人教版六年级圆柱的认识教案(实用20篇)

格式:DOC 上传日期:2023-11-19 06:53:05
人教版六年级圆柱的认识教案(实用20篇)
时间:2023-11-19 06:53:05     小编:文锋

在编写教案时,教师要合理选择教学方法和教学资源,以激发学生的学习兴趣和提高学习效果。教案内容要与学生的学习情况和课程标准相适应,符合教学实际。以下是小编为大家收集的教案范例,仅供参考,希望对大家的教学工作有所启发。

人教版六年级圆柱的认识教案篇一

一、教学目标:

1、认识圆柱,了解圆柱各部分名称,掌握圆柱的特征。

2、理解圆柱的侧面展开图与圆柱各部分的关系。

3、通过操作、观察、比较、探索,培养学生的分析、推理、判断能力。

二、教学重点难点:

1、教学重点:理解并掌握圆柱的特征。

2、教学难点:认识圆柱侧面的特征。  。

三、教具、学具准备:

圆柱体的实物模型、相应电脑课件  、尺子、细绳。

四、教学过程:

一、复习准备,引入新课。

1.(课件出示)长方体、正方体。

提问:这是什么图形?他们有什么特征?

师:这是我们以前学过的立体图形。

2.(课件出示)圆柱。

师:同学们请看这个物体又是什么形状?这就是我们今天要认识的一种新的立体图形----圆柱。

二、新授教学。

1.(课件出示)在日常生活中,人们把许多建筑物设计成圆柱形,增加立体感、美感。看------这些物体外形都是圆柱形。

2.教师提问:在日常生活中,你见过哪些物体是圆柱体?

3.课件展示实物图.

师:这些实物的形状都类似圆柱体。

4.揭示实物图,出现圆柱几何图形.

教师说明:这就是圆柱的几何图形。我们所学的圆柱都是直直的,上下粗细相同的直圆柱,我们叫它圆柱.

(二)圆柱的面、高。

1.分组活动,每人拿一个圆柱,摸一摸它的面.

2.互相交流,什么感觉.启发学生动手实验。

(课件出示)仔细观察,边看书思考:

(1)用手平摸上下两个面,有什么特点。

(2)用双手摸一摸圆柱周围的面,你发现了什么?

(3)圆柱一共有几个面?是那几个面?

(4)圆柱上下两个面之间的距离在哪里?

小组长汇报交流结果。

3.教师明确:

圆柱的上、下两个面叫做底面.

圆柱周围的面是一个曲面,叫做侧面。

两个底面之间的距离就是圆柱的高。

4.小组合作,动手动脑。

(课件出示):

(1)圆柱两底面的大小怎样?你有什么办法证明?

(2)用直尺量一量圆柱的高,你发现了什么?

各组汇报交流结果。

5.屏幕演示,证明学生的结果是否正确。

演示完后,让学说出自己的发现。(圆柱的两个底面是大小相等的两个圆。圆柱有无数条高。)。

(三)课堂练习(课件出示)。

1.指出下面图形中哪些是圆柱?

2.指出下列圆柱的底面、侧面和高。

(四)操作实验。

师:想不想知道圆柱侧面展开后是什么形状的?

1. 学生大胆猜想。

2. 课件演示。

提问:我们沿着罐头盒商标纸的一条高剪开,可以得到一个什么图形?(长方形)长方形的长和什么有关?宽和什么有关?(课件继续演示)通过观察,你又发现了什么?(学生总结)。

使学生明确:长方形的长等于圆柱底面的周长,宽等于圆柱的高.

提问:在什么情况下把圆柱的侧面展开得到一个正方形呢?正方形的边长就是什么呢?

(当圆柱的底面周长和高相等时,把圆柱的侧面展开得到一个正方形。正方形的边长就是圆柱的底面周长,也是圆柱的高。)。

师:那么老师想知道圆柱的侧面积有多大,该怎样计算呢?(圆柱的侧面积=底面周长x高)。

三、巩固练习。

1.读出下面个圆柱的有关数据。

2.判断。

(1)圆柱的高只有一条。(   )。

(2)上下两个底面相等的圆形物体一定是圆柱体。(   )。

(3)圆柱体底面周长相等和高相等时,沿着它的一条高剪开,侧面是一个正方形。(  )。

3.填空。

(1)圆柱的上下两个面叫做(   ),它们是(   )的圆形;周围的面叫做(   );圆柱两个底面之间的距离叫做(   )。一个圆柱有(      )条高。

(2)一个圆柱的侧面展开后得到一个长方形,长是12.56厘米,宽是3厘米。这个圆柱的底面周长是(   )厘米,高是(   )厘米。

(3)一个圆柱的侧面展开后得到一个正方形,边长是9.42厘米。这个圆柱的底面周长是(   )厘米,高是(   )厘米。

四、课堂小结。

今天这节课你学到了哪些知识?圆柱体有哪些特征?

五、实践作业。

人教版六年级圆柱的认识教案篇二

教学目标:知识与技能:认识圆柱的几何图形和圆柱的7。知道圆柱的各部分名称。理解圆柱的侧面展开图与圆柱各部分的关系。

过程与方法:经历由形象--表象--抽象的过程,体验从实物中抽象出图形的学习方法。经历圆柱侧面展开的操作过程,体验比较、发现、归纳的学习方法。

情感态度与价值观:感受从生活中学习数学的乐趣,激发学习兴趣,培养学生观察、概括、抽象的能力和实践能力。

教学重点:圆柱的特征和各部分名称。

教学难点:认识圆柱侧面展开图和展开图与圆柱各部分的关系。

教学过程:

一、创设情景。

1、师:出示圆柱和非圆柱的物体,观察可以分成几了几类?

生:观察、思考、请生汇报。

师:指住圆柱一类,请生观察这些物体的形状有什么共同特点?

生:观察、交流、汇报。

生:思考、汇报,评价。

师:下面这些物体的形状是圆柱吗?

电线杆、粉笔、茶叶筒、通风管。

生:自己判断、同桌交流验证。

师:关于圆柱你想知道什么?

生:思考提出问题。

二、构建新知。

1、认识圆柱的各部分名称。

师:请生拿出准备好的圆柱,观察由几部分组成?

生:观察、交流、汇报。

师:看书验证我们刚才的想法。

生:看书验证。

师:提问什么叫做底面?什么叫做侧面?什么叫做圆柱的高?

生:边指边回答师的问题。

师:出示圆柱的立体图形,请生上台用色粉笔涂出底面、侧面、高。

生:思考、汇报、评价。

师:圆柱的各部分有什么特征?

生:观察手中的圆柱,找出底面、侧面、高的特征,同桌交流各自的想法。而后请生汇报,评价,补充。

(板书:大小一样的两个圆、曲面、有无数条高)。

师:怎么证明上下两个底面大小一样?

生:说自己的想法。

师:我们做个小游戏好吗?(书11页的转动游戏)。

生:动手做游戏。

师:你看到了什么?

生:说自己观察到的形状。

师:练习11页的做一做。

生:同桌男生指给女生看,女生判断正误。

2、教学圆柱的侧面展开图。

师:圆柱的侧面是个曲面,请同学们想象一下圆柱的侧面展开是什么形状?

生:思考、讨论、交流、汇报、评价。

师:我们一起来验证好吗?请生上台一边说一边动手剪给学生们看。

生:汇报,补充,评价。

生:再次讨论、交流、汇报,评价。

师:请生上台一边指一边说给学生们听。(板书:长=圆柱底面的周长、宽=圆柱的高)。

生:再一次自己边指边口述。

三、课堂小结。

师:这节课你有什么收获?你还有什么新的发现?

四、课后小制作12页的做一做。

人教版六年级圆柱的认识教案篇三

1.使学生了解圆柱的特征,知道圆柱的底面及其直径和半径,圆柱的高,圆柱的侧面积及它的展开图。

2.通过观察,认识圆柱并掌握它的特征,建立空间观念。

教学重难点。

重点:理解掌握圆柱的特征。

难点:1.建立空间观念。2.弄清圆柱侧面是一个长方形(正方形),长方形的长和宽与圆柱底面周长和高的关系。

教学工具。

多媒体课件圆柱的模型茶叶桶等圆柱形实物。

教学过程。

一、自主探究。

(一)学生自行看课本。

1、圆柱由哪些部分组成?

2、圆柱有几个底面?几个侧面?几条高?

3、你能说出圆柱的特征吗?

