北师大版六年级数学比例尺教案(专业18篇)

格式:DOC 上传日期:2023-11-18 15:37:14
北师大版六年级数学比例尺教案(专业18篇)
时间:2023-11-18 15:37:14     小编:HT书生

教案是教师教学的依据,是教学过程中必不可少的一环。其次,教师需要选择适合的教学方法和教学手段,以激发学生的学习兴趣和主动性。小编为大家整理了一些经典的教案示例,希望能够对大家的教学有所帮助。

北师大版六年级数学比例尺教案篇一

教学目标:

1、使学生理解和掌握乘法交换律和结合律。

2、借助观察、比较、概括等方法,应用乘法交换律和结合律进行简便计算,培养学生的分析推理能力。

3、培养学生运用新知识解决实际问题的能力。

教学重难点:

1、使学生理解并运用乘法交换律和结合律。

2、乘法交换律和结合率的运用。

教具准备:

口算卡片。

教学过程:

一、导入。

1、出示口算卡片。

50__70=125__8=40__5=11+7=4+25=。

70__50=8__125=5__40=7+11=25+4=。

2、复习乘法算式的各部分名称:

板书:5__4=20。

因数因数积。

二、教学实施。

1、领会主题图。

(1)、观察图意。

(2)、说说你从图中你了解到了那些信息。

(3)、根据图中带给我们的信息,可解决那些问题?

2、出示例1:负责挖坑、种树的一共有多少人?

(1)、分析数量关系。

(2)、列式计算:4__25=100(人)或25__4=100(人)。

(3)、引导观察,比较两种解决的结果,这两个算式之间可以用什么符号连接?(4__25=25__4)。

(4)、这个等式说明了什么?(把4和25两个因数交换位置,积不变)。

(5)、举例。

(6)、归纳总结:

交换两个因数的位置,积不变,叫乘法交换律。

(7)、用字母表示乘法交换律。

a__b=b__a。

说一说a、b可以是那些数?(a、b可以是任何两个不同的数)。

(8)、找一找,主题图中哪个问题可以用乘法交换律来解决。

师:加法中有结合律,乘法中是不是也会有结合律呢?乘法的结合律会是什么样的?我们一起研究一下。

2、出示例2:有25个小组,每组要种5棵树,每棵树要浇2桶水。一共要浇多少桶水?

(1)、读题,分析数量关系。

(2)、请同学用不同的方法解答。板书解题思路。

方法一:(25__5)__2方法二:25__(5__2)。

=125__2=25__10。

=250(桶)=250(桶)。

(3)、小组讨论两种解法的相同点和不同点。

(4)、这两个算式之间可以用什么符号连接?

板书:(25__5)__2=25__(5__2)。

(5)、观察下面三组算式,说说你发现了什么?

(15__6)__10()15__(6__10)。

(125__80)__3()125__(80__3)。

(12__25)__4()12__(25__4)。

(6)、归纳总结:

三个数相乘,先乘两个数,或者先乘后两个数,积不变,叫乘法结合律。

(7)、用字母表示乘法结合律:(a__b)__c=a__(b__c)。

这里a、b、c表示的是大于或等于0的整数。

3、比较、概括、归纳。

比较加法交换律和乘法交换律,加法结合律和乘法结合律,你发现了什么?

交换律是两数相加(乘)的规律,既交换两个加(因)数的位置,和(积)不变;结合律是三数相加(乘)的规律,既可以从左往右计算,也可以先把后两个数先相加(乘),和(积)不变。

4、巩固提高。

(1)、填一填:

75__26=()__()8__2=2()。

a__b=()__()a__()=15__()。

125__7__8=()__()__7(40__15)__[]=40__([]__6)。

25__(4__[])__([]__4)__132__4__6__5=(4__6)__([]__[])。

(2)、学校教学楼共有4层,每层有5间教室,每个教室安6盏灯。一共需要多少盏灯?

6、课堂小结:

通过本节课的学习,你都有哪些收获?

北师大版六年级数学比例尺教案篇二

包装问题在日常生活中经常遇到,教材创设了“包装糖果”的情景,使学生综合应用表面积等知识来讨论如何节约包装纸的问题,它体现了数学的优化思想。同时有助于学生提高解决实际问题的能力,感受数学与实际生活的密切联系。

【学情分析】。

1、学生已有的知识基础。

在本课学习之前,学生已熟练掌握了长方体的特征,能准确、迅速的计算出长方体的表面积;初步认识了由两个相同的正方体拼成一个长方体后表面积发生的变化。

2、学生已有的生活经验。

学生大都接触过物品的包装,清楚地意识到用包装纸包装物品就是求物体的表面积,但实际所需的包装纸又比物体的表面积大,因而教师要和学生理清本课研究的是“接口处不计”的包装方式,这样的活动才能和生活进行有效沟通。

3、学生学习本课内容可能遇到的困难及学习方式的研究。

学生在探究由四个或者多个相同的长方体组合成新的长方体时,对于方法的多样化与策略的最优化可能存在问题,因此以小组合作的活动方式可以说是本课的较佳路径,让同伴之间相互协作,共同探讨。

【教法学法】。

让学生通过小组活动,在合作探究中探索出不同的包装方法,再引导学生观察、比较、交流、总结,领会最节约包装纸的包装策略。使学生积累数学活动经验,感悟优化的数学思想。

【教学目标】。

知识与技能目标:利用表面积等有关知识,探索多个相同长方体叠放后使其表面积最小的最优策略。

过程与方法目标:1、体验解决问题的基本过程和方法,提高解决问题的能力。

2、通过解决包装问题,体验策略的多样化,发展优化思想。情感态度与价值观目标:渗透节约的意识,体会包装的学问在生活中的应用,感悟数学与生活的联系。

教学重点难点。

重点是:利用表面积等有关知识,探究多个相同长方体最节省包装纸的叠放方法。

难点是:理解最节省包装纸的包装策略。

【教具准备】:多媒体课件,师生共同准备若干个长方体纸盒。

【教学过程】。

一、课前交流。

师:请同学们看一看今天的课堂有什么不同?(有很多听课的老师)。

师:这么多的老师来听课,来一睹同学们的风采,你想对自己说些什么?让我们一起说“加油!我是最棒的!”。(生齐说)。

师:谢谢同学们,我们可以开始上课了吗?(生:可以)上课!

二、激发兴趣,导入课题。

上课之前先请同学们欣赏几幅关于包装的图片(课件出示图片)。师:你们看了这几幅图片后有什么感受,请说一说。

物品经过包装,显得更精美,可包装的目的不仅如此,在包装中还有许多其它的学问,今天我们就来学习《包装的学问》。(板书课题)。

再过几天就是李老师的4岁小侄子的生日,我买了盒蛋卷,(课件出示一盒长方体形状的蛋卷盒(10cm×8cm×5cm))老师也打算把这盒蛋卷包装后送给他,(课件演示用包装纸包装蛋卷盒)在包装时我遇到了个问题,请看。(课件出示问题:如果接头处不计,最少需要多大面积的包装纸呢?)。

