2023年六年级数学教学设计方案(通用16篇)

格式:DOC 上传日期:2023-11-18 10:10:06
2023年六年级数学教学设计方案(通用16篇)
时间:2023-11-18 10:10:06     小编:碧墨

无论是个人还是团队,制定一个明确的方案都非常重要。在制定方案之前,我们需要评估和分析各种可能的选择。这些方案范文注重实用性和可操作性,有助于指导我们实际工作中的方案设计。

六年级数学教学设计方案篇一

《抽屉原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。“抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。

六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。激趣是新课导入的抓手,喜欢和好奇心比什么都重要,游戏,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的.结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。

1、使学生初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。

2、使学生经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。

3、使学生通过“抽屉原理”的灵活应用感受数学的魅力;提高解决问题的能力和兴趣。

经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

一、课前游戏,导入新课。

游戏请5名同学到前面来,老师这有4张凳子,老师喊123开始,要求每位同学都必须坐在凳子上,引导:5位同学坐在4张椅子上,不管怎么坐,总有一把凳子上至少坐两个同学。

我们刚才做了个小游戏,但小游戏蕴含着一个有趣的数学原理。今天我们就来研究这个有趣的数学原理——抽屉原理。

二、通过操作,探究新知。

(一)活动一。

1、出示题目:把4根小棒,放在3个杯子里,怎么放?有几种不同的放法?

(板书:小棒4杯子3)。

提出要求:把所有的摆法都摆出来,看看你会有什么发现?

(1)同桌之间互相合作,动手摆,把各种情况记录下来。

(3)引导学生观察发现:不管怎么放,总有一个杯子里至少有2根小棒。(板书:总有一个杯子里至少有)。

(4)师生共同理解“总有”“至少”有2枝什么意思?

(5)明确:刚才同学们把所有摆法一一列举出来,得到了这样的结论,我们称之为“枚举法”。

2、要把6根小棒放进5杯子里,你感觉会有什么结果呢?

(1)启发学生猜想结果。

把6根小棒放入五个杯子里,你感觉一下,不要动手摆,你感觉一下会有什么样的结论?

(2)引导学生选择合适的方法。

提出要求:想一个快速而又简单的方法,只摆一种情况,你就可以得到这个结论?

(3)学生尝试操作验证。

(4)全班交流,操作演示。

预设:如遇到每个杯子摆两根,有的杯子空的,这样有说服力吗?有的杯子还空着,要先把每个杯子都装上小棒才行。

(5)明确结论:把6根小棒放进5个杯子里,不管怎么放,总有一个杯子里至少有2枝小棒。

3、课件出示:

把100根小棒放进99个杯子呢?

谈话:要不要也准备100根小棒和99根杯子呢?可以怎么办?

引导用假设法进行思考:假设每个杯子放1跟,99个杯子,就已经放了99根,还有1根不管怎么放,总有一个杯子至少有2根小棒。

这也是数学中一种很重要的方法“假设法”。

引导学生观察小棒数和杯子数,你有什么发现?

明确:这里的小棒数都比杯子数多1,当小棒数比杯子数多1时,总有一个杯子至少放了两根小棒。

(二)活动二。

谈话:接下来,我们把数学书当做物体数放入抽屉里,看看又有什么发现?

课件出示:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

板书:书抽屉总有一个抽屉放入算式。

5235÷2=2……1。

六年级数学教学设计方案篇二

“抽屉原理”应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“抽屉原理”还存在着一定的难度。所以,本节课根据学生的认知特点和规律,在设计时着眼于开拓学生视野,激发学生兴趣,提高解决问题的能力,通过动手操作、小组活动等方式组织教学。

反思我的教学过程,有几下几点可取之处:

1、情境中激发兴趣。

兴趣是最好的老师。课前“抢椅子”的小游戏,简单却能真实的反映“抽屉原理”的本质。通过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。

2、活动中恰当引导。

教师是学生的合作者,引导者。在活动设计中,我着重学生经历知识产生、形成的过程。4根吸管放进3个纸杯的结果早就可想而知,但让学生通过放一放、想一想、议一议的过程,把抽象的说理用具体的实物演示出来,化抽象为具体,发现并描述、理解了最简单的“抽屉原理”。在此基础上,我又主动提问:还有什么有价值的问题研究吗?让学生自主的想到:吸管数比纸杯数多2或其它数会怎么样?来继续开展探究活动,同时,通过活动结合板书引导学生归纳出求至少数的方法。