4、长方形或正方形沿一条边旋转会形成不同的圆柱体,不妨自己一试。

(二)同桌互说p11做一做。

(三)找一个圆柱。

1.感触一下圆柱的面。

(1)用手平摸上下底,有什么特点。

(2)用笔画一画,上下底面积有什么特点。

(3)用双手摸侧面。

2.明确:圆柱的上、下两个面叫做底面。它们是两个完全相同的两个圆。

圆柱的侧面,是一个曲面。

圆柱的高。出示高、低不同的两个圆柱。

用直尺和三角板演示圆柱的高。

使学生明确:圆柱两个底面之间的距离叫做高。

二、合作交流。

小组共同互说:

1、圆柱侧面展开是什么样?

2、圆柱有何特征?详细说一下。

三、汇报释疑整理消化。

教材p15练习二4。

四、实践应用拓展延伸。

1.教材p12做一做;。

2.p15练习二1----3。

人教版六年级圆柱的认识教案篇四

教学内容:

九年义务教育六年制小学数学第12册33~34页例1、例2、例3的“做一做”及练习七的`第2~5题。

教学目标:

1、知识目标:理解圆柱的侧面积和表面积的含义;掌握圆柱的侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积。

2、能力目标:能灵活运用求表面积、侧面积的有关知识解决一些实际问题。

3、德育目标:渗透事物之间联系的辩证唯物主义观点,使学生感悟到数学知识内在联系的逻辑之美,增强审美意识。

教学重点:理解求表面积、侧面积的计算方法,并能正确进行计算。

教学难点:能灵活运用表面积、侧面积的有关知识解决实际问题。

教学设想:

本课是在学生认识了圆柱,学习了圆、长方形等几何图形的基础上进行的。通过学习可以发展学生的观念,提高学生解决实际问题的能力。并为以后学习圆柱的体积计算打下良好的基础。本节课由于学生缺乏空间想象能力,计算繁琐,易使学生感到枯燥无味。因此,我在教学中充分调动学生的积极主动性,让学生在自主动手操作中发现问题,自主探索解决问题的途径以解决所遇到的数学问题。

遵循学生的认知规律,组织合理有效的教学程序。

(1)抓住关键,动手操作,突破难点。

圆柱的表面积等于侧面积加两个底面积的和,圆柱的底面是两个相等的圆。对于圆面积的计算是学生已有的知识,学生以前学过的面都是“平面”而圆柱的侧面却是个“曲面”。怎么样才能求出这个“曲面”的面积就成了圆柱表面积教学过程中的难点。于是让圆柱的侧面“由曲变直”,使新知识在一定的条件下统一起来就成了一个关键性的问题。通过教具演示,把侧面展开可以使侧面“由曲变直”,但学生缺乏这方面的生活经验,接受起来思维障碍较大。所以我反其道而行之,采用实验法,让学生卷一卷、分一分,把一张长方形的纸卷成一个尽可能粗的圆柱形的纸筒。使学生在操作的过程中感知:在一定的条件下,平面也可以“由直变曲”,那么反过来曲面当然也可以“由曲变直”。又经过引导学生观察、比较,讨论长方形纸的长和宽与用它卷成的圆柱形纸筒的底面周长和高的关系,学生认识圆柱的侧面已经水到渠成,得到圆柱的侧面积等于底面周长乘以高。

这样抓住新旧知识内在联系,安排学生动手操作,引导学生在发现问题后及时动脑思考,不仅激发学生兴趣,同时也促进了学生思维能力的发展。

(2)及时练习,巩固提高,形成能力。

学生的能力主要表现在获取知识和应用知识的过程中。求圆柱侧面积,由于已知条件的不同,有多种不同的计算方法,但用圆柱的底面周长乘以高是最直接的方法,通过练习处理好新知识与旧知识的结合,解决好已有技能在新情况下的运用,将对培养学生分析综合的能力,减轻学生的记忆负担起重要作用。因此,我在引导学生推导出圆柱侧面积的计算方法之后,及时安排了练习,使学生通过练习牢固掌握求圆柱侧面积的基本方法。对于题中没有直接告诉底面周长的,并没有一一进行方法的指导,只需把基本方法加以推广,知道如果没有直接告诉底面周长时,应用已知底面直径(或半径)求周长的方法,先求出底面周长,然后再求侧面积就可以了。这样就提高了学生运用基本数学知识灵活解决实际问题的能力,并减轻了学生学习中不必要的记忆负担。这一点既减轻学生过重负担又提高课堂教学效率。

(3)通过讨论,多向交流,培养独立思考能力。

为提高课堂教学效率,培养学生能力,我在教学中注意研究如何引导学生独立钻研问题。对于课本上的例题,可以提供给学生作为讨论和思考的材料,都尽量让学生独立去探讨。因此,教学时提出了“除了侧面外圆柱还有几个面?”“什么叫做圆柱的表面积?”“怎么样求圆柱的表面积?”等三个问题让学生分组讨论,进行独立的探索。在“怎么样求圆柱的表面积?”这个问题时,有的同学得出圆柱的表面积等于侧面积加上两个底面积;有的同学则会联系圆的面积公式推导过程,把圆柱的两个底面分成若干个小扇形后拼成一个与侧面同长的长方形,然后与侧面再拼成一个大长方形,那么整个圆柱的表面积=底面周长×(圆柱的高+底面半径),用字母表示即s=2лr×(h+r)。这样学生不仅亲自参与了对新知的探索使知识掌握得更加牢固,还对旧知进行再创造并萌发了创新意识,培养了学生的创新思维和创新能力。

(4)联系生活,迁移知识,感悟生活数学乐趣。

小学数学的教学内容绝大多数可以联系学生的生活实际,教师应找准每节教材内容与学生生活实际的“切入点”,调动学生学习数学的兴趣和参与的积极性。所以在教完例2后,我让学生举例说出日常生活中,哪些物体是没有两个底面的圆柱体。出示例3让学生认真审题,并说水桶有几个面,再计算出用了多少材料,学生计算完后,要求得数保留整百平方厘米。启发学生看书发现新问题,讨论计算使用材料取近似值时,要用“四舍五入”法还是用“进一法”。从而使学生理解“进一法”的意义。接着出示拓展延伸练习:制作一个高1.5米,直径0.2米的圆柱形烟囱,需要多少平方米铁皮?最后让每一位学生小组合作制作一个圆柱体水桶并评选出最佳作品展示。

课堂小结后,我提出“大家想一想,还有什么办法能求出计算圆柱体的表面积?”(例如,可以把圆柱切开,拼成近似的长方体,由长方体的表面积计算公式推导出圆柱的表面积计算公式)这个问题让学生知道了解决问题的方法是多种的,也有利于挖掘优生的潜能,还能为求圆柱的体积埋下伏笔。

总而言之,这节课充分调动了学生的手、眼、口、脑,借助学具让学生动手去实践,动脑去想,发现问题,解决问题。

人教版六年级圆柱的认识教案篇五

1、合理的利用教材。

圆柱体的表面积这部分教学内容包括:圆柱的侧面积,表面积的计算,表面积在实际计算中的应用。上老师在进行教学时,将侧面积计算方法的推导作为教学难点来突破,将表面积的计算作为重点来教学。教学设计和安排既源于教材,又不同于教材。整堂课容量较大,但学生学的轻松,教学效果也比较明显。

2、教师的主导与学生主体的统一。

本堂课在教学上采用了引导、放手、引导的方法,通过教师的导,鼓励学生积极主动的探究。

新课前的复习,由平面图形到立体图形,由长、正方体的表面积到圆柱体的表面积。通过圆柱体模型的演示,引导学生复习圆柱体的特征,进而理解圆柱体的表面积的.意义。

在教学侧面积的计算时,先让学生思考该怎样计算,再让学生动手探究。在实践中,学生很清楚地看到圆柱体的侧面展开是一个长方形(正方形、平行四边形等),求圆柱体的侧面积实际上就是求一个长方形的面积。

在学生会求侧面积的基础上,再加上两个圆面积,从而总结出求表面积的计算方法,使学生认识到立体转平面,形变量不变的辨证关系,培养学生的观察分析能力。

二、不足。

圆柱体的物体在生活中很普遍,如学生的透明胶带,矿泉水瓶盖等,让学生动手测量这些物体的有关数据,解决实际问题,学生的兴趣会更高写,也让数学回归到生活。

练习中,出现三个不同直径的圆,而出示的图片却是三个圆同样大,直观效果不明显。

人教版六年级圆柱的认识教案篇六

3、会正确计算圆柱的侧面积和表面积、

教学重点。

理解求表面积、侧面积的计算方法,并能正确进行计算、

教学难点。

能灵活运用表面积、侧面积的有关知识解决实际问题、

教学过程。

一、复习准备。

(一)口答下列各题(只列式不计算)、

1、圆的半径是5厘米,周长是多少?面积是多少?

2、圆的直径是3分米,周长是多少?面积是多少?

(二)长方形的面积计算公式是什么?