师:谁能帮老师想一想怎样解决这个问题?(生:就是计算它的表面积。)怎么计算你可以说说吗?(生回答)。

师:下面我们就一起动手计算一下这个长方体蛋卷盒的表面积好吗?(生完成后交流反馈,课件展示老师的计算。)。

【设计意图:既复习了旧知识,又为下面组合长方体表面积计算打。

下了知识基础和情感基础。】。

三、动手操作,初步感知。

1、小组活动,自主探究。

师:老师的爱人也买了一盒同样的蛋卷,包装时一共需要多大面积的包装纸呢?(一个需要340cm,两个就是需要680cm。)。

师:有没有不同的意见?说一说。(可以合起来包装,就不是680cm了。)。

问:合起来包装为什么就不需要680cm包装纸呢?(有的面重合起来了。)。

师:重合的面在包装时需要用包装纸包装吗?(不需要)。

师:可以怎样包装呢?请同学们同桌合作,拿出两个长方体纸盒摆一摆。(学生同桌合作,探索组合包装的方法。)。

请一名学生展示摆放的方法。(教师在黑板上用实物展示。)。

问:还有没有其他的包装方法?再指名展示,老师在黑板上用实物展示。(展示结束,课件出示三种组合包装的方法图。)。

2、展开猜想,交流讨论。

师:大家观察一下,这三种包装方法有什么不同?(重合的面不同。)师:同学们观察得很仔细。请看第一种方法重合的是哪些面?(生:两个最大的面。)。

师:我们可以说“重合了两个大面”。第二种方法和第三种方法呢?(生:第二种方法重合的是两个中面,第三种方法重合的是两个小面。)。

师:请同学们猜想一下,这三种方法中哪种方法最节约包装纸?(生:第一种)。

问:第一种方法最节约,你能说一说你是怎样猜想的吗?(指名交流。)。

3、验证猜想,得出结论。

师:这个猜想是不是正确呢?我们可以通过什么方式来验证呢?(可以分别计算出三种组合后的长方体的表面积,再比较一下就知道了。)。

问:怎样计算大长方体的表面积?(预设学生回答:可以根据组合后的大长方体的长宽高直接计算出表面积;也可以把两个小长方体的表面积之和减去重合面的面积。)。

先让学生计算出第一种方法包装后的大长方体表面积。(指名板书)师:有不同的计算方法吗?(再指名板书)。

师:我们来比较一下哪种方法简单一些?(指名回答)(把两个小长方体的表面积之和减去重合面的面积。)。

师:请同学们用自己喜欢的方法计算另两种的表面积。(指名板书)师:从计算的结果看,是不是和我们刚才的猜想一致呢?(一致)师:谁能说一说在包装时究竟怎样包装才能节约包装纸吗?(指名回答)。

四、组合三个,再次体验。

北师大版六年级数学比例尺教案篇三

教科书第50、51页的内容,做一做,练习十一第4-6题。

1、掌握比的基本性质,能根据比的基本性质化简比。

2、联系商不变的性质和分数的基本性质迁移到比的基本性质。

理解比的基本性质。

能应用比的基本性质化简比。

一、激趣定标。

1、20÷5=(20×10)÷(×)=()。

想一想:什么叫商不变的规律?什么叫分数的基本性质?

3、我们学过了商不变的规律,分数的基本性质,联系比和除法、分数的关系,想一想:在比中有什么样的规律呢?这节课我们就来研究这方面的问题。

二、自学互动,适时点拨。

北师大版六年级数学比例尺教案篇四

《百分数的应用(三)》是北师大版小学数学六年级上册第二单元的内容。在学习本课之前,学生已有两个层次的基础:用分数解决实际问题和百分数知识的学习。同时,本课的学习还将是学生初中代数学习的知识基础。

本课的编排是这样的,教材呈现出一幅笑笑妈妈记录的家庭消费情况统计表以及针对表格提出的两个问题。第一个问题和课后阅读资料主要是体现百分数在生活中的应用价值。而第二问则是本课的重点所在。

根据学生已有的知识基础和本课编排特点,我将本课目标设定为以下两点。

1.通过探索、交流、比较,使学生掌握根据百分数的意义列方程解决问题的方法,并体会百分数在生活中的广泛应用。

2.培养学生自主构建知识结构、与人交流以及运用数学解决问题的能力。

教学重点:

使学生掌握根据百分数的意义列方程解决问题的方法。

教学难点:

找准题目中的等量关系。

二、说教法与学法。

1.探究交流——自主构建。

2.联系生活——体验价值。

学生是学习的主人,自主探究、相互交流、分析比较、联系生活都是学习本课的有效方式。

三、说教学过程。

本课的教学环节分为3大块:阅读资料,导入新课——自主探究,分析比较——拓展思路,学以致用。

课始,阅读资料,导入新课。课件出示教材中的阅读材。

料关于恩格尔系数的介绍。请学生带着下列问题独立阅读“恩格尔系数指什么?结合课前收集的数据你能计算出你家的恩格尔系数,并对此做出科学解释吗?”,然后同桌交流,全班反馈并小结得出:百分数与我们的生活息息相关,同时揭示课题:今天我们来学习“百分数的应用(三)”。

应的复习题就是为了让学生主动寻找新的知识生长点,感悟新的学习方法以达到学习能力的培养。

课中,“自主探究,分析比较”分为3个层次:循序渐进,动态示题——探究交流,夯实基础——比较优化,激活思维。

首先:循序渐进,动态示题。“笑笑也调查了一份他们家的。

食品支出情况,我们去看一看”然后运用课件将表格中的第一排数据一一出示,让学生分别判断处于什么生活水平,然后再说一说有什么发现。这样逐一出示,能够让学生的观察视野随着时间的推移,直观的发现笑笑家生活水平从贫困—温饱—接近小康的巨大变化,感受到这些年来人们生活水平的提高,然后再出示整张表格。这时,我将问题(1)去掉,因为它已经在动态出示表格的过程中完成了,直接将问题(2)改成(1)随着表格一起出现:“1985年食品支出比其他支出多210元,你知道这个家庭的总支出吗?”我把它分成探究交流环节和比较优化环节。

探究交流,夯实基础。这个环节主要通过以下4步完成。

1.独立审题,并尝试画图、列式、解答。

2.小组内交流想法:“你是怎么想的?”

3.在黑板上展示一些有代表性的方法。

4.全班交流反馈。

独立完成有利于学生在探究的过程中亲历知识的形成,

以达到自主建构。交流想法则是用语言将自己的思考过程再一次论证,展现。

而在展示方法这一步,由于前面的学习基础,大部分同学都会选择用方程来解这道题,主要有“65%x-35%x=210”,也有可能会出现这一种“(65%-35%)x=210”,当然也不排除少数同学用算术方法---210÷(65%-35%)。所以将这三种代表性的方法都展示在黑板上。在反馈的时侯一定要引导学生说出解题思路,尤其是对等量关系的把握。比如第一种“65%x-35%x=210”根据要求,学生一般都会先画出线段图,那么首先要让学生根据线段图说出图意,其次说出列方程的根据:“你是抓住哪句话来分析的?”通过“食品支出比其他支出多210元”得出等量关系:“食品支出的钱数-其他支出的钱数=210元”,再根据等量关系说出所列方程的含义:“65%x、35%x分别表示什么?”以加深学生对本课的理解并达成本课的教学目标,突出重点,突破难点。对于“(65%-35%)x=210”虽然从算式来看只是在第一种的基础上运用了乘法分配律,但是实际上他们所依据的数量关系是完全不一样的,可适时让学生讨论这两种方程方法的区别与联系。期间对于学生因为粗心比较容易犯的错误,要拿出来让他们自己去思考、讨论错的原因。总之,对于基础好的同学多放手,给他们探索的空间,注重学习能力的培养,对于基础差的学生既要让他们思考也要在他困惑时给予引导。

据题目中的数量关系直接列出方程式,便于理解;同时指出列方程这种方法在我们以后的学习和实际生活中将发挥越来越大的作用。然后要求学生用列方程的方法完成教材试一试的第2题“(2)2005年,食品支出占50%,旅游支出占10%,两项支出一共5400元,这个家庭的总支出是多少元?”