3、游戏中深化知识。

学了“抽屉原理”有什么用?能解决生活中的什么问题,这就要求在教学中要注重联系学生的生活实际。在试一试环节里,我设计了一组简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。

教学永远是一门遗憾的艺术。回顾整节课我觉得在学生体验数学知识的产生过程中,老师处理得还是有点粗,应该让学生加强动手操作,将动手操作与原理紧密结合,只有样才能使学生真正地经历数学知识的产生过程,学生才能真正地学到、理解知识。

将本文的word文档下载到电脑,方便收藏和打印。

六年级数学教学设计方案篇三

人教版六年级上册第八单元总复习第2课时《百分数的整理与复习》。“百分数”这一单元主要包括百分数的意义和写法,百分数和分数、小数的互化以及用百分数解决问题等内容,是在学生学习了整数,小数,特别是分数概念和用分数解决实际问题的基础上进行教学的,同分数有着密切的关系。在总复习时,应将复习重点放在百分数的应用方面,同时要注重与分数乘除法问题的对比,分析百分数问题与分数乘除法解决问题在解题思路上的一致性,加强知识间的联系,深化学生对知识之间内在联系的理解,促进学生原有认知结构的优化。通过总复习,既可以帮助学生构建合理的知识体系,也可借助解决生活中的实际问题培养学生应用数学的意识。

【设计理念】

百分数在实际生活中有着广泛的应用,如发芽率、合格率等。所以同学们必须熟练掌握本单元的基础知识,才能轻松地运用这些知识来解决生活中的问题。让学生亲身体验自主探索、合作交流基础上,经历体验问题的形成和解决过程,引发学生对百分数问题的结构特征,解题策略和规律的深层次思考,克服学生消极接受的惰性,培养学生发现问题,解决问题的意识和能力,促进学生主动构建自身知识体系。

【教学策略】

本节课通过获取信息,提出数学问题,解决问题,集体交流,小结方法等环节,引导学生自己对百分数应用题进行整理和复习,深化了学生对知识之间内在联系的理解,促进了学生原有认知结构的优化。数学教学不应局限于知识的传授,应重视培养学生从生活中收集数据、获取数学信息,并从中选取有用的信息解决简单实际问题的能力,使“生活化”、“数学化”得到和谐统一。

【教学目标】

知识与技能:

1、通过对百分数单元知识的归纳和整理,巩固所学的知识,加深对百分数意义的理解,感受百分数在生活中的应用,并运用所学知识解决百分数问题。

2、在百分数知识的迁移与综合运用中使学生经历一个整理信息、利用信息的过程,培养学生分析、综合、比较、抽象、概括等初步逻辑思维能力。使学生体会到数学的价值。

3、在百分数单元复习的过程提升数学思考。发展学生思维,激发起进一步学习的兴趣。

4、使学生形成积极的学习情感,养成良好的学习习惯。

过程与方法:

经历百分数的回顾和应用过程,体验归纳整理、构建知识体系的方法。

情感、态度、价值观:

体验数学知识间的相互联系,感受数学知识在生产、生活中的应用价值,培养学生应用数学的意识及乐学的情感。

【教学重点难点】

重点:1、掌握百分数的意义,以及与分数、小数之间的联系。

2、理解百分数应用题的解题思路,找准量和率之间的对应关系是教学中的重点。

难点:税后利息的计算。

【教学准备】

多媒体课件。

【教学过程】

(一)复习百分数的意义。

教师谈话:我们上段时间学习的哪些知识?这节课,我们就一起来复习百分数的相关知识。 (板书:百分数的整理与复习)

1、复习百分数的意义。

(表示一个数是另一个数的百分之几的数,叫做百分数,百分数也叫百分比或百分率。)

2、判断:“4/5=80%,4/5米=80%米。请同学们说明理由。(分数既可以表示一个数,也可以表示两个数的比;百分数只能表示两个数的比,后面不能带单位名称。)

3、复习分数、小数、百分数之间的互相转化的方法以及注意事项。

小数化成百分数:先把小数点向右移动两位,同时添上百分号。

百分数化成小数:先把百分号去掉,同时把小数点向左移动两位。

分数化成百分数:先把分数化成小数,再化成百分数。

百分数化成分数:先把百分数写成分母是100的分数,再化简。

(二)根据信息,请同学们提出相关的百分数问题。

(小组讨论、交流)

老师今年36岁,丁俊同学今年12岁。

问题:1、老师的岁数是丁俊同学的百分之几?

