进行论文的写作等等,这些都对学生语言表达能力的提高具有重要的作用。应用型人才的一个突出特点就是具有接受继续教育的基础条件和进一步获取新知识的基本能力和扩展与职业相关的学科知识能力,而自学能力和语言表达能力为进一步获取新知识等能力提供了良好的基础。

应该说,数学建模的作用是多方面的,通过数学建模的训练,学生获得了参与研究探索的体验,培养了收集、分析和利用信息的能力,学会了分享与合作,锻炼了学生的意志力、洞察力、想象力、自学能力、语言的翻译和表达能力以及综合应用专业知识解决实际问题的能力与分析问题、解决问题的能力,所有这一切都是应用型人才培养所要达到的目标,也是与应用型人才培养模式的四个基本点是一致的。因此数学建模能将应用型人才的突出特征和社会对应用型人才的要求体现得淋漓尽致,它在应用型人才的培养中具有不可替代的重要作用。

1.马克思有一句名言,“一门科学只有成功地应用了数学时,才算真正达到了完善的地步”。不论是自然科学还是社会科学都需要数学,都蕴含数学。一门科学要成功地应用数学,必须对这门学科中的问题建立数学模型。因此,建议高等院校的各个专业都要不同程度地开设数学建模课程,并根据专业的不同要求选择合适的数学建模内容,真正做到“人人学有用的数学,人人做有用的数学,人人用有用的数学”。

2.数学建模课程应增加实训内容,数学建模的学习应以实训内容为主。教师应根据学生的具体情况,女排布置具有综合性、开放性、灵活性和趣味性的实训题目,让学生自己进行调查研究,自己收集数据、分析数据和处理数据,模型的建立和求解要以学生为主体,并以论文的形式提交给教师,教师提供实时指导和帮助,对建模的结果进行有的放矢的点评,并将实训内容作为学生期末考评的主要内容和重要依据。

3.举办多种形式的数学建模竞赛,丰富数学建模的教学内容和教学方式,引进案例教学和专题讲座,通过对典型案例的深入剖析,激发学生的学习兴趣和积极性,培养学生的数学建模思想和坚忍不拔的毅力,聘请专家对一些典型问题进行专题讲座。

数学建模课程论文篇十

走美杯”是“走进美妙的数学花园”的简称。

“走进美妙的数学花园”中国青少年数学论坛是中国少年科学院创新素质教育的品牌活动。20xx年,由国际数学家大会组委会、中国数学会、中国教育学会、中国少年科学院成功举办了首届“走进美妙的数学花园”中国少年数学论坛,至今已连续举办七届,全国三十多个城市近三十万人参与了此项活动,在全国青少年中产生了巨大的影响。“走进美妙的数学花园”中国青少年数学论坛活动是一项面对小学三年级至初中二年级学生的综合性数学活动。通过“趣味数学解题技能展示”、“数学建模小论文答辩”、“数学益智游戏”、“团体对抗赛”等一系列内容丰富的活动提高广大中小学生的数学建模意识和数学应用能力,培养他们一种正确的思想方法。著名数学家陈省身先生两次为同学们亲笔题词“数学好玩”和“走进美妙的数学花园”,大大鼓舞了广大青少年攀登数学高峰的热情和信心,使同学们自觉地成为学习的主人,实现从“学数学”到“用数学”过程的转变,从而进一步推动我国数学文化的传播与普及。

“走美”活动已连续举办七届,近30万青少年踊跃参与,已取得良好社会效果,并被写入全国少工委《少先队辅导员工作纲要(试行)》,向全国少年儿童推广。

“走美”作为数学竞赛中的后起之秀,凭借其新颖的考试形式以及较高的竞赛难度取得了非常迅速的发展,近年来在重点中学选拔中引起了广泛的关注。客观地说“走美”一、二等奖对小升初作用非常大,三等奖作用不大。

1、活动对象。

全国各地小学三年级至初中二年级学生。

2、总成绩计算。

笔试获奖率:

一等奖5%,二等奖10%,三等奖15%。

3、笔试时间。

每年3月上、中旬。

报名截止时间:每年12月底。

走美杯比赛流程。

1、全国组委会下发通知,各地组委会开始组织工作。

2、学生到当地组委会报名,填写《报名表》。

3、各地组委会将报名学生名单全部汇总至全国组委会。

4、全国“走进美妙的数学花园”趣味数学解题技能展示初赛(全国统一笔试)。

6、全国组委会公布初赛获奖名单并颁发获奖证书。

7、获得初赛一、二、三等奖选手有资格报名参加暑期赴英国剑桥大学数学交流活动。

8、各地按照组委会要求提交数学建模小论文。

9、前各地组委会上报参加全国总论坛学生名单。

10、全国总论坛和表彰活动。

数学建模课程论文篇十一

摘要:在新课改以后,要求教师要在教学中重视学生的主体地位,提升学生学习兴趣,培养他们的自主学习能力。本文从初中数学教学过程中数学建模入手,对如何将数学建模运用到学生解题过程中进行了分析。