来巩固所学。由于第一题“(1)1995年,其它支出比食品支出少760元,这个家庭的总支出是多少元?”与例题是重复的,所以删掉。而第(2)题作为例题的延伸和对主题资源的有效利用做为课堂练习。

课尾——拓展思路,学以致用。由于前面的学习比较充分,而教材后面的练习题和例题基本处于同一层次水平,所以我在丰富练习的内容和形式以及联系生活实际这两方面作了一些探索。据此我设计了两道练习题。

1.某班在一次数学单元训练中这道题是从扇形图的练习形式以及涵盖了基本训练、变式训练、发散训练的练习内容两方面丰富了本课,其意图是在巩固知识的基础上,进一步提高学生举一反三的数学能力以及创新意识、环保意识的培养。第二道题选用的材料是《我国前三季度全国财政收入情况》的财经报道。

2.在全球经济危机的大局面下,我国经济率先崛起。截至9月份,前三季度累计全国财政收入51518亿元比去年同期增长5.3%,其中中央本级收入27526.8亿元,同比增1.6%,地方本级收入23992.07亿元同比增长9.8%问题:根据这些信息你能知道什么?你能提出哪些问题并列出算式?这道题的数据虽然复杂不方便计算,但是体现了数学材料的真实性。其倾向性在于培养学生自主搜集、提取信息并加以综合运用的能力。下面我来介绍一下本课的板书:因为本课本着“放手让学生探索”的定位思想,所以板书的设计遵循“黑板是学生的试验田”的原则,除了教师板书课题及一些重点要求外,主要是学生上来展示他们的解题方法。

就是这样,一堂朴实数学课的探究与应用,就此结束,希望能得到在做的专家与同仁的指导。谢谢!

北师大版六年级数学比例尺教案篇五

教学目标:

2、过程与方法:是学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

3、情感态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习的兴趣。

教学重点:

理解并掌握三角形面积的计算公式。

教学难点:

理解三角形面积计算公式的推导过程。

教学方法:

创设情境——新知讲授——巩固总结——练习提高。

教学用具:

多媒体课件、三角形学具。

教学过程:

一、创设情境。

师:我们学校有一批小朋友要加入少先队了,学校为他们做了一批红领巾,要我们帮忙算算要用多少布。同学们有没有信心帮学校解决这个问题?(屏幕出示红领巾图)。

师:同学们,红领巾是什么形状的?

生:三角形的。

师:你们会算三角形的面积吗?这节课我们就一起来研究,探索这个问题。

板书:三角形的面积。

二、新知探究。

1、课件出示一个平行四边形。

师:平行四边形的面积怎么计算?

生:平行四边形的面积=底×高(板书:平行四边形的面积=底×高)。

师:平行四边形的面积公式是怎样得到的?

生说推导过程。

生1:我想把它转化成已学过的图形。

生2:我想看看三角形能不能转化成长方形或平行和四边形。

2、动手实验。

师:请同学们拿出准备好的学具:两个完全一样的锐角三角形,直角三角形,钝角三角形;一个长方型,一个平行四边形,你们可以利用这些图形进行操作研究,看哪一组能用多种方法发现三角形面积的计算公式。

生小组合作,教师巡视指导。

3、展示成果,推导公式。

北师大版六年级数学比例尺教案篇六

教学目标:

1、使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

2、进一步培养学生的自主学习能力,提高学生观察、比较、概括以及合作学习的能力。

3、提高学生学习数学的兴趣,发展学生质疑的习惯。

教学重点:概括倒数的意义与求法。

教学难点:理解“互为”、“倒数”的含义。

教学方法:创设情境、激趣质疑、自主探究、合作学习。

教学过程:

一、比赛引入。

8/11×11/81/10×10。

7/9×9/77×1/7。

(师巡视学生的情况,并对分数的格式加以指导)。

学生思考后,汇报结果:

生1:两个乘数的分子、分母位置颠倒。

生2:每个算式乘积是1。

师:现在老师有点疑问,2不是分数,它的分子和分母是什么呢?生:

2可以写成2/1,分子分母颠倒后,2/1×1/2=1。

二、理解倒数的意义。

师:观察的真仔细,我们能不能给这样的数取个名字呀?

生:倒数。

师:对,这就是我们今天要研究的课题:倒数(板书)。

师:再看这几个算式,2×1/2=1,我们说:2是1/2的倒数,1/2是2的倒数。

师:看这几个算式,倒数是对几个数来说的?

生:两个数(师板书)。

师:这两个数的乘积有什么特点?

生:乘积是1(师板书)。

师:再举一个例子:2/3×3/2=1,我们说:2/3是3/2的倒数,3/2是2/3的倒数,2/3和3/2互为倒数(师板书:互为倒数)。

师:怎么理解“互为”呢?

生:相互的意思。

生:就是对两个数而言的`。

师:“互为”是对两个数而说的,不能孤立地说谁是倒数,应该说谁是谁的倒数。

生:。。。。。。

师:大家表现真好,老师也来说一个,3/5是倒数,对吗?

生:不对。

师:你帮老师改正吧。

生1:应该说3/5是5/3的倒数。

生2:。。。。。。

三、观察比较,抽象概念。

1、以小组为单位,学生主动探究这四组数的特点。

生:分子分母倒过来了。

师:那么我们就给这样的数取个名字吧!(板书课题―。

―倒数)师:继续观察这几组数,看看还有什么特点?

生:每组中两个数的乘积都为1。

(如学生不能找出这个特点,则可以引导学生做计算比赛。)。

2、请学生再举一些这样的例子进行观察。

3、概括“倒数”的意义,板书。(强调“两个数”――“互为”;“乘积为1”――“倒数”。)。

四、引导探究,掌握方法。

1、举例观察,讨论。(2/5的倒数)。

师:怎样求一个数的倒数呢?

生:分子分母交换位置。

(师生共同总结:一个分数的倒数就是把这个分数的分子分母交换位置。)。

2、小组讨论,探究求整数的倒数的方法。

师:2的倒数怎么求呢?

生:把2看成分母为1的分数,即2=2/1,所以2的倒数是1/2。(师生共同总结:整数的倒数是用1做分子,用这个整数做分母。)。

五、巩固练习,拓展外延。

1、出示“1/5,3/4,5/9,1,3/7,9/5,4/3,7/3”八个数,请学生移动数的位置,找出几组互为倒数的数。

2、剩下“1/5和1”,分别求出1/5的倒数和1的倒数。

3、1的倒数是几?(1的倒数是1。)你是怎样计算的?

(1)整数的倒数是用1做分子,用这个整数做分母。所以1的倒数为1。

(2)因为1×1=1,所以1的倒数为1。

4、0也是整数,0的倒数是几呢?

(1)出示0×()=1。谁上来填一填?(没人举手)。

师:0乘任何数都不得1,这说明了什么?

生:0没有倒数。

(2)如果把0看成分母为1的分数,即为0/1,那么它的倒数应是1/0。

师:这样说可以吗?

生:不可以,因为0不以做分母。

5、真分数的倒数是假分数,假分数的倒数是真分数。那么带分数呢?(先把带分数化成假分数,再求它的倒数。)。

6、小数有倒数吗?