(三)回忆圆柱体的特征、

二、探究新知。

(一)圆柱的侧面积、

1、学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系、

(二)教学例1、

1、出示例1。

例1、一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积、(得数保留两位小数)。

2、学生独立解答。

教师板书:3.14×0.5×1.8。

=1.75×l.8。

≈2.83(平方米)。

答:它的侧面积约是2。83平方米、

3、反馈练习:一个圆柱,底面周长是94。2厘米,高是25厘米,求它的侧面积、

1、教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积、

2、比较圆柱体的表面积和侧面积的区别、

(四)教学例2、

1、出示例2。

例2、一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?

2、学生独立解答。

侧面积:2×3。14×5×15=471(平方厘米)。

底面积:3。14×25=78。5(平方厘米)。

表面积:471+78。5×2=628(平方厘米)。

答:它的表面积是628平方厘米、

3、反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积、

(五)教学例3、

1、出示例3。

例3、一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)。

2、教师提问:解答这道题应注意什么?

3、学生解答,教师板书、

水桶的侧面积:3。14×20×24=1507。2(平方厘米)。

水桶的底面积:3。14×。

=3。14×。

=3。14×100。

=314(平方厘米)。

需要铁皮:1507。2+314=1821。2≈1900(平方厘米)。

答:做这个水桶要用1900平方厘米、

5、“四舍五入”法与“进一法”有什么不同、

(2)“进一法”看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一、

三、课堂小结。

四、巩固练习。

(一)求出下面各圆柱的侧面积、

1、底面周长是1。6米,高是0。7米。

2、底面半径是3。2分米,高是5分米。

(二)计算下面各圆柱的表面积、(单位:厘米)。

(三)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积、(有盖和无盖两种)。

五、课后作业。

(二)一个圆柱的侧面积是188。4平方分米,底面半径是2分米,它的高是多少分米?

六、板书设计。

探究活动。

面包的截面。

活动目的。

培养学生的观察能力和操作能力,发展学生的空间观念、

活动题目。

有一个圆柱形的面包,要切一刀把它分成两块,截面会是什么形状的图形?

活动过程。

1、学生分组讨论、

2、利用橡皮泥捏一个圆柱体,进行实验,验证结论、

3、画出截面图,表示结论,发展空间观念、

参考答案。

1、沿水平方向横切一刀,截面是圆形、(如图1)。

2、沿垂直方向纵切一刀,截面是一个长方形、(如图2)。

3、沿侧面斜切一刀,会形成大小不一的椭圆形、(如图3)。

4、从顶面向侧面斜切一刀,会形成椭圆的一部分、(如图4)。

5、从上底面斜切一刀到下底面,会形成椭圆的一部分、(如图5)。

(图1)(图2)(图3)(图4)(图5)。

人教版六年级圆柱的认识教案篇七

2.掌握圆柱侧面积和表面积的计算方法.。

3.会正确计算圆柱的侧面积和表面积.。

教学重点。

理解求表面积、侧面积的计算方法,并能正确进行计算.。

教学难点。

能灵活运用表面积、侧面积的有关知识解决实际问题.。

教学过程。

一、复习准备。

(一)口答下列各题(只列式不计算).。

1.圆的半径是5厘米,周长是多少?面积是多少?

2.圆的直径是3分米,周长是多少?面积是多少?

(二)长方形的面积计算公式是什么?

(三)回忆圆柱体的特征.。

二、探究新知。

(一)圆柱的侧面积.。

1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系.。

(二)教学例1.。

1.出示例1。

例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积.(得数保留两位小数)。

2.学生独立解答。

教师板书:3.14×0.5×1.8。

=1.75×l.8。

≈2.83(平方米)。

答:它的侧面积约是2.83平方米.。

3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积.。

1.教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积.。

2.比较圆柱体的表面积和侧面积的区别.。

(四)教学例2.。

1.出示例2。

例2.一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?

2.学生独立解答。

侧面积:2×3.14×5×15=471(平方厘米)。

底面积:3.14×=78.5(平方厘米)。

表面积:471+78.5×2=628(平方厘米)。

答:它的表面积是628平方厘米.。

3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积.。

(五)教学例3.。

1.出示例3。

例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)。

2.教师提问:解答这道题应注意什么?

3.学生解答,教师板书.。

水桶的侧面积:3.14×20×24=1507.2(平方厘米)。

水桶的底面积:3.14×。

=3.14×。

=3.14×100。

=314(平方厘米)。

需要铁皮:1507.2+314=1821.2≈1900(平方厘米)。

答:做这个水桶要用1900平方厘米.。

5.“四舍五入”法与“进一法”有什么不同.。

(2)“进一法”看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一.。

三、课堂小结。

人教版六年级圆柱的认识教案篇八

师:非常好!我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。

生1:互为倒数的两个数分子和分母调换了位置。

师:同意吗?

生:同意。

生:如果把0.25化成分数就是1/4,4就可以看成4/1,分子和分母也调换了位置。

生:老师,如果分子是0的话,怎么办?

师:这个问题我们记着,待会解答好吗?

生:好。

师:根据这一特点你能写出一个数的倒数吗?

生:能。

师:试一试!

师在黑板上出示3/57/2,写出它们的倒数。

生汇报,并汇报写的方法。

师生一起小结:求一个数的倒数,只要把分子分母调换位置。(板书)。

师:那18的倒数是什么?它可是没有分子和分母呀?

生:把18看成是分母是1的分数,再把分子分母调换位置。

师根据学生的回答及时板书。

师:那1又2/7的倒数呢?

生思考。

生1:1又2/7的倒数是1又7/2。

生2:不对,要先把1又2/7化成假分数9/7,再交换位置。1又2/7的倒数是7/9。

师:哪个答案才是正确的呢?

我们一起来检验检验。

怎么检验呢?(生齐说看它们的乘积是不是1。)。

师板书乘法算式,计算带分数乘法时,要先把带分数化成假分数,……。

生1:老师,两个带分数相乘我们不用去计算,因为带分数大于1,两个带分数相乘的积肯定要大于1。

师:你分析得很透彻,不错,同学们,给她掌声。

师生一起算1又2/7×7/9=1,得出1又2/7的倒数是7/9。然后小结求带分数的倒数的方法。

师:再来一题:0.2的倒数是()。

生1:把0.2先化成分数是1/5,所以它的倒数是5。

生2:我还可以想:0.2和几相乘的乘积是1?0.2×5=1,所以0.2的倒数是5。

师:你根据倒数的意义来求它的倒数,这种方法也不错。

那0.3的倒数呢?

一学生很快举起了手:我就想0.3和几相乘的乘积是1?……哦,不行,还是要把0.3化成分数来求它的倒数。0.3的倒数是10/3。

师:看来我们求小数的倒数一般方法要……(学生齐说)。

师:那1的倒数是几呢?(学生很快就说出来了,并说明了理由)。

0的倒数呢?

生1:0。

生2:不对,没有。

师:为什么?

生1:因为0和任何数相乘都得0,不可能得1。

师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、……把这此分数的分子分母调换位置后。。。。。。(生齐:分母就为0了,而分母不可以为0。)。

师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

生1:求一个数的倒数,只要把分子分母调换位置。

生2:如果是求一个带分数的倒数要先化成假分数;是求一个小数的倒数要先化成分数(师补充,而且是一个最简分数);如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。

师:如果是一个真分数或假分数呢?

生:只要把分子分母调换位置就行了。

师:看看我们的板书还要加上什么?

生:0除外,因为0没有倒数。

生齐读求一个数倒数的方法。

人教版六年级圆柱的认识教案篇九

教学过程:

(1)导入。

师:上课之前我们先来玩一个游戏,现在讲台桌上摆有五个盒子,老师请五名同学上来摸一摸盒子里装的东西,每人摸一个盒子,并将你摸的感觉记在心里。(五名学生摸)。

师:现在老师请摸盒子的同学说说你摸的感觉,再猜猜它是什么形状的物体?

师:第一个盒子?

生1:它摸起来方方正正的,是长方体。

师:好,摸第二个盒子的同学你也来说说。

生2:我摸起来它的每个面都一样,我猜是正方体。

师:摸第三个盒子的同学呢?

生3:感觉像柱子。

师:摸第四个盒子的同学呢?

生4:尖尖的,是我们没学过的物体。

师:第五位同学?

生5:我摸到了一个球。

生:长方体、正方体、圆柱、圆锥、球体。

生:好。(板书课题:圆柱的认识)。

(2)联系生活。

师:在生活中,你看到过哪些近似这种形状的物体?