2、丁俊同学的岁数是老师的百分之几?

3、老师的岁数比丁俊同学的大百分之几?

4、丁俊同学的岁数比老师的少百分之几?

(三)复习稍复杂的百分数应用。

我校男生人数比女生少10%。

问:1、男生人数是女生人数的百分之几?

(指名回答)

2、已知女生人数有500人,求男生有多少人?

(单位“1”是已知的)

3、已知男生人数有450人,求女生有多少人?

(单位“1”是未知的)

(四)复习百分数在生活中的应用:折扣、纳税、利息。

1、商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就表示十分之几,也就是百分之几。

问:什么等于折扣?

2、缴纳的税款叫做应纳税额。应纳税额与各种收入的比率叫做税率。

问:应纳税额等于什么?

3、存入银行的钱叫做本金;取款时银行多支付的钱叫做利息;利息与本金之间的比值叫做利率。

问:什么是利息?如何计算利息?在计算利息时要注意什么?

(五)综合练习:

2、昨天我们班有2人请假了,大家能计算出昨天我们的出勤率吗?

问:出勤率等于什么?

(六)课堂小结:

今天我们复习了什么内容?你有哪些收获?

我们今后要用99%的努力+1%的灵感去创造100%的成功。

【板书设计】

百分数的整理与复习

意义 互化 应用 找准单位“1”

单位“1”是已知(用乘法计算)

单位“1”是未知(用除法或方程计算)

六年级数学教学设计方案篇四

1、了解储蓄的有关知识,能综合应用相关知识合理存款。

2、经历调查、解决问题的过程,体验合作探究的学习方法。

3、体会数学知识在日常生活中的广泛应用,培养学生的理财意识。

了解各种存款方式的利率和相关规定,设计合理的存款方案。

能综合应用条件灵活解决问题。

综合实践《合理存款》

问题分析:根据自学导案,归纳要解决的问题:怎样存款收益最大。明确本活动中存款的本金、可存期限以及这笔存款的用途。明确需要收集与该问题相关的信息。(通过对问题的简单分析让学生初步了解存款的三种方式,为下一步学生收集信息做基础)

课外调查:学生以小组合作学习的方式去银行调查不同的存款方式的利率等信息,学生可以利用网络,或者直接到银行到银行调查存款的方式和相关信息,并做好记录。

设计意图:这节课中教材主题图中所提供的存款利率是以前的利率,和现在的利率是不同的;国债利率也未明确给出。因此,通过课外调查让学生明确当前的存款利率等信息,并且,学生到银行调查是一次有价值的实践活动,是一个学习、体验的过程,可以有意识地体会数学与生活经验、社会现实和其他学科知识的联系。有了这样一个过程使这一实践活动更具有现实意义和实效性。

根据学生调查的信息设计存款方案。

学生以小组合作学习的方式共同设计方案,填写下表。

定期储蓄存款的方案可填在第第一张表格中。其他存款方案,如教育储蓄存款方案以及买国债的方案可填在第二张表格中。每一个具体方案都要求明确填出存期、到期利息、利息税以及到期收入等信息。

六年级数学教学设计方案篇五

(2)如果每道题只有4个学生解出,那么(1)的结论一般不成立.试构造一个例子说明这点.