(1)把小数化成分数,再求它的倒数。

(2)举例说明:因0.25×4=1,所以说0.25和4互为倒数。

六、深化练习,巩固提高。

1、填空。

(1)乘积是()的两个数互为倒数。

(2)()的倒数是它本身,()没有倒数。

(3)27/100的倒数是(),25/16的倒数是()。

(4)0.7的倒数是()。

2、判断。

(1)2/9是倒数。()。

(2)一个数的倒数一定比原来小。()。

(3)所有的数都有倒数。()。

(4)a是整数,所以a的倒数是1/a。()。

(5)因为0.2×5=1,所以0.2和5互为倒数。()。

七、全课小结。

北师大版六年级数学比例尺教案篇七

学习目标:

1.通过讲授,引导学生找出规律,总结出体积的公式。

2.指导学生运用公式正确计算长方体、正方体的体积。

3.培养学生积极思考、探索新知的思维品质。

教学重点:

长方体、正方体体积计算。

教学难点:

长方体、正方体体积计算。

教具运用:

正方体木块若干。

教学过程:

一、复习导入。

1.什么叫体积?计量物体的体积常用的单位有哪些?

2.怎样计算一个物体的体积呢?

二、新课讲授。

1.长方体体积的计算。

教师课件出示一块长方体积木,一块盖房用的大型砖板。

(1)提问:它们的体积是多少?你是怎样想的?

引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。

教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。

(2)观察操作,探究长方体的体积公式。

小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。

学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。

说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?

学生独立思考,然后小组内讨论交流,得出结论。

小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。

板书:长方体的体积=长×宽×高。

讲述:如果用字母v表示长方体的体积公式可以写成:v=abh。

(3)质疑:求长方体的体积公式需要知道什么条件?

2.探究正方体的体积公式。

(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。

(2)引导学生明确。正方体的体积=棱长×棱长×棱长(板书)用字母表示:v=a•a•a=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)。

3.运用长方体的体积公式解决问题。

(1)出示教材第30页的例1。

(2)学生看图,理解题意。

(3)说出题中所给信息,和所求问题。

(4)指名说出长方体的体积公式。

(5)指名学生上台板演过程,其他同学判断。

(6)老师订正书写。v=abh=7×4×3=84(cm3)。

(7)看图,学生独立在练习本上完成。

(8)指名板演,集体订正。

三、课堂作业。

完成课本第31页“做一做”第1、2题。

四、课堂小结。

1.这节课,你有什么收获?

2.在计算长方体和正方体的体积时,要注意哪些问题?

五、课后作业。

完成练习册中本课时练习。

板书设计:

长方体和正方体的体积。

长方体的体积=长×宽×高。

v=abh。

正方体体积=棱长×棱长×棱长。

v=a•a•a=a3。

北师大版六年级数学比例尺教案篇八

“比的意义”是小学六年级第十一册教材中教学重点之一。它在教材中起着承上启下的重要作用。通过对这部分内容的教学,不仅可以使学生对已有的两个数相比的知识得以升华,同时也能够对学生进一步学习比的性质、比的应用和比例的相关知识打下坚实的基础。“比的意义”这部分知识内容繁杂,学生缺乏原有感知、经验、不易理解和掌握。针对知识内容特点和学生的认知规律,在教学过程中,我采用组织学生围绕“比”的问题,自主、探究、合作交流、分析、概括、比较、总结的教学方法,突出了传统的教学模式,实现学生自主学习。在教学过程中,培养了学生的创新精神。

2、教学目标:

“从知识与技巧”、“过程与方法”、“情感态度与价值观”三个维度确定以下目标。

(1)理解并掌握比的意义,会正确读与写。记住比各部分的名称,并会正确求比值。

(2)通过主动发现的讨论式学习,激发合作意识,理解并正确掌握比与除法、分数之间的联系,明确比的后项不能为零的道理。同时懂得事物之间是互相联系的。

(3)培养学生比较、分析、抽象、概括和自主学习的能力。培养他们在生活中发现数学问题,提出问题的意识。

3、教学重点难点:

理解掌握比的意义,比与分数、除法之间的联系。

1、用创设情境法,激发学生对比的知识的研究兴趣。

2、从日常生活中,培养学生能够发现数学问题。

3、改变学生的学习方式,让学生在自主探究、合作交流中提高解决问题能力。

4、当堂巩固,当堂反馈练习,练习形式多样,使学生从多种学习方式的活动中理解比的意义。

5、采用激励、评价等多种有效的方法,鼓励学生多比较、多思考,善于探究与协作交流,培养学生养成良好的学习数学的习惯。

(一)创设情境,导入新课。

利用一则消息引起学生对比的知识的研究兴趣,学生对这则消息进行讨论、交流时,不但可以受到思想教育获得情感体验,同时能发现比在生活中的应用,从中培养学生在生活中发现数学问题、提出问题的意识。

(二)自主探究,合作交流。

1、“比的'意义”教学。

第一步给出班级男生人数与女生人数两个条件,请学生提出问题并列式,根据学生列的除法算式,明确是男生和女生两个量在比,启发学生思维,除了用以前学的除法知识对两个量进行比较外,还可以用一种新的方法进行比较。然后展开“比的意义”教学活动,说成男生人数与女生人数的比是多少比多少。第二步看算式,运用新知识说说。(说明:从学生身边的数量中提取数学问题,从而引出新知识。运用旧知识进行传递,轻松快乐。)第三步,出示表格(填表)使学生初步知道两个不同类的数量之间的关系也可以用比来表示。在上面两个例子的基础上,让学生概括出比的意义。

2、比的读法与写法、各部分的名称、求比值的方法的教学。

教师引导学生掌握比的读法和写法,在小组合作学习中,自主探究比的各部分名称和求比值的方法。然后组织同学们汇报学习成果,引导学生介绍求比值的方法。知道后,并引导学生运用方法,能够写出几个比的实例,计算出比值,从而达到巩固知识的目的。在汇报过程中,寻找比值的规律,即可以是分数、整数,也可以是小数。

3、比与除法、分数之间的关系,比的后项为什么不能为零?

通过引导学生看板书,合作交流能够比较出“比”、“除法”、“分数”之间有什么联系,填写出表格,再通过“相当于”这一词的理解,明确他们的区别。

(三)、总结、归纳引导学生谈学习感受。

通过本节课学习,同学们学到了那些知识,请把你的收获告诉大家好吗?在学生汇报中,使本节课的知识点得以巩固。

(四)、多层次练习,巩固新知识。

练习形式多样,既巩固本节课的知识,又增加了乐趣,特别是培养学生养成了独立思考的习惯。

北师大版六年级数学比例尺教案篇九

1、经历运用平移、旋转或轴对称进行图案设计的过程,能运用图形的变换在方格纸上设计图案。

2、结合图案设计的过程,进一步体会平移、旋转和轴对称在设计图案中的作用,体验图形的变换过程,发展空间观念。

3、结合欣赏和设计美丽的图案,感受图形世界的神奇。

1、能够有条理地表达一个简单图形平移、旋转或作轴对称图形的过程。

2、能灵活运用平移、旋转和轴对称在方格纸上设计图案。

一、情境导入利用课件显示美丽的图案,配音乐,让学生欣赏。

二、学习新课。

(一)图案欣赏:

1、伴着动听的音乐,我们欣赏了这些美丽的图案,你有什么感受?

2、让学生尽情发表自己的感受。(你看到的这些生活中的美丽图案,你想说什么?)。

三、观察、分析图案:

1、课件展示教材中的花瓣图案。让学生观察后说一说这些图案是如何得到的,是由哪个基本图形通过怎样的变换方式得到的?(教材中呈现的花瓣是曲线图形,学生在画这个图时会感到困难,可以让学生看着图进行分析,也可以剪好一个基本图形,让学生在操作中体会图案设计的基本过程。)。

2、小组内进行交流。

3、小组代表汇报研究结果。(汇报花瓣图案分别是由哪个基本图形变换过来的?通过怎样的操作得来的?)。

4、你还有其他方法吗?