生1:装茶叶的罐子,还有可乐罐。

生2:象我手上的这个罐子。

生自由说,并可以展示自己所带的圆柱体实物。

师:现在请同学们看屏幕上的这些物体,它们的形状也都是圆柱形的,我们现在所讲的圆柱都是直圆柱。(板书:直)所谓的直圆柱就是指从上往下看粗细,宽度都一样的圆柱。你们想认识圆柱的几何图形吗?接着看屏幕。(课件出示)。

(3)观察发现。

师:现在请同学们拿出自己准备的圆柱体,摸一摸、看一看或者量一量你手中的圆柱,说说你感受到了什么,发现了什么?把你的发现在小组内说一说。(学生讨论)。

师:谁愿意把你的发现跟大家说说?

学生汇报:

生1:我发现圆柱上下两个面是平的,而且是两个大小相等的圆。

(师板:上、下面       圆形      相等)。

生2:要是把圆柱剪开可以得到一个长方形。

(师板:圆柱      长方形)。

生3:我量出它的高长12厘米。(师板:高=12厘米)。

生4:它旁边的面不是平的,像书卷起来一样。(师板:旁边的面不是平的)。

生5:旁边的面是弯的,叫侧面。(师板:侧面)。

师:还有同学有不一样的发现吗?或者要做补充的。

生6:圆柱的高有无数条。(板书:高      无数条)。

生7:剪开的长方形的长等于圆柱的底面周长,宽等于圆柱的高。

(板书:长=圆柱的底面周长   )。

宽=圆柱的高。

(4)动手验证。

师:刚才老师已经把大家的发现都写下来了,那这些发现是不是都是正确的?同学们能利用自己手上的工具,想办法验证一下吗?小组间可共同验证。

(学生动手验证)。

生:底面。

师:你是怎样验证出两底面是面积相等的圆形的?

生1:我是先把一个面画在纸上,然后再把另一个面画下来,刚好会重合。

师:其他同学你们认为这个方法可以吗?

生:可以。

师:你可以上黑板演示给同学们看吗?可做一定的讲解。

(生演示讲解)。

师:讲得很好,我们给他表扬一下。(生鼓掌)。

(板书:底面     圆形      相等)。

2、师:接着,哪位同学你能说说你是怎样验证侧面的?

生2:我用纸卷一下可以看出它是弯的。

师:还有不同的方法吗?

师:这个弯的面叫曲面。(板书:侧面     曲面)。

人教版六年级圆柱的认识教案篇十

1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。

2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。

3、培养学生的合作意识和主动探求知识的学习品质和实践能力。

教学重难点。

教学难点:圆柱体侧面积计算方法的推导。

教学工具。

ppt课件。

教学过程。

一、检查复习,引入新课(复习圆柱体的特征)。

1、复习圆的周长与面积公式、长方形的面积公式。

2、师:上节课,我们认识了一个新的几何形体——圆柱。知道它是由平面和曲面围成的立体图形。

引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。

二、引导探究,学习新知。

(一)教学圆柱表面积的意义。

设疑:长方体6个面的总面积,叫做它的表面积。哪些面的总面积是圆柱体的表面积呢?

板书:底面积×2+侧面积=表面积。

要求圆柱的表面积,首先应该计算它的底面积和侧面积。

(二)根据条件,计算圆柱的底面积。

圆柱的底面是圆形,同学们会求它的面积吗?

(多媒体逐一出示圆柱及条件,求它的底面积,并记录结果。)。

条件:(厘米)r=3d=4c=31.4。

底面积(平方厘米)28.2612.5678.5。

(三)教学圆柱体侧面积的计算。

1、引导探究圆柱体侧面积的计算方法。

(2)小组合作探究。(剪圆柱形纸筒)。

(3)汇报交流研究结果,多媒体课件展示。

(4)小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。

2、计算圆柱体的侧面积。

多媒体回到前面三个圆柱,逐一给出三个圆柱的高,求它的侧面积。并把结果记录下来。

条件(厘米)h=5h=8h=10。

侧面积(平方厘米)94.2100.4862.8。

1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?

2、学生根据数据进行计算?

3、汇报计算方法及结果,媒体出示结果进行验证。

表面积(平方厘米)150.72125.669.08。

(五)小结:圆柱表面积的意义及计算方法。

三、练习巩固,灵活运用。

1.求下面圆柱的侧面积。

(1)底面周长是1.6m,高是0.7m。

(2)底面半径是3.2dm,高是5dm。

四、总结反思,畅谈收获。

这个课你收获了什么?

板书。

长方形的面积=长×宽。

人教版六年级圆柱的认识教案篇十一

肖老师的这堂课总的来说准备充分,如教师的教具,学生的学具,以及各种不同类型的练习;教师语言精练,教态自然大方,难点突破,重点突出,练习有坡度。

具体如下:

一、优点。

1、合理的利用教材。

圆柱体的表面积这部分教学内容包括:圆柱的侧面积,表面积的计算,表面积在实际计算中的应用。上老师在进行教学时,将侧面积计算方法的推导作为教学难点来突破,将表面积的计算作为重点来教学。教学设计和安排既源于教材,又不同于教材。整堂课容量较大,但学生学的轻松,教学效果也比较明显。

2、教师的主导与学生主体的统一。

本堂课在教学上采用了引导、放手、引导的方法,通过教师的导,鼓励学生积极主动的探究。新课前的复习,由平面图形到立体图形,由长、正方体的表面积到圆柱体的表面积。通过圆柱体模型的演示,引导学生复习圆柱体的特征,进而理解圆柱体的表面积的'意义。在教学侧面积的计算时,先让学生思考该怎样计算,再让学生动手探究。在实践中,学生很清楚地看到圆柱体的侧面展开是一个长方形(正方形、平行四边形等),求圆柱体的侧面积实际上就是求一个长方形的面积。在学生会求侧面积的基础上,再加上两个圆面积,从而总结出求表面积的计算方法,使学生认识到立体转平面,形变量不变的辨证关系,培养学生的观察分析能力。

二、不足。

圆柱体的物体在生活中很普遍,如学生的透明胶带,矿泉水瓶盖等,让学生动手测量这些物体的有关数据,解决实际问题,学生的兴趣会更高写,也让数学回归到生活。练习中,出现三个不同直径的圆,而出示的图片却是三个圆同样大,直观效果不明显。

人教版六年级圆柱的认识教案篇十二

1、授课内容:

人教版第12册第二单元第38面至39面(圆柱的认识)、做一做、练习十的第1题

2、教学内容的地位、作用和意义

圆柱是一种常见的立体图形,在日常生活和生产中有着广泛的应用,学生对它已经有了初步的感性认识。

本单元是小学阶段学习几何知识的最后一部分内容,圆柱的认识是本单元的起始教材,是学生在学习圆和长方体、正方体的基础上来认识的。学生认识圆柱,了解圆柱各部分名称,掌握圆柱的特征是以后学习圆柱的表面积、体积以及圆锥和球的认识的基础;更有利于进一步发展学生的空间观念,为进一步学习和解决实际问题打下基础。

可见,圆柱的认识教学在后继的几何教学中起着至关重要的作用,要引导学生切实学好。

3、教学目标的确定:

(1)使学生认识圆柱,了解圆柱各部分名称,掌握圆柱的特征

(2)通过操作、观察、比较、探索,培养学生的分析、推理、判断和空间想象能力,理解事物间的相互联系,进一步强化学生的立体观念。

4、教学内容的编排特点及教学重点、难点

本节课教学内容是这样编排的:教材首先从直观入手,通过对常见的圆柱实物观察,使学生认识圆柱的形状,并从实物中抽象出圆柱的几何图形,然后介绍圆柱的各部分名称,说明圆柱的上、下两个面是平的,是两个相同的圆面,叫做圆柱的底面。对于圆柱侧面的认识,先通过观察和用手摸,知道圆柱的侧面是一个曲面。再把圆柱侧面展开,使学生了解圆柱侧面的展开土是长方形,以及它的长与宽跟圆柱底面周长与高的关系。可以看出,理解并掌握圆柱的特征是本课的教学重点,而认识圆柱侧面的特征是本课的教学难点。

5、教具准备

师:圆柱体的实物、模型和相应电脑软件

生:自带贴有标签纸的圆柱形物体;剪刀、线、尺。

依据教材编排特点和学生已有知识基础,本节教学的基本教学思路是:联系比较,建立表象——导引结合,探索新知——强化练习,巩固新知。为了体现这一教学思路,实现教学目标,教学时拟用“导探结合法”为主进行教学。