4.六个小朋友每人至少有1本书,一共有20本书,试证明:至少有两个小朋友有相同数量的书。

5.全班有40个同学,共有不到780本书,试证明:至少有2个同学有相同数量的书。

六年级数学教学设计方案篇六

1、引导学生在具体的情景中借助已有的经验理解分数除法的意义并掌握分数除法的计算方法,能正确计算分数除以整数。

2、通过富有启发性的问题情景和探索性的学习活动,引导学生主动参与、独立思考、合作交流,形成计算技能。

分数除法意义的理解和分数除以整数的算法的探究。

分数除以整数的算法的探究。

课件,平均分成5份的长方形纸一张。

一、复习

复习整数除法的意义

引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

根据已知的乘法算式:5×6=30,写出相关的两个除法算式。

二、新授

(一)初步理解分数除法的意义。

1、如果将一盒重千克的水果平均分成5份,求其中一份是多少千克,该怎样计算?

学生试着列出算式。

2、归纳概括分数除法的意义。

(二)分数除以整数。

1、出示例1、引导学生分析并用图表示数量关系。

问:求每份是这张纸的几分之几,怎样列式?

2、列式计算。

学生折一折,算一算。

3、理清思路。

学生说思路

4、总结分数除以整数的计算方法。分数除以整数等于分数乘这个数的倒数。

三、练习

第30页做一做

四、作业练习

教材p34第1、3、4题。

五、总结

今天我们学习了哪些内容?

六年级数学教学设计方案篇七

人教版小学美术五年级上册第三课《美丽的纹样》。

二、【教学目标】。

2、技能目标:尝试设计一组美丽的适合纹样;

3、情感目标:通过欣赏和设计适合纹样,提高学生的审美、设计能力以及美化生活的能力。

三、【制定依据】。

1、内容分析:

《美丽的纹样》是人教版小学美术五年级第九册中的一节造型表现及设计应用课程,主要是学习“适合纹样”的相关知识。在新课程中对于五年级的造型表现及设计应用的教学目标有明确要求:“运用对比与和谐、对称与均衡、节奏与韵律等组合原理,了解一些简单的创意,设计方法和媒体的加工方法,进行设计和装饰,美化身边的环境。”基于以上要求,我将本课的教学重点设计为:通过欣赏,了解什么是适合纹样,从而尝试设计出新颖、美观的适合纹样。将本课的教学难点设计为:学习基本骨架的绘制,掌握适合纹样的制作方法。

2、学生实际:

学生通过二、三、四年级对“二方连续”、“四方连续”以及“对称图案”的学习,在造型表现及设计应用领域已经有了一定的基础,在此基础上安排“适合纹样”的学习是十分合理的,符合循序渐进的认知规律。

四、【教学准备】。

教具:课件、填图游戏稿,示范工具;

学具:直尺、自己喜欢的作画工具等。

五、【教学过程】。

(一)激趣导入。

1师:同学们,今天老师带来了一些漂亮的图片,你们边欣赏边思考:你看到了什么?发现了什么?指名生回答。

2、师:同学们讲得很棒,总而言之这些简单的图案经过组合以后,就变得非常美丽,今天我们要学习的就是《美丽的纹样》。

(二)探索学习。

1、了解适合纹样:刚刚我们欣赏的图案都有一个共同的特点,就是去掉了他们的外型以后,里面的图案形成的形状仍然跟外面的形状一样,也就是说这些图案都非常适合他们的外型,我们把这样的图案叫做适合纹样。

2、适合纹样有多种组织形式,请大家看图片,看看有哪些形式?(开火车答)。

3、师总结:离心式:它的特点是图案由中心向四周发散,用手势比划一下。4、学生尝试介绍向心式、离心向心结合式、旋转式、综合式以及均衡式:

5、师提示:均衡式这种样式比较特殊,前面几种形式都是有一定的规律的,而这种形式是不规则的,他在视觉上给人一种平衡的效果。

(三)欣赏启发。

1、早在远古时代,我们的祖先们就已经将适合纹样运用于生活中了,请大家欣赏课件中的图片。

2、请你想一想,适合纹样在我们的生活中还常常运用在那些地方?(生举例,师课件展示适合纹样在生活中运用的图片若干)。

3、欣赏了这么多精美的图片,我想大家一定很想知道怎样来制作这些美丽的纹样,下面我们就一起来了解适合纹样的制作方法:师向大家介绍三个步骤:定尺寸、定外框、定基本骨架线。

4、学生思考,并说一说怎样制作基本骨架线?