5、教师小结:

其实很多美丽的图案都是由基本的图形通过变换而来的,只要我们细心观察,就可以找到其规律。

四、设计图案。

1、鼓励学生观察分析图形的变换,进一步认识平移,旋转和轴对称。让学生说说自己的方法,把自己的思考过程表达出来。

2、小组合作设计图案。(组长汇报交流的结果。)。

3、作品展示:

(1)作品展示:把学生设计的图案分小组张贴在教室的前面,学生参观作品。

(2)学生评价:每个小组学生上台对自己小组的作品进行评价,比一比看谁评价得好。

4、全班交流,学生欣赏并评价。(学生点评)。

北师大版六年级数学比例尺教案篇十

教学目标:

1、理解反比例的意义。

2、能根据反比例的意义,正确判断两种量是否成反比例。

3、培养学生的抽象概括能力和判断推理能力。

教学重点:

引导学生理解反比例的意义。

教学难点:

利用反比例的意义,正确判断两种量是否成反比例。

教学过程:

一、复习铺垫。

1、成正比例的量有什么特征?

2、下表中的两种量是不是成正比例?为什么?

二、自主探究。

(一)教学例1。

1.出示例1,提出观察思考要求:

从表中你发现了什么?这个表同复习的表相比,有什么不同?

(1)表中的两种量是每小时加工的数量和所需的加工时间。

教师板书:每小时加工数和加工时间。

(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。

教师追问:这是两种相关联的量吗?为什么?

(3)每两个相对应的数的乘积都是600.

教师板书:零件总数。

每小时加工数×加工时间=零件总数。

3.小结。

通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。

(二)教学例2。

1.出示例2,根据题意,学生口述填表。

2.教师提问:

(1)表中有哪两种量?是相关联的量吗?

教师板书:每本张数和装订本数。

(2)装订的本数是怎样随着每本的张数变化的?

(3)表中的两种量有什么变化规律?

(三)比较例1和例2,概括反比例的意义。

1.请你比较例1和例2,它们有什么相同点?

(1)都有两种相关联的量。

(2)都是一种量变化,另一种量也随着变化。

(3)都是两种量中相对应的两个数的积一定。

2.教师小结。

像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。

教师板书:xy=k(一定)。

三、课堂小结。

1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。

2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?

四、课堂练习。

完成教材43页做一做。

五、课后作业。

练习七6、7、8、9题。

六、板书设计。

成反比例的量xy=k(一定)。

每小时加工数×加工时间=零件总数(一定)。

每本页数×装订本数=纸的总页数(一定)。

北师大版六年级数学比例尺教案篇十一

p27倒数的认识,练习六全部习题。

这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。

使学生认识倒数的概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。

(一)用汉字作比喻引入。

1、师指出:我国汉字结构优美,有上下、左右……结构,如果把“杏”字上下一颠倒成了什么字?“呆”把“吴”字一颠倒呢?(吞)……一个数也可以倒过来变为另一个数,比如“3/4”倒过来呢?(4/3)“1/7”倒过来呢?(7/1也就是7)这叫做“倒数”,随即板书课题。

2、提一个开放性的问题:看到这个课题,你们想到了什么?

(学生各抒己见)。

师生共同确定本节课的目标——研究倒数的意义、方法和用处。

(二)新知探索:

1、研究倒数的意义。

师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。

学生自学后,问:有没有疑问?

师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

2、学生自主举例,推敲方法:

(1)师:下面,请大家各自举例加以说明。

(2)学生先独立思考,再交流。

(a、以“真分数”为例;如:5/8的倒数是8/5……真分数的倒数是假分数。)。

(b、以“假分数”为例;8/5的倒数是5/8……假分数的倒数是真分数。)。

(c、以“带分数”为例;带分数的倒数是真分数。)。

(d、以“小数”为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)。

(e、以“整数”为例;整数相当于分母是1的假分数)。

学生举例的过程同时将如何寻找倒数的方法也融入其中。

3、讨论“0”、“1”的情况:

1的倒数是1。0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1。0和任何数相乘都得0,不可能是1,所以0没有倒数。)。

4、总结方法:(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)。

(三)反馈巩固:

1、完成“练一练”。

学生独立完成后,集体订正。重点问:“8”的倒数是几?

2、练习六5。

3、补充判断:

a、a是自然数,a的倒数是1/a。

北师大版六年级数学比例尺教案篇十二

1、理解比例尺的含义,掌握求比例尺的方法,能正确求出一幅图的比例尺。

2、认识数值比例尺和线段比例尺,能将线段比例尺改成数值比例尺,将数值比例尺改成线段比例尺。

理解比例尺的含义。

认识线段比例尺和数值比例尺,并进行互化。

课件、直尺。

一、定向导学(5分)。

1、填空:

1千米=()m=()cm。

60000cm=()m=()km。

千米化成厘米数,把小数点向()移动()位。

厘米化成千米数,把小数点向()移动()位。

2、导入:

脑筋急转弯:一只蚂蚁从北京爬到上海只用了10秒钟,这是为什么?

在绘制地图和其他平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。这就是我们今天要认识的新朋友---比例尺。板书课题。

3、出示学习目标:

(1)理解比例尺的含义,掌握求比例尺的方法,能正确求出一幅图的比例尺。

(2)认识数值比例尺和线段比例尺,能将线段比例尺改成数值比例尺,将数值比例尺改成线段比例尺。

二、自主学习(8分)。

我们中华人民共和国富源辽阔,有960万平方千米,怎样才能把她画在小小的图纸上:这幅图就要用1:4500000的缩小比例尺把她画在地图上。幸福路小学的面积也比较大,也要用1:1200的缩小比例尺把她缩小画在平面图中。下面,我们先来自主学习。(出示自主学习题目)。

学习内容:课本53页内容。

学习方法:先独立看书,用笔画出重点,再回答下列问题:(5分钟之后,比一比,看谁能做对检测题!)。

1、(),叫做这幅图的比例尺。

()。

2、():()=比例尺或=比例尺。

()。

3、为了计算方便,一般把比例尺写成前项或后项是()的形式。

4、北京到天津的实际距离是120km,在一副地图上量得两地的图上距离是2.4cm。这副地图的比例尺是多少?(请第4组的b1板演)。

5、一副中国地图的比例尺是1:100000000,这是()比例尺,表示图上1厘米相当于实际的()m或()km。图上距离是实际距离的(),实际距离是图上距离的()倍。

6、一副北京地图的比例尺是:,这是()比例尺,表示图上的1cm相当于实际的()km。

学完之后,让每组的b1回答。

最后再提问:观察对比,数值比例尺和线段比例尺的不同之处?

指名回答:数值比例尺不带单位;线段比有一条1厘米长的线段,并且线段的第一个端点上的数字是0,第二个端点上有一个带单位的数字。数值比例尺和线段比例尺的形式不同。

三、合作交流(12分)。

在我们的日常生活中,除了用到缩小比例尺,把把实际距离按一定的比缩小画在图纸上,有时,也会根据需要,用到放大比例尺,把实际距离按一定的比扩大,再画在图纸上,比如:在绘制比较精细的零件图时,经常需要把零件的尺寸按一定的比放大,再画在图纸上。再比如七星瓢虫实际长度只有5mm,本图就用8:1的放大比例尺把它画在图纸上。下面,我们来进行合作学习。(出示合作交流)。

1、一个零件的长为3厘米,画在纸上的长为6厘米,这幅图的比例尺是(),它表示:图上的()厘米相当于实际的()厘米,图上距离是实际距离的()。这是把零件()了。

2、比例尺1:10和10:1相同吗?()。

比例尺1:10表示:(),是()比例尺,()项是1。

比例尺10:1表示:(),是()比例尺,()项是1。

3、比例尺的分类:

按形式分()例如:()。

()例如:()。

按用途分()例如:()。

()例如:()。

四、质疑探究(5分)。

1、一副地图的比例尺是1:300000,你能用线段比例尺表示出来吗?