充分利用课前5分钟,通过师生比赛说长方体的有关知识,既复习了旧知,又激发了学习兴趣。

在导引结合,探索新知时,改变以往怕出偏差、怕学生自己弄不懂而不敢放手的做法,根据学生以形象思维为主的特点,充分利用学生已有的认知基础和他们已掌握的操作方法和方式,循着学生的思路去引导、去释疑、去点拨,创设有利于学生主体活动的情景。结合“观察、比较、操作、发现”的学法指导,引导学生在自己动手摸、比、看的过程中,利用知识的正迁移,把认识长方体的方法和认识圆柱联系起来,发挥学生想象:如学生想到长方体有底面、侧面和高,那么圆柱有没有底面、侧面和高?长方体的对面相等,圆柱的两个底面会不会相等?圆柱本身还独具有什么特征?让学生在观察、操作中发现知识的异同点、转化点,使学生的思维进入发展区。

充分利用学生好动、好说、好表现的年龄特点,教学时,让学生在摆一摆、摸一摸、剪一剪、比一比的过程中,采用发言、讨论、复述、交流、演说等形式,让学生多角度、多形式地表达自己的思维过程,如在探讨圆柱上下底面为什么相等的方法时,学生通过操作后可能会出现下面几种说法:

(1)把两个圆剪出来比较;

(3)量出它们的直径或半径进行比较;

(4)用线圈上、下底面的周长来比较等。在讨论圆柱的侧面时,学生通过操作比较,说出圆柱侧面的特征后,可能有学生会提出,圆柱侧面展开图也有可能是正方形或平行四边形,教师应给予肯定和鼓励,并让学生说说是怎样做的和展开后的图形与原来圆柱之间又有什么关系。这样,既加深了学生对圆柱的各部分名称和特征的认识,又有效地培养学生的口头表达能力、学习能力和逻辑思维能力。

针对学生好新、好奇、思维活跃、有意注意持久性差的特点,在教学过程中,恰当借助电脑的多媒体作用,如演示把实物图抽象为立体图、上下两圆相同、高处处相等和圆柱的侧面展开过程等,让学生在观察中,把对圆柱的特征的感性认知升华为理性认知。同时,配合教师丰富的情感,从而调动了学生的学习兴趣,活跃了课堂气氛。

认知心理学认为:学生的学习过程,是一个把教材知识结构转化为自己认知结构的过程,为了实现这个过程,还要通过有效的练习,才能使所形成的认知结构更加完善和充实。所以,在新课授完后,教师安排了针对性练习和发展性练习,进一步强化学生的感知基础。

这样,让学生在动手、动脑、动口中参与探索、分析、说理、概括的全过程,实现了在获取知识的同时发展学生的能力,使课堂教学得到优化。通过本节的教学,力求使学生实践和掌握一些基本的学习方法:参与知识形成的全过程、自主探索新知的方法;学会观察、分析、比较知识、抽象概括知识的本质属性的方法;自学课文质疑问难独立学习的方法。从而提高学生的创新精神和实践能力。

为了体现教法和学法,教学过程我是这样安排的:

(课前5分钟,师生进行比赛:(看谁对长方体了解得多))

师:我说这个铁罐(举出)的形状像长方体。

生:我说橡皮的形状像长方体。

师:我说长方体有六个面。

生:我说长方体有八个顶点。

(一)、联系比较、建立表象

1、初步感知,建立表象

师:课前我们初步复习了长方体的各部分名称(构造)和特征。(板书:构造特征)

(1)观察:

师:(师拿出一个用红布蒙着的.圆柱笔筒,揭开布)这个物体的形状还能称为长方体或正方体吗?你们知道这是什么吗?(板书:圆柱),它还有一个名字叫做笔筒,今天老师准备把它作为一件礼物,送给大家,谁想得到它呢?看谁表现得好就送给谁。这个笔筒的形状是圆柱(教师再出现几个圆柱模型)学生拿出形状是圆柱的实物。

(2)举例:谁来说一说,在生活中,还有哪些物体的形状也是圆柱形的?

(3)认识立体图

闭起眼睛,在脑子里想象一个圆柱的形状,如果我们把观察和想到的圆柱形状画成立体图会怎样呢?(电脑演示,贴出立体图)

(二)、导引结合、探究新知

引入:刚才,同学们举出了好多例子,这说明了在生活和生产中我们离不开圆柱,我们更应该来认识它!(板书:的认识)

1、请你来说一说,你想认识圆柱些什么?

(现在,我们就随着这些想法一起来认识圆柱,好不好?)

2、初步感知

(1)看看、摸摸,同桌讨论:圆柱体有几个面?这些面怎样?

(2)初步反馈:圆柱体有三个面,其中有两个面是平面,是完全相同的两个圆,叫做圆柱的底面;还有一个面是曲面,叫做圆柱的侧面。(在立体图上标明)(学生闭起眼睛摸手中的圆柱,并说出它的各部分名称)

(3)请你猜想一下,哪两个面是一样的,你是怎样知道的?可用什么方法来证明?

引导学生从下面几点来说明:

1、剪出来比较;

2、量半径、量直径;

3、量周长;

4、沿着模型在纸上画出一个圆,再把模型倒换过来比较。(媒体演示,上下底面重叠过程)(教师说明:今天我们研究的都是像这样上下一样的粗细的,直直的圆柱。)

(4)学法指导。(板书:观察、猜想、操作、发现)

(5)联系比较,强化感知:(媒体出示:)

4、圆柱的高

(1)指上题中高、低两个圆柱问:哪个圆柱高,哪个低?想想,这与圆柱的什么有关?(引导学生得出:圆柱的高低与圆柱两个底面之间的距离有关。)

(2)怎样测量着两个底面之间的距离呢?

通过圆柱的纵切模型引导学生感知应该测量两底面圆心的距离最科学,它叫做圆柱的高。同时媒体演示,使学生知道:圆柱的高也可以表示在圆柱的侧面上来。(师在立体图上表示出高,学生在自己的圆柱上画高。)

(3)重复刚才的媒体操作,问:你还发现圆柱的高有什么特征?你是还可以怎样得到?(有无数条高,长度都相等。

(1)纵切面是长方形,可以有无数条高;

(2)侧面上可以做无数条高;

(3)两底面之间处处可以做高)

5、圆柱的展开图

(1)圆柱的两个底面都与侧面相交,观察一下,上面的平面与侧面相交形成那条线?这条线就是底面的什么?下底面也如此。

(2)侧面是围起来的一个曲面,如果沿着它的一条高剪开,再展开,你能想象出侧面会变成一个什么平面图形吗?(长方形或者正方形)(学生动手操作)(媒体演示)

(3)同桌讨论这个长方形的长、宽与圆柱有什么关系?(学生回答,教师板书:)(媒体演示)

(三)教学小结

圆柱的认识和教学告一段落后,为了给学生一个完整而深刻的印象,教师要有意识地组织学生看板书,总结学到的知识。

(学生:通过学习,我懂得了……)

(四)、强化练习、巩固新知

1、针对性练习

做一做

2、发展性练习

(2)一张正方形纸边长20厘米,来围成一个圆柱的侧面?它们之间又有什么关系?

(五)、总结整理、深化新知:

1、指导学生阅读课文,进一步把握知识要点,再次进行质疑问难。

2、归纳本节学了哪些知识,学会了什么,怎样学,达到强化新知,掌握方法的目的。

(六)、作业

用硬纸做一个底面半径为2厘米,高5厘米的圆柱。

人教版六年级圆柱的认识教案篇十三

1、拿出圆柱和圆锥,说说它门的特点。

2、你能找出生活中有哪些物体是圆柱和圆锥形的吗?

3、现在我们首先来研究圆柱。

(1)请以小组为单位,仔细观察桌上的圆柱,看看它有哪些特点。(提示:从面、棱、顶点和高这几方面来研究。)。

(2)请一位同学代表你们组来说说你们发现了什么?

(3)老师现在有问题要问大家:圆柱上下两个圆有什么关系,怎样验证?

(4)我们称这两个圆为圆柱的底面,也就是说圆柱有两个底面,一个侧面。

(5)圆柱的高指什么?你有办法测量吗?说明圆柱有多少条高,长度有说明关系?