师小结:可以用对折的方法,也能用尺子量中点的办法定基本骨架线。

(四)尝试练习:

师:同学们一定很想展示一下自己的身手吧?下面就请你设计一幅适合纹样。要求:

1、先选好某种外形,再根据外形设计填充图案;

2、利用前面学过的对比色或邻近色知识来装饰适合纹样。

(五)评价小结。

1、学生介绍自己的作品(从图案、组织形式、色彩等方面来介绍);

学生互相评价。

2、教师点评、小结。

同学们的图案设计得非常精彩,相信你们这些小设计师,以后一定能让我们的世界变得更美。

(六)拓展延伸。

课后请同学们尝试用电脑绘画中的画图软件,制作适合纹样。

六年级数学教学设计方案篇八

1、引导学生准确地找到单位“1”。

2、能准确找出数量关系。

3、能熟练地解答一步和二步的乘法应用题。

引导学生找准单位“1”,分析应用题的数量系。

让学生正确、独立地分析应用题的数量关系。

我们已经对分数乘法进行了学习,今天这节课我们就一些简单的分数应用题进行复习。

1、复习解答分数乘法应用题的步骤:

学校买来100千克白菜,吃了4/5,吃了多少千克?

如果想求出吃了多少千克,要分哪几步去思考?怎样分析这道题?

(1)找到题目中的分率句,确定单位“1”。

(2)找出数量关系。

(3)求出所要求的部分量。

1.指出下面每组中的两个量,应把谁看做单位“1”。

(1)男生人数占女生人数的4/5。()。

(2)甲的6/7相当于乙。()。

(3)乙的5/9与甲相等。()。

(4)男工人数是女工人数的1/8。()。

2、填空题。

(1)、学校买来新书240本,其中的1/8分给五年级。这里是把()看作单位“1”,如果求五年级分到多少本?列式是()。

(2)、小红有36张邮票,小新的邮票是小红的1/2,小明的邮票是小新2/3的`。如果求小新的邮票有多少张?是把()看作单位“1”,列式是()。如果求小明有多少张是把()看作单位“1”,列式是()。

3、应用题。

(1)、一堆煤12吨,又运来它的1/6,现在共有煤多少吨?

指生板演,集体订正,针对学生出现的问题进行评价。

六年级数学教学设计方案篇九

1、使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。

2、使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。

一、教学例1。

1、出示例1中的两个已知条件,要求学生各自画线段图表示这两个数量之间的关系。

提出要求:根据这两个已知条件,你能求出哪些问题?

引导学生分别从差比和倍比的角度提出如“实际造林比计划多多少公顷”“原计划造林比实际少多少公顷”“实际造林面积相当于原计划的百分之几”“原计划造林面积相当于实际的百分之几”等问题。

在学生充分交流的基础上提出例1中的问题:实际造林比原计划多百分之几?

小结:要求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数相当于原计划的百分之几。

启发:根据上面的讨论,你打算怎样列式解答这个问题?

学生列式计算后追问:这里得到的125%与刚才得到的25%这两个百分数有什么关系?

联系学生的讨论明确:从125%中去掉与单位1相同的部分,就是实际造林比原计划多的百分数。

提出要求:根据上面的讨论,要求“实际造林比原计划多百分之几”,还可以怎样列式?

二、教学“试一试”

1、出示问题:原计划造林比实际少百分之几?

启发:根据例题中问题的答案猜一猜,这个问题的答案是什么?

学生作出猜想后,暂不作评价。

2、学生列式计算后讨论:这个答案与你此前的猜想一样吗?为什么不一样?

小结:“试一试”与例题中的问题都是把实际造林面积与原计划造林面积进行比较,但由于比较时单位1的数量不同,所以得到的百分数也就不同。

三、指导完成“练一练”

1、要求学生自由读题。

学生讨论后,要求他们各自列式解答。

3、根据学生在解答过程中的表现,相机提问:计算中有没有遇到什么新的问题?