0600m。

2、一幅地图的比例尺是,你能用数值比例尺表示出来吗?

五、小结检测(10分)。

(一)小结:

1、这节课你学会了什么知识?

2、关于比例尺你认为需要注意什么?

(1)数值比例尺与一般的尺不同,它是一个比,不应带有计量单位。

(2)求比例尺时,前、后项的长度单位一定要化成同级单位。

(3)为了计算方便,通常把数值比例尺写成前项或后项是1的比。

(二)检测:

一、填空:

1、1:5000000表示()。

2、5:1表示()。

040km。

3、表示()。

4、在比例尺是1:4000000的地图上,图上距离是实际距离的(),实际距离是图上距离的()倍,把这个数值比例尺改成线段比例尺是()。

二、解决。

问题。

1、一条跑道全长200米,在图纸上的长度是10厘米。这幅图纸的比例尺是多少?

北师大版六年级数学比例尺教案篇十三

复习内容:

教材练习四的内容。

复习目标:

1.进一步掌握三种常见的统计图,了解它们各自的特点,能根据实际情况选择合适的统计图。

2.能根据统计图中的数据信息提出并解答简单的问题。

3.能对统计图中与现实生活相关的数据作出合理的解释,能选择合适的统计图描述并解决现实生活中的简单问题。

教学重点:

能根据统计图中的数据信息提出并解答简单的问题。

教学难点:

能选择合适的统计图描述并解决现实生活中的简单问题。

教学准备:

教学课件。

教学过程:

学生活动。

(二次备课)。

一、知识梳理。

(一)谈话导入。

师:同学们,第五单元《数据处理》的知识我们都已经学完。关于这部分内容,你学会了什么,还有什么疑问?这节课我们一起来回顾并解决问题。

(二)梳理反馈,建构网络。

组织学生回顾本单元知识,在小组内交流汇总后进行汇报。

1.扇形统计图:用整个圆表示总数,用圆内大小不同的扇形表示各部分所占总数的百分比。它可以清楚地表示出各部分数量和总数量之间的关系。

2.统计图的选择:根据它们各自的特点结合实际需求。

扇形统计图:可以清楚表示各部分数量所占总数的百分比。

条形统计图:可以清楚描述各部分的数量的多少。

折线统计图:可以清楚反映事物的变化情况。

3.数据的整理:可以分段整理数据,填写统计表。

4.复式折线统计图:对两组数据进行比较时,可以把两组数据进行分段整理,然后绘制出复式折线统计图,能清楚地看出数据分布状况及集中趋势。

二、针对练习。

1.完成教材练习四第1题。

(1)组织学生读题,理解题意。

(2)思考:根据题目要求想一想选择什么样的统计图较为合适?

生:因为要表示去年凉鞋销售量的变化情况,所以应选择折线统计图更合适。

(3)学生独立完成折线统计图。

(4)展示学生完成的统计图。

2.完成教材练习四第2题。

(1)让学生读题后说一说找到的数学信息。

生1:这是扇形统计图,在这道题中整个圆表示奇思家12月生活总支出;

生2:奇思家12月生活支出有服装、文化、食品、水电气、赡养老人和其他。

(2)让学生思考:扇形统计图主要表现什么?统计图中的每个百分数的意义是什么?

(3)学生独立计算,完成后集体订正。

3.完成教材练习四第4题。

学生独立完成。老师提示:在分段统计时可以用画“正”字的方法统计,数据不重复不漏掉。

三、巩固练习。

1.完成教材练习四第3题。

指名让学生回答根据下面情况分别用哪种统计图表示比较合适,并说明理由。

2.完成教材练习四第5题。

(1)教师给出本班和邻班10名男生的60。

m跑成绩。

(2)让学生说说如何比较。

(3)学生自己计算、画图完成后汇报。

四、课堂总结。

通过这节课的整理和复习,你有什么收获?

五、作业布置。

教材练习四第6题。

板书设计。

练习四。

1.条形统计图、折线统计图、扇形统计图的特点和适用范围。

2.整理数据:分段。

3.绘制统计图时需要注意的事项。

教学反思。

成功之处:本节课设计要求学生独立思考,鼓励学生联系生活实际创造性地解决问题,让学生把思考过程、结果说出来,有利于培养学生的思维能力,拓宽学生的思维空间。

不足之处:可能有些学生从统计图获取的信息中所提出的问题难度大,将简单知识复杂化了,不适于学困生。

教学建议:在教学中提问要有针对性,让学生自由支配的时间要多一些,大胆让学生根据信息提出数学问题。

北师大版六年级数学比例尺教案篇十四

师:同学们,你们喜欢看魔术吗?今天老师给大家表演一个魔术。

(师表演魔术:一铁质茶杯中装满水(红色)后,倒入一透明量杯中)。

师:同学们,请注意观看,这量杯中的水可是很特别的哦。

(学生注意力都集中到观赏量杯中的水上了)。

(师趁学生不注意,偷偷地将一磁铁块放入铁质茶杯中。)。

师:(将铁质茶杯口朝下,抖一抖)茶杯中还有水吗?有东西吗?

生:没有。

师:现在,老师将量杯中的水倒回到铁质茶杯中,猜猜会怎样?

生:还是满满的一杯水。

师:不见得,老师现在就把水倒回去,你们注意观察,看看会不会有奇迹发生。

(师将量杯中的水慢慢倒回铁质茶杯中,茶杯中的水满后又往外溢出。)。

(学生都露出惊讶的神色)。

师:我不是告诉过你们吗?这水很特别,这不,水溢出来了不是。

(学生很纳闷)。

师:你们有谁知道这是为什么吗?

生1:铁质茶杯中的水没倒干净。

师:刚才我明明倒给你们看的,里面没水。

生2:那茶杯中一定有什么东西。

师:是吗?刚刚茶杯倒着的时候,明明没有东西掉下来,要不,你来查一查。

(生2上台查验)。

师:告诉同学们,这茶杯中有没有东西?

生:有的。

生:知道了,是因为茶杯中放了一块磁铁的缘故。

师:那为什么茶杯中放了东西,水就会溢出来?

生1:因为茶杯中的磁铁块挤掉一部分水。

生2:因为茶杯中的磁铁块占了一个空间。

师:对呀,物体是占有空间的。

(板书:物体占空间)。

师:(指着教室里的粉笔盒、音箱、电视柜)这三个物体哪个占空间最大?哪个占的空间最小?)。

生:粉笔盒占的空间最小,电视柜占的空间最大。

师:看来,物体不但占有空间,而且占空间是有大小的。(板书:大小)我们把物体所占空间的大小叫做物体的体积。

(板书:所,叫做物体的体积)。

师:粉笔盒、音箱、电视柜,谁的体积最大?谁的体积最小?

生:粉笔盒的体积最大,电视机柜的体积最小。

片断二:设置冲突,启迪思维。

师:是不是所有物体的体积一看就能看出它的大小呢?

生1:我觉得正方体的体积大。

生2:我觉得长方体的体积大。

师:现在有两派意见,有没有好的办法来解决这个问题?

生1:可以把它们都放在杯子里,看水位升得高的那个物体体积就大。

师:这倒是一个好办法,能从魔术中受到启发,只是操作起来有点困难。这些可都是纸做的哦。

生2:把它们划分成同样大小的小方块,谁包含的小方块多,谁的体积就大。

师:这也是一种好办法,我们来试一试。

(师拆开两个物体的外包装)现在你能看出哪个物体的体积大吗?