(6)谁能完整的说一下圆柱的特征。

1、教师提问:现在找找请你们带来的东西中,哪些是圆柱?请把圆柱举起来。

2、举出学生带来的东西中不是圆柱的例子。

3、揭示实物图,出现圆柱几何图形。

教师说明:我们所学的圆柱都是直直的,上下粗细相同的直圆柱,我们叫它圆柱。

出示高、低不同的两个圆柱。

用直尺和三角板演示圆柱的高。

使学生明确:圆柱两个底面之间的距离叫做高。

4、下面我们来认识另一个立体图形———圆锥。

三、巩固练习。

四、全课总结。

五、作业设计。

课本20页练习五4、

欣赏一下生活中的圆柱和圆锥。

六、板书设计。

圆柱的上、下两个面叫做底面、它们是两个完全相同的两个圆。

圆柱的侧面,是一个曲面。

圆锥,有一个顶点,底面是一个圆形,侧面一个曲面。

人教版六年级圆柱的认识教案篇十四

本节课存在的优点是创设了合适的环境供学生进行自由的探索,让学生在“做中学”,使学生成为真正的学习主体,并且融入了课件的使用,让课堂氛围“热闹”起来,更加激发了学生学习的欲望,同时,师生关系能够得到和谐发展。最后的延伸活动保持和发展了学生对周围事物的好奇心和感受探索的乐趣。

新的《数学课程标准(实验稿)》明确了义务教育阶段数学教学的“知识技能目标”的同时,提出了数学教学的“过程性目标”,并且通过“经历(感受)”、“体验(体会)”、“探索”三个层次的目标要求,阐述了“过程性目标”的具体内涵。这表明,小学数学教学不但要完成向学生传授知识、训练技能的任务,而且还要注意引导学生参与到探索知识的发生发展过程中,突破以往数学学习单一、被动的学习方式,关注学生的实践活动和直接经验,“通过自己的活动”获得情感、能力、智力的全面发展。小学阶段,操作活动是数学活动的重要组成部分,也是学生学习活动的重要方式。本节课正是以“活动”为基础,组织学生“经历”了一个探索圆柱特征的过程。教学中,无论开始的观察交流活动,还是后来的操作比较验证活动,都是在一个让学生“经历”、让学生“体验”、让学生“探索”的思想指导下完成的。从而使学生对圆柱的特征从不完整、表面的认识向较深层次的理解、整体上的把握发展。

在本节课中,我通过谈话交流,充分了解了学生已有的知识基础,原有的认知水平,尊重学生,认可学生对圆柱观察的不同着眼点。在此基础上组织活动,并且通过反馈,让学生充分展示自己的思维过程,展现自己的认知个性,从而使整节课始终处于一种活跃的状态,充满勃勃生机。

人教版六年级圆柱的认识教案篇十五

1、授课内容:。

人教版第12册第二单元第38面至39面(圆柱的认识)、做一做、练习十的第1题。

2、教学内容的地位、作用和意义。

圆柱是一种常见的立体图形,在日常生活和生产中有着广泛的应用,学生对它已经有了初步的感性认识。

本单元是小学阶段学习几何知识的最后一部分内容,圆柱的认识是本单元的起始教材,是学生在学习圆和长方体、正方体的基础上来认识的。学生认识圆柱,了解圆柱各部分名称,掌握圆柱的特征是以后学习圆柱的表面积、体积以及圆锥和球的认识的基础;更有利于进一步发展学生的空间观念,为进一步学习和解决实际问题打下基础。

可见,圆柱的认识教学在后继的几何教学中起着至关重要的作用,要引导学生切实学好。

3、教学目标的确定:。

(1)使学生认识圆柱,了解圆柱各部分名称,掌握圆柱的特征。

(2)通过操作、观察、比较、探索,培养学生的分析、推理、判断和空间想象能力,理解事物间的相互联系,进一步强化学生的立体观念。

4、教学内容的编排特点及教学重点、难点。

本节课教学内容是这样编排的:教材首先从直观入手,通过对常见的圆柱实物观察,使学生认识圆柱的形状,并从实物中抽象出圆柱的几何图形,然后介绍圆柱的各部分名称,说明圆柱的上、下两个面是平的,是两个相同的圆面,叫做圆柱的底面。对于圆柱侧面的认识,先通过观察和用手摸,知道圆柱的侧面是一个曲面。再把圆柱侧面展开,使学生了解圆柱侧面的展开土是长方形,以及它的长与宽跟圆柱底面周长与高的关系。可以看出,理解并掌握圆柱的特征是本课的教学重点,而认识圆柱侧面的特征是本课的教学难点。

5、教具准备。

师:圆柱体的实物、模型和相应电脑软件。

生:自带贴有标签纸的圆柱形物体;剪刀、线、尺。

依据教材编排特点和学生已有知识基础,本节教学的基本教学思路是:联系比较,建立表象——导引结合,探索新知——强化练习,巩固新知。为了体现这一教学思路,实现教学目标,教学时拟用“导探结合法”为主进行教学。

充分利用课前5分钟,通过师生比赛说长方体的有关知识,既复习了旧知,又激发了学习兴趣。

在导引结合,探索新知时,改变以往怕出偏差、怕学生自己弄不懂而不敢放手的做法,根据学生以形象思维为主的特点,充分利用学生已有的认知基础和他们已掌握的操作方法和方式,循着学生的思路去引导、去释疑、去点拨,创设有利于学生主体活动的情景。结合“观察、比较、操作、发现”的学法指导,引导学生在自己动手摸、比、看的过程中,利用知识的正迁移,把认识长方体的方法和认识圆柱联系起来,发挥学生想象:如学生想到长方体有底面、侧面和高,那么圆柱有没有底面、侧面和高?长方体的对面相等,圆柱的两个底面会不会相等?圆柱本身还独具有什么特征?让学生在观察、操作中发现知识的异同点、转化点,使学生的思维进入发展区。

充分利用学生好动、好说、好表现的年龄特点,教学时,让学生在摆一摆、摸一摸、剪一剪、比一比的过程中,采用发言、讨论、复述、交流、演说等形式,让学生多角度、多形式地表达自己的思维过程,如在探讨圆柱上下底面为什么相等的方法时,学生通过操作后可能会出现下面几种说法:

(1)把两个圆剪出来比较;。

(3)量出它们的直径或半径进行比较;。

(4)用线圈上、下底面的周长来比较等。在讨论圆柱的侧面时,学生通过操作比较,说出圆柱侧面的特征后,可能有学生会提出,圆柱侧面展开图也有可能是正方形或平行四边形,教师应给予肯定和鼓励,并让学生说说是怎样做的和展开后的图形与原来圆柱之间又有什么关系。这样,既加深了学生对圆柱的各部分名称和特征的认识,又有效地培养学生的口头表达能力、学习能力和逻辑思维能力。

针对学生好新、好奇、思维活跃、有意注意持久性差的特点,在教学过程中,恰当借助电脑的多媒体作用,如演示把实物图抽象为立体图、上下两圆相同、高处处相等和圆柱的侧面展开过程等,让学生在观察中,把对圆柱的特征的感性认知升华为理性认知。同时,配合教师丰富的情感,从而调动了学生的学习兴趣,活跃了课堂气氛。

认知心理学认为:学生的学习过程,是一个把教材知识结构转化为自己认知结构的过程,为了实现这个过程,还要通过有效的练习,才能使所形成的认知结构更加完善和充实。所以,在新课授完后,教师安排了针对性练习和发展性练习,进一步强化学生的感知基础。

这样,让学生在动手、动脑、动口中参与探索、分析、说理、概括的全过程,实现了在获取知识的同时发展学生的能力,使课堂教学得到优化。通过本节的教学,力求使学生实践和掌握一些基本的学习方法:参与知识形成的全过程、自主探索新知的方法;学会观察、分析、比较知识、抽象概括知识的本质属性的方法;自学课文质疑问难独立学习的方法。从而提高学生的创新精神和实践能力。

为了体现教法和学法,教学过程我是这样安排的:

(课前5分钟,师生进行比赛:(看谁对长方体了解得多))。

师:我说这个铁罐(举出)的形状像长方体。

生:我说橡皮的形状像长方体。

师:我说长方体有六个面。

生:我说长方体有八个顶点。

(一)、联系比较、建立表象。

1、初步感知,建立表象。

师:课前我们初步复习了长方体的各部分名称(构造)和特征。(板书:构造特征)。

(1)观察:

师:(师拿出一个用红布蒙着的圆柱笔筒,揭开布)这个物体的形状还能称为长方体或正方体吗?你们知道这是什么吗?(板书:圆柱),它还有一个名字叫做笔筒,今天老师准备把它作为一件礼物,送给大家,谁想得到它呢?看谁表现得好就送给谁。这个笔筒的形状是圆柱(教师再出现几个圆柱模型)学生拿出形状是圆柱的实物。

(2)举例:谁来说一说,在生活中,还有哪些物体的形状也是圆柱形的?

(3)认识立体图。

闭起眼睛,在脑子里想象一个圆柱的形状,如果我们把观察和想到的圆柱形状画成立体图会怎样呢?(电脑演示,贴出立体图)。

(二)、导引结合、探究新知。

引入:刚才,同学们举出了好多例子,这说明了在生活和生产中我们离不开圆柱,我们更应该来认识它!(板书:的认识)。

1、请你来说一说,你想认识圆柱些什么?

(现在,我们就随着这些想法一起来认识圆柱,好不好?)。

2、初步感知。

(1)看看、摸摸,同桌讨论:圆柱体有几个面?这些面怎样?