数学建模是指利用数学模型的形式去解决实际中遇到的问题,换句话说,就是利用数学思维、数学方法解决各种数学问题。数学建模是在新课程改革后出现的新概念,经过一段时间的观察我们可以发现,数学建模的方法能够有效的提高学生的学习兴趣,培养学生的数学能力。这种方式能够将复杂的数学问题利用简单的方式找到解决方案,是提高初中数学课堂效率及课堂质量的有效手段。初中数学是初中学习中的重要课程之一,也是培养学生数学思维的重要阶段。可以说,初中数学的学习是学生学习数学的关键,对今后的学习起到极大的影响。因此,对于初中数学教师来说,不断的完善教学手段,提高数学课堂质量是教学工作中的重中之重。而数学建模就是为了解决数学在生活中的实际问题,能够让学生感受到数学本身的魅力,培养他们的数学思维,提高数学学习能力,从而让初中数学教学质量也得到大幅度的提升。初中数学与数学建模之间有着密不可分的作用,两者相互联系、相互促进,如何有效的.将数学建模运用在初中数学教学过程中,是每个初中数学教师都值得思考的问题。

数学建模是为了解决数学中遇到的问题,数学本身特别是初中数学也是一门较贴近学生生活的学科。因此在数学学习中,教师要首先培养学生的数学学习意识,让他们感受到数学与生活的紧密联系,然后再引导学生用数学建模去解决遇到的问题。在这一过程中,数学教师要注意以下两个问题:(一)在教学中一定要贴近学生的生活,课堂中所提出的问题也必须要符合生活实际,让学生对所学内容感到亲切。积极引导学生利用多种方式解决同一问题,尤其是利用数学建模的方式,以达到培养他们的数学思维以及想象能力的目的。(二)在学生进行数学建模的过程中要利用多鼓励的方式调动他们对数学学习的积极性,让他们在数学建模中获得成就感,增加自信心,以此来提高学生在今后学习中使用数学建模方法的热情。

二、提高学生想象力,用数学建模简化问题。

对于初中生来说,他们的思维与其他年龄段相比极其活跃,拥有了丰富的想象力。在数学学习中,如果能将想象力与数学学习结合在一起,一定会得到意想不到的效果。教师可以根据初中生这一特点,提高他们的想象力,然后再引导他们利用数学建模解决问题,让题目简单化。具体来说,就是在面对复杂的数学问题时,教师可以先为学生创建教学情境,以这样的方式提高学生的学习兴趣,让他们愿意主动去深入的研究遇到的题目。之后教师再去对他们进行引导,让他们能够理解题目中所提问题的含义,并能够运用他们的想象能力思考解决问题的方式。最后再引导他们进行数学建模,解决问题。这样的方式充分的利用了学生的想象能力,将所需解决的问题简单化。

三、选择合适的题目作为建模案例。

在数学建模过程中,教师也要时刻牢记题目应该贴近学生的生活,符合实际,并且具有一定的趣味性,让他们有兴趣投入到数学建模的过程中去,然后再反复练习之后达到提高他们建模能力的目的。在选择数学建模案例时教师主要应该注意以下两点:首先,教师在选择建模案例时要尽量选择比较典型的问题,能够让学生在学习了该题目以后掌握这一类的解题方法,达到初中数学教学的目的。所以,这就需要教师对题目进行深入的分析,看是否在拥有趣味性、真实性的同时符合教学要求。其次,题目最好能够拥有可变性,教师能够通过对题目中已知条件的改变让学生进行不同方面的建模练习,以此提高他们数学建模的能力。

四、引导学生主动进行数学建模。

在教师经过反复的教学后,学生都已经拥有了基本的数学建模知识,了解了数学建模过程,并且能够在解题过程中简单的使用数学建模。此时,教师在教学中就可以引导学生利用数学建模解决数学题目了。引导学生用数学建模方法解决数学问题,就要在解题过程中多对学生进行这一方面的鼓励,让他们提高建模信心。在这一过程中,教师还可以尝试让学生之间利用合作的方式让他们进行数学建模方法的探讨,并在探讨的过程中吸取他人的经验,提高自己数学建模水平,同时这样的方式能够让数学建模深入到每一个学生的心中,逐渐影响每一个学生的解题思路,让他们能够在解题过程中熟练运用建模的方式,提高解题能力。数学建模的方法能够有效的改变过去的传统教学思路,增加学生对数学的学习兴趣,提高数学解题能力。这种教学方法对于初中数学教师来说,值得不断的探讨研究,并应用在教学中,以此提高数学课堂的教学效率和教学质量。