生:长方体的体积大,因为它含的小方块的个数多。

男生:女生先数。

师:女士优先。你们男生很有绅士风度,请男生闭眼,女生准备。

(师出示由6个小正方体组成的长方体)。

女生(齐数):1、2、3、4、5、6。

师:请男生准备,女生闭眼。

(出示由2个大正方体组成的长方体)。

男生(齐):1、2。

师:男生睁眼,刚才女生数了6个,男生数了2个,谁看到的长方体大?

生(齐):女生看到的长方体大。

师(惊讶状):真的吗?(同时出示两个长方体)刚才不是说谁包含的小正方体个数多,谁的体积就大。

生(急切地):这些小正方体大小不一样,必须是同样大小的才能比。

师:对呀,要同样大小的小正方体才能比较,那要多大呢?是不是要统一一下。这种统一大小的正方体就是体积单位。

(板书:体积单位)。

北师大版六年级数学比例尺教案篇十五

1、让学生在实践活动中体验生活中需要比例尺。

2、通过观察、操作、交流,体会比例尺的实际意义,了解比例尺的含义。

3、体验数学与生活的联系,培养学生用数学的眼光观察生活的习惯。

正确理解比例尺的含义,并利用比例尺的知识解决生活中的实际问题。

运用比例尺的知识,通过测量、估算、计算等活动,学会解决生活中的一些实际问题。

(一)、开门见山,引发猜想。

请同学们分小组互相说一说,再集体交流。

(二)自学课本、探讨新知。

1、学生集体交流自己的猜想教师及时板书,同时作一些补充,并按以下的教学顺序呈现:

(1)什么叫比例尺?

(2)比例尺有几种类型?他们分别在什么情况下使用?

(3)比例尺要用数值来表示要写成怎样的比?

(4)比例尺是尺子吗?

(5)比例尺与比例有什么关系?

请同学们带着这些问题自学课本。学生自学课本后再交流。

2、组织集体反馈,质疑自学和交流后的想法。

教师让学生继续观察教材上的地图想一想。

接着教师出示一幅中国地图,它的比例尺是1:100000000,说明了什么?

师:也就是实际有多少千米?

师:如果图上两点之间的距离是2厘米,那么实际就是几千米?

(2)师出示第二幅北京市的地图,这幅地图上比例尺又是怎样表示的?(学生通过观察线段比例尺说出用1厘米的线段表示了实际的50千米)。

师追问:如果实际距离是150千米,画在地图上应该是几厘米?

(3)教师出示一幅扩大比例尺2:1,这又是什么意思?

学生回答后教师追问:如果实际长是4厘米,画在这张地图上要画几厘米?

3、探讨比例尺和尺子的关系。

谁来说一说比例尺是尺子吗?大家认为不一样在哪里?有关系又有怎样的关系?

师:比例尺实际上是一个比,这个比又好像是一把尺子,用它来表示图上距离与实际距离的倍数关系。

4、探讨比例尺与比例的关系。

比例尺与比例有什么关系?教师提出比例尺是一个比,而我们学过的比例又是什么意思呢?

如果测得这幅图上两点之间的距离是5厘米呢?

教师随手写下3:90000=1:30000,5:150000=1:30000。

(三)、逐层练习,巩固新知。

1、在一张地图上,量得两点之间的距离是5厘米,而这两点之间的实际距离是150千米,则这幅地图的比例尺是()。

3、在一幅比例尺为1:500的平面图上,量得长方形教室的长为3厘米,宽为2厘米,请回答下面的问题:

(1)请算出这个长方形教室的图上面积与实际面积。

(2)请算出这个长方形教室图上面积与实际面积的比。

(四)、回顾新知,小结提升。

通过这节课的学习,你有什么收获?

北师大版六年级数学比例尺教案篇十六

《比例尺》是小学数学六年级下册第三单元中的教学内容。这一知识是在学生已经掌握了化简比以及比例的知识的基础上进行教学的。这一部分内容对学生来说比较陌生、抽象,难以理解,因此我在设计教学环节时,仔细分析了教材的设计意图,同时又思考如何将这样一节概念教学恰到好处的与学生的生活实际联系起来。

在引入阶段,我选取了学生们非常熟悉的典型的感知材料(中国地图和螺丝钉的平面图),让学生观察这些平面图“什么变了,什么没变?”进而抓住比例尺的特性:图形的大小可以随意改变,但形状不能改变。在学生认识了比例尺后,我让学生通过查找地图的比例尺知道生活中还有另外一种比例尺:线段比例尺,提高学生的数学意识和能力。接着又设计了这样一个环节:让学生抓住1:6000000、1:150000000、60:1。进一步认识比例尺有放大功能,也有缩小功能,让学生打开思路,不拘一格的从多角度来思考比例尺的意义。结合实际培养学生用数学的眼光观察生活。

本节课在教学时,也有一些处理不够恰当的地方:首先,没有能够充分利用我所设计的导入情景,学生们对越来越小的中国地图的平面图很感兴趣。在这里,我应该组织学生深入讨论,这是什么原因导致的呢?从而初步引出比例尺的概念。在出示几幅图片后还应该让学生在日常生活中找一些实际的物体缩小或扩大一定的倍数画成平面图的例子,以丰富学生的感性认识。第二,在让学生总结比例尺的意义时,过于匆忙,应该让学生们通过观察、比较,逐步总结出比例尺的意义,加深对概念的理解。第三,对比例尺的放大讲得不够透彻。第四,学生的参与热情不够高。这主要是比例尺的意义比较抽象,难以理解,我也没能很好地调动起学生的学习情绪。

北师大版六年级数学比例尺教案篇十七

实践要求:

1、经历有目的、有设计、有步骤、有合作的实践活动。

2、结合实际情境,体验发现和提出问题、分析和解决问题的过程。

3、在给定目标下,感受针对具体问题提出设计思路、制定简单的方案解决问题的过程。

4、通过应用和反思,进一步理解所用的知识和方法,了解所学知识之间的联系,获得数学活动经验。

教学内容:

冀教版小学数学六年级上册69——70页。

教学目标:

1、知识技能:学会理财,能对自己设计的理财方案作出合理的解释。

2、数学思考:如何对自己设计的理财方案作出合理的解释。

3、问题解决:可以通过比较、思考、交流的方法,经历计算对自己的理财方案作出解释。

4、情感态度:感受理财的重要性,经历运用所学的知识学习理财,培养科学、合理的理财观念。

教学重点:

学会理财,会对自己设计的理财方案作出合理的解释。

教学难点:

对自己设计的理财方案作出合理的解释。

教学流程:

一、导入。

老师最近看了一套《贝贝熊系列》丛书,是关于培养孩子理财能力方面的书籍,读了以后觉得受益匪浅,在动物界,贝贝熊通过学习能做到对自己的财富有计划、合理支配,我想我们通过这一单元前面的学习,也能够对我们的财富进行支配,你们同意吗?那好,希望通过这节课,我们也能合理支配自己的财富,即掌握《学会理财》的能力。

{设计意图:通过和学生谈话,轻松引入本节课的课题}。

二、任务一。

设计方案,解决问题。

聪聪的爸爸是一个工程师,他设计的一个工程中标后,老板奖励他8000元的奖金。再过6年聪聪就要上大学了,爸爸决定把这笔钱存入银行,留给聪聪上大学用。(存款方式为整存整取)。

(1)小组合作,做出3个存钱方案。(提示:小组先商议好方案,然后写到学案上)。

(2)并算每种方案可获得的利息。(根据小组制定的三种存钱方案,组长做好合理分工,计算利息,为了便于计算,我们计算利息的时候,只考虑本金)。

(3)议一议:你认为那种存钱方案?为什么?