(2)初步反馈:圆柱体有三个面,其中有两个面是平面,是完全相同的两个圆,叫做圆柱的底面;还有一个面是曲面,叫做圆柱的侧面。(在立体图上标明)(学生闭起眼睛摸手中的圆柱,并说出它的各部分名称)。

(3)请你猜想一下,哪两个面是一样的,你是怎样知道的?可用什么方法来证明?

引导学生从下面几点来说明:

1、剪出来比较;。

2、量半径、量直径;。

3、量周长;。

4、沿着模型在纸上画出一个圆,再把模型倒换过来比较。(媒体演示,上下底面重叠过程)(教师说明:今天我们研究的都是像这样上下一样的粗细的,直直的圆柱。)。

(4)学法指导。(板书:观察、猜想、操作、发现)。

(5)联系比较,强化感知:(媒体出示:)。

4、圆柱的高。

(1)指上题中高、低两个圆柱问:哪个圆柱高,哪个低?想想,这与圆柱的什么有关?(引导学生得出:圆柱的高低与圆柱两个底面之间的距离有关。)。

(2)怎样测量着两个底面之间的距离呢?

通过圆柱的纵切模型引导学生感知应该测量两底面圆心的距离最科学,它叫做圆柱的高。同时媒体演示,使学生知道:圆柱的高也可以表示在圆柱的侧面上来。(师在立体图上表示出高,学生在自己的圆柱上画高。)。

(3)重复刚才的媒体操作,问:你还发现圆柱的高有什么特征?你是还可以怎样得到?(有无数条高,长度都相等。

(1)纵切面是长方形,可以有无数条高;。

(2)侧面上可以做无数条高;。

(3)两底面之间处处可以做高)。

5、圆柱的展开图。

(1)圆柱的两个底面都与侧面相交,观察一下,上面的平面与侧面相交形成那条线?这条线就是底面的什么?下底面也如此。

(2)侧面是围起来的一个曲面,如果沿着它的一条高剪开,再展开,你能想象出侧面会变成一个什么平面图形吗?(长方形或者正方形)(学生动手操作)(媒体演示)。

(3)同桌讨论这个长方形的长、宽与圆柱有什么关系?(学生回答,教师板书:)(媒体演示)。

(三)教学小结。

圆柱的认识和教学告一段落后,为了给学生一个完整而深刻的印象,教师要有意识地组织学生看板书,总结学到的知识。

(学生:通过学习,我懂得了……)。

(四)、强化练习、巩固新知。

1、针对性练习。

做一做。

2、发展性练习。

(2)一张正方形纸边长20厘米,来围成一个圆柱的侧面?它们之间又有什么关系?

(五)、总结整理、深化新知:

1、指导学生阅读课文,进一步把握知识要点,再次进行质疑问难。

2、归纳本节学了哪些知识,学会了什么,怎样学,达到强化新知,掌握方法的目的。

(六)、作业。

用硬纸做一个底面半径为2厘米,高5厘米的圆柱。

人教版六年级圆柱的认识教案篇十六

1.说出物体名称。

出示一些圆柱和圆锥的物体和模型,让学生说一说各是什么形体。

2.复习特征。

指名学生说出各图的名称。(板书:圆柱、圆锥)。

(2)提问:谁能拿出圆柱和圆锥,说出各部分的名称?(在图中板书)圆锥的高怎样测量,试着量一量你手里圆锥的高。

(3)提问:哪位同学来说说圆柱有什么特征?哪位同学来说说圆锥有什么特征?

人教版六年级圆柱的认识教案篇十七

师指出:圆柱体简称圆柱,圆锥体简称圆锥。

2、举例:你在生活中见过哪些物体的形状是圆柱,哪些物体的形状是圆锥?(学生举例)。

4、揭题:今天我们就来研究这样的直圆柱和直圆锥。(板书课题:圆柱和圆锥的认识)。

人教版六年级圆柱的认识教案篇十八

1.使学生认识圆柱的底面、侧面和高,掌握圆柱的基本特征,发展学生的空间观念。

2.让学生经历探索圆柱基本特征的过程,提高学生观察、操作、分析和概括的能力。

3.通过学生自主研究,使学生掌握研究立体几何的一般方法,丰富其学习数学的积极体验。

【教学重点】。

使学生掌握圆柱的基本特征。

【教学难点】。

圆柱的侧面与它的展开图之间的关系。

【教具、学具准备】。

圆柱体、硬纸、剪刀、胶带、圆规、直尺、课件、

【教学过程】。

师:(出示长方体的模型),我们在认识长方体时主要认识了它的哪些方面?

生:长方体的组成,就是长方体有6个面,12条棱和8个顶点。相对的面的面积相等,相对的棱的长度相等。

师:正向大家所说,我们在认识一种几何图形时,通常研究它的两个方面:即它的组成和组成部分之间的关系。今天这节课我们就用这种方式研究一种新的立体图形。

【评析】用长正方体的学习方法来研究圆柱体,体现了研究方法的一致性,有利于学生学习能力的提高。

1.课件引出研究问题。

师:屏幕上的这些物体都是什么形状的?(课件出示:比萨斜塔、客家围屋、立柱、蜡烛、水杯等)。

(课件抽出圆柱的几何模型)今天我们一起研究圆柱的认识。(板书课题)。

2.结合实物,初步探索圆柱的组成。

师:研究圆柱,我们先要研究圆柱的组成,每个人都有一个圆柱形的物体,请大家用手摸一摸,看一看,援助是有哪几部分组成的?(学生独立观察、操作)。

生1:圆柱有三部分组成,两个圆和一个周围的面。

生2:两个圆的面积相等,

生3:圆柱有无数条高。

师:你能给大家指一指圆柱的高在哪里吗?(学生指)。

师:大家的观察很仔细,确实圆柱是由三部分组成的,两个圆和一个曲面,并且两个圆的面积相等,在圆柱中,两个圆叫圆柱的底面,曲面叫做圆柱的侧面,圆柱有无数条高。(板书)。

3.设置问题障碍,深化特征的研究。

师:通过刚才的研究,我们知道:圆柱是有两个完全一样的圆和一个侧面组成的,是不是任意两个完全相等的圆和一个侧面就一定能组成圆柱呢?(不是)我这里有两个大小完全相同的圆和一个侧面,他们能不能组成一个圆柱呢?(不能)。

圆柱的底面和侧面之间又有什么样的关系呢?请大家以小组为单位,结合手中的学具进行研究。

汇报1:

生1:圆的大小和侧面的粗细一样。

师:大家的感觉没错。可是老师总感觉底面圆和侧面之间的关还不够具体,谁有办法能让大家很容易的看到它们之间的关系?再次进行小组合作。

汇报2:

组1:我们可以把圆柱的侧面剪开,把它展开后就变成了一个长方形。这样它们就都成了平面图形,就容易进行比较了。

在以前的学习中,还有哪些知识也用到了这一方法?

生2:学习圆的周长时我们也是用到了这一思想。

生3:学习圆的面积时我们也是用到了这一思想,把原转化成了近似的长方形。

师:大家的想法很有创造力,那展开后的长方形和底面圆之间有什么关系?

组2:现在长方形的长等于圆柱的底面周长。

师:大家把剪开的圆柱体再围起来,验证一下这位同学的结果。(学生操作)。

还有其他发现吗?

生4:长方形的宽等于圆柱的高。

师:现在谁能完整地说一说展开后的长方形和圆柱的关系?

生5:圆柱的侧面展开后是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高。

板书:

师:请同位两个用本子作学具互相说一说。

4.课件演示,建构圆柱的特征。

【评析】具有挑战性的问题情境,引导学生的思维层层推进,使学生的操作经验内化到原有的认知结构中,丰富了对圆柱特征的理解。在比较圆柱的侧面和底面圆的关系时,教师适时地启发学生联想圆的周长和面积的公式推导中所用的`思想、方法,潜移默化中教会了学生解决问题的策略。

师:刚才通过大家的努力,我们发现了圆柱的基本特征。现在每个小组都有一张长方形纸(长62.8厘米、宽31.4厘米),你能利用刚刚学到的知识做一个以这张长方形纸为侧面的圆柱吗?请大家先讨论应该怎样去做,有了想法后动手操作。(小组合作)。

(交流汇报)。

组1:我们组是利用长62.8厘米求出了底面圆的周长也是62.8厘米,62.8÷3.14÷2=10厘米,所以底面圆的半径是10厘米。用圆规画出了两个圆。粘起来就做成了一个圆柱。

组2:我们是把31.4厘米作为圆柱的底面周长,求出底面半径是5厘米,用圆规画出了两个圆做成了圆柱。

师:请大家把做成的圆柱举起来互相欣赏一下。虽然两个小组做成的圆柱形状不同,但他们都用到了今天所学的圆柱的基本特征:圆柱由两个完全相等的圆和一个侧面围成的,圆柱的侧面展开后是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高。大家解决问题的能力有了很大的发展,老师真为你们感到高兴。