数学建模课程论文篇十二

高校学生社团是一种具有共同兴趣爱好的学生自发组织的开展一些艺术、娱乐和学术型的活动的团体。学生社团以其鲜明的开放性、自主性以及多样性等特点,为一些有特长的学生提供了广阔的舞台,让这些学生可以更好的发挥自己的才能,促进其更好的成才。全国大学生数学建模竞赛是最早由教育部工业与数学应用学会共同承办的一个科技性的赛事,该比赛要通过数学和计算机的知识来解决实际生活中的问题,由于其特有的比赛形式,使得高职院校在全校范围内直接选拔参赛队员是件费神的事情,因此,为了更好的为数学建模竞赛选拔人才,激发学生的学习兴趣,学术性社团“数学建模协会”也就应运而生。数学建模协会的成立,可以更好的为学生提供一个展示自己的机会,可以增强学生对数学的学习兴趣,培养学生应用数学解决实际问题的能力,激发学生的创新思维,为数学建模竞赛选拔人才。本文主要以西安航空职业技术学院数学建模协会为例,探讨高职数学建模社团活动开展的形式和意义。

(一)数学建模社团有利于数学建模竞赛的开展。高职数学建模协会为数学建模竞赛搭建了一个平台,是数学建模竞赛强有力的后盾,数学建模竞赛成绩的取得与这个平台密不可分,只有充分发挥数学建模社团的作用,才能源源不断的为数学建模提供人力和智力保障,才能更好的推动高职数学的学习氛围。1、数学建模协会起着动员宣传的作用从没听过,到知道,在到熟悉,只有通过大力宣传和动员,才能让更多的人了解数学建模,让更多优秀学生参加到数学建模竞赛中。大学校园中有许多数学爱好者,他们对数学建模也有一定的认识,只要有参加数学建模活动的愿望的,都可以利用数学建模协会招新的机会,加入数学建模创新协会。将成绩优秀的学生邀请加入数学建模协会,对进一步扩大数学建模协会,夯实数学建模基础,起着举足轻重的作用。2、数学建模协会起着知识传播的作用高职院校学生在校学习时间较短,学业较为繁重,课余时间较少,数学建模培训的时间不足,无法让学生在短时期内掌握较多的数学建模相关知识。因此,利用数学建模协会活动可以开展数学建模课程的培训工作,普及数学建模相关知识。采用“老带新”的模式进行数学建模知识的普及。通过制定系统的培训方案,在每年秋季竞赛后,参加过竞赛的同学对新入协会的成员可以进行初级培训,为今后的竞赛奠定基础。3、数学建模社团起着选拔学生的作用每年数学建模竞赛的队员需要通过校内赛等形式进行选拔,此时,数学建模协会就起着校内赛命题及选拔队员的作用,当然这种选拔方式也有的弊端,就是所有队员都是来自校内赛成绩优秀的学生,而校内赛发挥不理想但建模能力突出或计算机技术水平优秀的学生就没法参加数学建模竞赛。为确保每一位有能力的学生都能够加入到建模竞赛队伍中来,可以通过校内竞赛与建模协会推荐两者相结合的方式选拔建模竞赛学生,以确保最优优秀的学生参加数学建模竞赛。(二)数学建模社团有利于大学生综合素质的培养。(1)数学建模社团属于专业的学术性社团,成立的目的是为了参加全国大学生数学建模竞赛,数学建模社团活动的趣味性和实践性可以提高学生的学习兴趣,培养学生自主学习的能力,增加学生参与竞赛的热情。社团活动中的培训使学生可以更好的应对竞赛,取得更好的成绩。另外,竞赛之余还可以进行其他领域的学术交流,比如计算机,经济,工程等领域,良好的交流氛围激发学生的创新思维和意识,从而培养他们的创新能力。(2)数学建模社团是学生自发组织的服务学生的群体,除了学术研究之外,还可以进行一些创新创业的活动,具有更多的实践的机会。比如,可以利用平时社团所学的知识,以团体的形式进行一些数据处理的校企合作;也可以以微信平台和微信群等发布一些数学建模相关的微课等,进行一些微信群讲座等等。这样可以让学生真正体会到数学的用处,达到学以致用的效果。(3)数学建模社团是学生自发组织的学术性社团,社团的组织机构都是学生在担任,社团的活动也都是学生在协调策划,甚至很多时候社团的老成员都可以辅助老师进行社团的一些学术性的讲座。因此,在学习的同时还锻炼了他们的处事应变能力团队合作的能力,可以说提高了学生的综合素质。