三、小组汇报、展示。

四、任务二。

聪聪一家三口,妈妈每月的工资是2160元,爸爸每月的工资是4180元,爸爸的工资中还要缴纳30多元的个人所得税。过6年聪聪要上大学,请你帮聪聪家做一个零存整取的计划。

零存整取:零存整取是银行定期储蓄的一种基本类型,是指储户在进行银行存款时约定存期、每月固定存款、到期一次支取本息的一种储蓄方式。零存整取一般每月5元起存,每月存入一次,中途如有漏存,应在次月补齐,只有一次补交机会。存期一般分一年、三年和五年。

(1)计算聪聪家每个月的结余。

(2)根据聪聪家的实际情况,制定合理的存钱计划,并说明理由。

(3)按照你的存钱计划,算一下,到期能取回多少钱?

知识链接:零存整取利息计算公式是:利息=月存金额×累计月积数×月利率。

其中累计月积数=(存入次数+1)÷2×存入次数。据此推算一年期的累计月积数为(12+1)÷2×12=78,以此类推,三年期、五年期的累计月积数分别为666和1830。

五、分享收获。

六、课下作业。

为自己的零花钱制定一个零存整取的存钱计划。

板书设计:

收入:2160+4180=6340(元)。

支出:2500+800+200+160+30=3690(元)。

结余:6340—3690=2650(元)。

北师大版六年级数学比例尺教案篇十八

1.知识与技能:认识比例尺;能根据图上距离、实际距离、比例尺中的两个量求第三个量。

2.过程与方法:结合具体情境,体会比例尺产生的必要性;运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

3.情感、态度、价值观:体会数学与日常生活的密切联系。

1.理解比例尺的含义。

2.能根据图上距离、实际距离、比例尺中的两个量求第三个量。

教具准备:小黑板、中国地图一张。

学具准备:学生各自准备一张地图。

教法:对于意义理解部分主要采用尝试法。对于运用比例尺进行相关计算时,主要用引导发现法。

学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法进行学习,必要时进行合作交流。

一、创设情境(引入新课)。

师:同学们,如果要给我们的教室画一张平面图,它应该是什么形状的?

生:长方形。

师:课前我们量过教室的长、宽各是多少?

(生:长大约9米,宽大约6米。)。

师:请大家在练习本上画出我们教室的平面图。(生画师巡视)。

(以谈话的形式,从学生熟悉的教室入手,让学生先估计教室的长和宽,再尝试画出教室的平面图,这样既复习了上节课图形的放缩知识,又为下面的学习做好准备。)。

师:大家画的图是长9米,宽6米吗?(不是)谁来说说是怎么画的?

(学生的答案可能有:长方形长9厘米,宽6厘米。或者是长3厘米,宽2厘米。)。

师:同样画的都是我们的教室,却不一样大,大家赞成谁的画法(故意)?为什么?

(观点一:都可以,因为这两个图的比都是3:2。观点二:这两种画法一样,但画的大小不一样,一个面积是54平方厘米,一个是6平方厘米。)。

(生动脑想、动手写)。

引导学生汇报:

(1)直接写上"教室面积大约50平方米。"。

(2)在图上标出"长9米、宽6米。"。

(3)标上"1厘米=1米"。

(4)1厘米怎么能等于1米呢?我认为可以写"1厘米相当于1米。"。

(激发了学生的探究欲,激活了学生的思维,促使学生去动脑、动手、动口,探索解决问题的办法,同时让学生体会了比例尺产生的必要性。)。

师:看来同学们很爱动脑筋,遇到问题会想办法。现在请拿出课前准备的地图,找一找看看上面有无类似的标注?通过汇报,让学生发现地图上有不同的标注。教师板书不同的标注。

(引导学生利用手中的素材,让学生自己寻找、发现和观察比例尺,从而对学生进行学习方法的指导。)。

1.介绍各种比例尺的名称。

师:在地图上这些都叫做比例尺。根据板书教师介绍数字比例尺、文字比例尺、线段比例尺。

如:师问比例尺1:600000是什么意思?

生:就是图上1厘米的长度代表现实中的600000厘米。

师:比例尺1:230000是什么意思?

生:就是地图上1厘米的距离相当于现实中的230000厘米的距离。

师:同学们讲得都对,那到底什么是比例尺?

引导得出:

1.比例尺就是一种可以把实际距离放大或缩小的计量单位。

2.我认为比例尺就是图上长度比上现实中长度。

3.图上画的长度与现实距离的比。

4.图上长度与实际距离的比。

师:(规范学生语言)对,比例尺就是图上距离与实际距离的比。

板书:比例尺=图上距离/实际距离。

由上列公式并推导出:图上距离=比例尺x实际距离。

实际距离=图上距离/比例尺。

(让学生按自己的`理解用自己的语言充分描述什么是比例尺,教师再规范语言,这样,一促进了学生思考,二促进了思维外显,三促进了交流。)。

三、实际应用(比例尺的应用)。

1.出示小黑板(笑笑家平面图)。

2.学习课本第30页内容。

(1)学生自己阅读。

(2)学生动手测量笑笑家的平面图的图上距离,计算出笑笑卧室的实际面积。先小组内交流自己的想法,然后全班交流。

(3)独立算出笑笑家总面积,再全班交流。

(4)先让学生理解题意,再独立思考、解决,全班交流。

(5)先尝试解决,再全班交流。

3.谁帮老师算算小黑板上的图是按比例尺多少来画的?求出比例尺并标注。

4.师:刚才我们画的教室平面图,你现在有办法让别人知道我们教室有多大了吗?

指导学生在画的长是9厘米、宽是6厘米的图上加上了"比例尺1:100"。

在画的长是3厘米、宽是2厘米的图上加上"比例尺1:300"。

5.完成第31页"试一试"第1题、"练一练"第一题。

四、课堂小结。

师:通过本节课的学习,你有什么收获?还有什么问题吗?

1、创设情境,让学生明确比例尺的用途。

由于学生在生活中对比例尺认识较少并且感受枯燥,所以我在课前拍摄学生照片,利用信息技术做成缩小或扩大的效果,课上展示让学生观察自己照片的变化。接着又介绍现实生活当中,根据需要有时要把实际距离缩小或扩大若干倍以后再画到图纸上的例子。如缩小实例有:中国地图、某个学校平面图。扩大实力有:手表图。通过这些情境的创设,让学生明确比例尺的用途。

2、通过观察、测量、设计平面图的体验过程,使学生理解比例尺的意义。

在学生发现生活中缩小与扩大例子的基础上,我组织学生当设计师进行测量教室周围物品、设计平面图,在体验中发现实际距离长和宽同时缩小相同的倍数就得到了图上距离,进一步引导学生又发现自己画的平面图的图上距离长和宽与实际距离长和宽的比也是相同的,通过说一说对课桌面1比10的理解,抓住了比例尺的意义进行教学。然后又强调了比例尺图上距离、实际距离一般用厘米做长度单位及统一单位的问题。最后,学生计算自己设计平面图的比例尺并说明其意义,更深的理解了比例尺的意义。

3、联系生活实际,让学生在实践中运用。

数学来源于生活,又作用于生活。课堂教学应该体现小课堂,大社会的理念,为此,在学生充分理解了比例尺的概念后,我创设了春游情境给学生看图片和地图,求比例尺和实际距离。在布置课外作业时,我又力求体现了开放性强,联系学生生活实际的特点,让他们调查数据求图上距离并画出来。这些设计培养了学生学数学,用数学的意识,体会到了数学的内在价值。

【本文地址:http://www.xuefen.com.cn/zuowen/13093468.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档