【评析】圆柱体的制作,引导学生能用所学的知识和方法寻求解决问题的策略,既培养和发展了学生的应用意识和能力,又发展了学生的空间观念。

1.下面的图形哪些是圆柱?请标注来。

2.折一折,想一想,能得到什么图形,写到括号中。

【评析】有效的练习,既巩固了本节课所学习的知识,又发展了学生的空间观念。

人教版六年级圆柱的认识教案篇十九

人教义教版教材第10~12页的内容,及相关练习题。

(1)知识与技能:初步认识圆柱,了解圆柱的各部分名称,掌握圆柱的特征,能看懂圆柱的平面图,认识圆柱侧面的展开图。

(2)过程与方法:通过操作、观察、比较、探索,培养学生的分析、推理、判断能力,培养学生的空间观念和动手能力。

(3)情感与态度:体验圆柱与日常生活密切联系,通过同学间合作交流、动手操作等活动,让学生在合作中共同进步,体验成功。

理解并掌握圆柱的特征。

弄清圆柱侧面沿高展开得到一个长方形,明确这个长方形的长和宽与圆柱的关系。 。

教具准备:圆柱体的实物模型。

学具准备:用硬纸做的圆柱、剪刀、小刀、圆柱实物等。

(请学生拿出纸试验,并到前面展示。)。

1、引出课题:教师指出:像这样(指卷成筒形的)形状的物体在数学上称为圆柱。圆柱有什么特征呢?这节课我们一起来研究这个问题。板书:圆柱的认识。

2、展示课堂学习目标。

(一)整体感知圆柱。

(二)认识圆柱各部分的名称。

(三)认识并掌握圆柱的特征。

(四)认识圆柱的侧面展开图。

(五)巩固圆柱的特征。

(一)、说一说,建立圆柱表象。(自学课本10页)。

师:请同学们想一想,在我们生活中那些物体的形状是圆柱形的?

在日常生活中,人们把许多建筑或物体设计成圆柱形,增加立体感、美感。如……这些物体的外形都是圆柱形。

(二)、摸一摸,看一看,认识圆柱的各部分的名称。

1、小组合作,解决问题。

师:请各组组长拿出准备好的圆柱,摸一摸,看一看,共同讨论完成以下问题。

(1)圆柱上下两个面是什么形状的?

(3)圆柱一共有几个面?分别是那几个面?

(4)圆柱有高有低。圆柱的高矮与什么有关?我们把它叫做什么?

2、小组内交流学习,小组长整理准备汇报。

3、反馈小组合作学习成果。

4小结:圆柱各部分的名称。底面、侧面和高。

预设答案:

生1:圆柱上下两个面是平面,分别是圆。

师:将上下两个面叫做圆柱的底面。(板书:底面)。

生2:圆柱周围的面是一个曲面。

师:圆柱周围的曲面叫做侧面。(板书:侧面)。

生3:圆柱共有3个面,分别是底面、底面、侧面。

师:各小组在圆柱模型中标出底面和侧面。

预设答案:

生1:圆柱两底面之间的距离。

生2:圆柱的高。(板书:高)。

师:圆柱两底面之间的距离叫做圆柱的高。高有时也称长、厚、深。

(三)认识并掌握圆柱的特征。

1、小组合作学习,感知圆柱上、下两个底面的关系。

师:请同学们想一想,圆柱3个面中那两个面大小相等?用什么方法可以证明?学生可以先观察、猜测、议论,并说出自己的做法。

预设答案:

生1:量出两个底面的直径或半径比较大小。

生2:用一个底面画出圆,用另一个底面按上去进行比较。

生3:……。

师:同学们的办法真好。圆柱的底面的确是两个完全相同的圆。(板书:两个完全相同的圆)不仅如此,今天我们研究的圆柱都是从上到下粗细均匀的直圆柱。

2、标指圆柱的高。

圆柱的高在哪里?有几条?(小组合作学习)(板书:高无数条)。

3、小结:圆柱的特征:(1)圆柱的底面都是圆,并且大小一样。(2)圆柱的侧面是一个曲面;(3)圆柱的高有无数条。

《练一练》。

同步练习:p4第一、二题。

(四)、剪一剪,认识圆柱的侧面展开图。

1、讨论研究圆柱侧面展开图。

师:猜一猜:如果把圆柱侧面剪开再展开,它会是什么形状?

(1)、小组合作学习并完成学习记录单。(表一)。

如何剪。

展开后是什么图形。

(2)、反馈学习成果。

2、讨论研究侧面展开图—长方形与原圆柱的关系。

长方形。

圆柱。

小结得出:长方形的长等于圆柱的底面周长,宽等于圆柱的高。

3、讨论研究侧面展开图—正方形与原圆柱的关系。

师:当长方形的长和宽相等时,会是什么图形?

所以当圆柱的底面周长与高相等时,侧面展开图是什么形状?

4、小结:通过刚才的研究和讨论,我们知道了圆柱侧面展开图可以是一个长方形或者正方形,还可以是平行四边形,或者是一个不规则图形。

(五)、画一画,巩固圆柱的特征。

(1)、观察圆柱。

师:圆柱的底面是圆形的,但我们逐渐移动底面,看到了什么形状?

预设答案:

生:扁圆形。

师:这主要是因为我们视线的关系,根据美术上的透视原理,圆柱的两个底面画在平面上,都画成扁圆形,我们一起来画圆柱。

(2)、画圆柱并标出圆柱各部分的名称。。

教师示范(板书),学生练习画圆柱。画好以后,标出圆柱各部分的名称。

同步p41、2、3。

师:这节课我们学习什么?知道了什么?了解了什么?

底面    是完全相同的两个圆。

侧面    是一个曲面。

高      无数条。

长方形(正方形)。

侧面展开:平行四边形。

不规则图形。

人教版六年级圆柱的认识教案篇二十

一、填空:

1,把一根圆柱形木料截成3段,表面积增加了45.12平方厘米,这根木料的底面积是()平方厘米。

2,一个圆锥体的底面半径是6厘米,高是1分米,体积是()立方厘米。

3,等底等高的圆柱体和圆锥体的体积比是(),圆柱的体积比圆锥的体积多()%,圆锥的体积比圆柱的体积少()。

4,把一个圆柱体钢坯削成一个最大的圆锥体,要削去1.8立方厘米,未削前圆柱的体积是()立方厘米。

5,一个圆柱体的侧面展开后,正好得到一个边长25.12厘米的正方形,圆柱体的高是()厘米。

6,用一个底面积为94.2平方厘米,高为30厘米的圆锥形容器盛满水,然后把水倒入底面积为31.4平方厘米的圆柱形容器内,水的高为()。

7,等底等高的一个圆柱和一个圆锥,体积的和是72立方分米,圆柱的体积是(),圆锥的体积是()。

8,底面直径和高都是10厘米的圆柱,侧面展开后得到一个()面积是()平方厘米,体积是()立方厘米。

9,把一根长是2米,底面直径是4分米的圆柱形木料锯成4段后,表面积增加了()。

10,底面半径2分米,高9分米的圆锥形容器,容积是()毫升。

11,已知圆柱的底面半径为r,高为h,圆柱的体积的计算公式是()。

12,容器的容积和它的体积比较,容积()体积。

二、判断:

1,圆柱体的体积与圆锥体的体积比是3∶1。()。

2,圆柱体的高扩大2倍,体积就扩大2倍。()。

3,等底等高的圆柱和圆锥,圆柱的体积比圆锥的体积大2倍.()。

4,圆柱体的侧面积等于底面积乘以高。()。

5,圆柱体的底面直径是3厘米,高是9.42厘米,它的侧面展开后是一个正方形。()。

三、选择:(填序号)。

1,圆柱体的底面半径扩大3倍,高不变,体积扩大()。

a、3倍b、9倍c、6倍。

2,把一个棱长4分米的正方体木块削成一个最大的圆柱体,体积是()立方分米。

a、50.24b、100.48c、64。

3,求长方体,正方体,圆柱体的体积共同的`公式是()。

a、v=abhb、v=a3c、v=sh。

a、16b、50.24c、100.48。

5,把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将()。

a、扩大3倍b、缩小3倍c、扩大6倍d、缩小6倍。

四、应用题:

1,一个圆锥体的体积是15.7立方分米,底面积是3.14平方分米,它的高有多少分米。

3,圆柱形无盖铁皮水桶的高与底面直径的比是3∶2,底面直径是4分米。做这样的2只水桶要用铁皮多少平方分米?(得数保留整十平方分米)。

【本文地址:http://www.xuefen.com.cn/zuowen/13213607.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档