(一)数学建模社团的管理形式。数学建模协会作为一个学生群体组织,需要好的制度和管理模式。以笔者所在学校为例,数学建模创新协会具有自己的一套规章管理制度;在管理形式方面是以“三个管理面”来进行社团管理和学术交流的,具体如下:1、学术交流面这个主要是通过“社团内部进行学术交流活动”和“老带新培训”两部分组成,内部的交流活动主要是学生之间的相互沟通和交流,以及不定期的邀请指导教师和外校专家做一些数学建模报告。老带新培训是指社团主席团成员(一般是参加过前一年全国大学生数学建模竞赛的学生)为新入社团的学生进行培训,培训的内容基本上都是之前指导教师对他们集训时的内容,这种培训方式可以提升社团成员的授课和理解问题的能力,对于在校大学生来说是一次很好的锻炼。2、网络交流面采用qq群,网络空间和微信公众平台等开展社团成员之间的交流互动,社团宣传。笔者所在学校的数学建模创新协会每一届社团都有相应的qq群,另外,在20xx年也积极申请了微信平台,目前的'关注量也在800余人,微信平台的建立可以更方面使大学生关注数学建模相关信息,尤其是对大一新生可以更多的取了解数学建模,扩大数学建模的受益面和影响力。力求在大学生中营造一种“人人知数模,人人爱数模,人人参与数模”的良好的教育环境,使建模活动广泛化、群众化。3、交流互访面开展研讨会,专家报告会,社团联谊会等交流活动,既可以丰富数学建模社团学生的知识面,又能促进数学知识的理解和吸收,通过与其他社团的联谊,丰富了社团学生的业余生活,又能学习其他社团好的管理经验,促进社团管理的制度化、规范化、专业化,也只有通过不断的学习,不断的交流,才能真正“走出去”,建立一个管理完善,富有成效的学生社团。(二)数学建模社团的特色活动。数学建模社团在开展学术活动和辅助教师进行竞赛培训的同时,还不定期的举行一些活动,在提高学生学习兴趣的同时也以扩大了数学建模的影响力。以笔者坐在学校为例,每年可以开展一系列的数学建模活动。比如,数学建模创新协会纳新,数学建模创新协会趣味运动会,数学科技节,趣味数学知识竞赛,数学建模经验交流会,数学建模校内赛,数学辅导周,数学建模专题讲座。这些社团活动贯穿整个学年,不仅可以“由点及面、由浅入深”的对全国大学生数学建模竞赛进行宣传,在最大的范围内,提升数学建模大赛的影响力及参与度,成效较好。而且让枯燥的学术型社团变得丰富多彩,成为学生课后获取知识的一种平台,同时也是社团蓬勃发展的利器。

总之,数学建模社团活动的开展,有利于培养学生的创新意识和思维,有利于激发了学生的学习兴趣,有利于丰富学生的课后生活,有利于调动了学生参加学术型社团的积极性,同时也是高职院校组织参加数学建模竞赛的强有力的后盾。

[1]胡建茹,王摇娟.加强专业社团建设推进大学生创新实践能力培养[j].中国石油大学学报:社会科学版,20xx(12)。

[2]王珍娥,宋维,孙洁.数学社团建设的探索与实践[j].机械职业教育,20xx(7)。

[3]李湘玲,王泳兴.大学生社团发展与创新型人才培养互动机制研究:以吉首大学为例[j].黑龙江教育,20xx(11)。

[4]孙浩,叶正麟.西北工业大学数学建模创新教育之探索[j].高等数学研究,20xx(4)。

作者:张兰单位:西安航空职业技术学院通识教育学院。

数学建模课程论文篇十三

3.3增强选择数学模型的能力。

选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:

一次函数成本、利润、销售收入等。

二次函数优化问题、用料最省问题、造价最低、利润最大等。

幂函数、指数函数、对数函数细胞分裂、生物繁殖等。

三角函数测量、交流量、力学问题等。

3.4加强数学运算能力。

数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。

利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的`应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

数学建模课程论文篇十四

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。

数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。

1.准备阶段。

主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段。

做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段。

从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段。

对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段。

用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义。

(一)加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质。

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题,因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力。

数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

(三)加强数学建模教育有助于培养学生的创造性思维和创新能力。

所谓创造力是指"对已积累的知识和经验进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、记忆力、思考力、想象力四种能力所构成".现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。

很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程.

(四)加强数学建模教育有助于提高学生科技论文的撰写能力。

数学建模的结果是以论文形式呈现的,如何将建模思想、建立的`模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。

(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作.

三、开展数学建模教育及活动的具体途径和有效方法。

即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:

案例的选取和课堂教学的组织。

教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。

1.代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。

2.原始性:来自媒体的信息,企事业单位的报告,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。

3.创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。

案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的.

(二)开展数模竞赛的专题培训指导工作。

建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。

以现代网络技术为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。

完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近20年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。

如20xx年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约1万多个本科参赛队中脱颖而出的。又如20xx年我校57队参加全国大学生数学建模竞赛,43队获奖,获奖比例达75%,创历年之最。

(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛。

全国大学生数学建模竞赛创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。

四、结束语。

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。

数学建模课程论文篇十五

第一条,论文用白色a4纸打印(单面、双面均可);上下左右各留出至少2.5厘米的页边距;从左侧装订。

第二条,论文第一页为承诺书,第二页为编号专用页,具体内容见本规范第3、4页。

第三条,论文第三页为摘要专用页(含标题和关键词,但不需要翻译成英文),从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。摘要专用页必须单独一页,且篇幅不能超过一页。

第四条,从第四页开始是论文正文(不要目录,尽量控制在20页以内);正文之后是论文附录(页数不限)。

第五条,论文附录至少应包括参赛论文的所有源程序代码,如实际使用的软件名称、命令和编写的全部可运行的源程序(含excel、spss等软件的交互命令);通常还应包括自主查阅使用的数据等资料。赛题中提供的数据不要放在附录。如果缺少必要的源程序或程序不能运行,可能会被取消评奖资格。论文附录必须打印装订在论文纸质版中。如果确实没有需要以附录形式提供的信息,论文可以没有附录。

第六条,论文正文和附录不能有任何可能显示答题人身份和所在学校及赛区的信息。

第七条,引用别人的成果或其他公开的资料(包括网上资料)必须按照科技论文写作的规范格式列出参考文献,并在正文引用处予以标注。

第八条,本规范中未作规定的,如排版格式(字号、字体、行距、颜色等)不做统一要求,可由赛区自行决定。在不违反本规范的前提下,各赛区可以对论文增加其他要求。

第九条,参赛队应按照《全国大学生数学建模竞赛报名和参赛须知》的要求命名和提交以下两个电子文件,分别对应于参赛论文和相关的支撑材料。

第十条,参赛论文的电子版不能包含承诺书和编号专用页(即电子版论文第一页为摘要页)。除此之外,其内容及格式必须与纸质版完全一致(包括正文及附录),且必须是一个单独的文件,文件格式只能为pdf或者word格式之一(建议使用pdf格式),不要压缩,文件大小不要超过20mb。

第十一条,支撑材料(不超过20mb)包括用于支撑论文模型、结果、结论的所有必要文件,至少应包含参赛论文的所有源程序,通常还应包含参赛论文使用的`数据(赛题中提供的原始数据除外)、较大篇幅的中间结果的图形或表格、难以从公开渠道找到的相关资料等。所有支撑材料使用winrar软件压缩在一个文件中(后缀为rar);如果支撑材料与论文内容不相符,该论文可能会被取消评奖资格。支撑材料中不能包含承诺书和编号专用页,不能有任何可能显示答题人身份和所在学校及赛区的信息。如果确实没有需要提供的支撑材料,可以不提供支撑材料。

第十二条,不符合本格式规范的论文将被视为违反竞赛规则,可能被取消评奖资格。

第十三条,本规范的解释权属于全国大学生数学建模竞赛组委会。

说明:

(1)本科组参赛队从a、b题中任选一题,专科组参赛队从c、d题中任选一题。

(2)赛区可自行决定是否在竞赛结束时收集参赛论文的纸质版,但对于送全国评阅的论文,赛区必须提供符合本规范要求的纸质版论文(承诺书由赛区组委会保存,不必提交给全国组委会)。

(3)赛区评阅前将纸质版论文第一页(承诺书)取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(由各赛区自行决定是否使用)。评阅后,赛区对送全国评阅的论文在第二页建立“送全国评阅统一编号”(编号方式由全国组委会规定),然后送全国评阅。

【本文地址:http://www.xuefen.com.cn/zuowen/13214305.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档