学生提出问题后,引导他们自主阅读本页教材的底注,并组织适当的交流。

四、指导完成练习一第1~3题。

1、做练习一第1题。

可以鼓励学生独立完成填空。如果有学生感到困难,可启发他们先画出相应的线段图,再根据线段图进行思考。

2、做练习一第2题。

先让学生说说对问题的理解,再让学生列式解答。可提醒学生把计算的商保留三位小数。

3、做练习一第3题。

先鼓励学生独立解答,再通过交流让学生说清楚思考的过程。可提醒学生利用计算器进行计算。

五、全课小结。

六年级数学教学设计方案篇十

1、通过搭积木比赛的游戏,从三个不同的位置观察由5个小正方体搭成的立体图形,能正确辨认和画出相应的图形,发展空间观念。

2、能按照指定的从两个不同位置看到的图形,用5个小正方体搭成的立体图形。

能正确辨认和画出从正面、侧面、上面观察一组立体图形的形状。

能按照指定的`不同位置看到的图形,用几个小正方体搭成立体图形。

电脑课件正方体木块若干。

谈话法情景引入发合作探究法。

一段:学什么。

知识回顾引入课题。

1、孩子们,看见大屏幕上的图片和黑板上的表格,你想到了什么呢?

对,这节课我们就来进行一场搭积木比赛。(板书题目)。

师:相信通过大家的努力,你们一定会品尝到合作的愉快,成功的甘甜。

2、课件出示学习目标:

(1)正确辨认从不同方向观察到的立体图形的形状,并画出相应的图形.

(2)能根据从不同方向观察到的平面图形还原立体图形。确定搭成这个立体图形需要的正方体的数量范围。

二段我来学。

第一场比赛:(独立完成)。

1、课件出示要求:

2、引导学生观察,并板书(观察)。

3、学生在方格纸中画出图形。

4、汇报交流。(重点说明怎样画出从左面看到的?)。

5、课件演示。

第二项比赛(同桌合作完成)。

师:下面我们进行第二项比赛,在第二项比赛中我们进行三个回和的较量。准备好了吗?

课件出示问题要求。

(1)同桌合作完成,看看哪桌搭的多?(两个方向)。

(2)指名汇报。

师:真是太棒了,同学们有了这么多的搭法。从两各方向观察,我们不能确定立体图形的形状,但可以确定搭成这个立体图形所需要的小正方体的数量范围。那么,搭这个立体图想最多需要几个小正方体,最少需要几个小正方体呢?先猜一猜。

(3)验证(同桌合作)。

(4)从三个方向看到的图形,还原立体图形(三个方向唯一性)。

课件出示结论填空。

第三项比赛(小组合作完成)。

看谁搭的多。用六个小正方形搭一个立体图形,从上面看到的形状是。

三段我来用。

1、学生完成答题卡。

2、指名汇报答案。

一思我来思。

本节课你有哪些收获?你的感受是什么?

师总结:我们平常观察物体的时候,一定要记住“认真”二字,认真观察,再加上自己的想象,你就可以确定这些立体图形或平面图形的样子,同时,我们的空间能力和想象能力也会得到进一步的提高。

六年级数学教学设计方案篇十一

1、让学生在观察、操作等活动中感受并发现圆的有关特征,知道圆的各部分名称,发现同一圆内半径、直径的特征及关系,学会用圆规画圆。

2、培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念。

4、使学生初步学会用数学知识解释、解决生活中的实际问题,进一步体现数学的应用价值。

教学重点:

1、学会用圆规画圆。

2、在观察、操作等活动中感受并发现圆的有关特征。

引导学生归纳圆的特征。

教具准备:

自制多媒体课件、圆规、直尺。

1个圆形物体、圆规、白纸、直尺、图钉、线、2个大小不同的圆形纸片。

一、创设情景,初步感知圆的特征。

1、找一找(多媒体出示平面图形)。

师:同学们,这些平面图形大家还认识吗?在这些平面图形中,有一个图形与众不同,你能把它找出来吗?为什么?(学生说出弯曲的后多媒体演示)。

2、看一看。

师:古希腊有一位数学家曾经说过,在一切平面图形中,圆是最美的。下面请你欣赏。(多媒体出示教材97页的你知道吗图片:自然现象、工艺品和建筑物、运动现象、生活用品)。

2、说一说。

美不美啊?圆在我们的生活中随处可见,请你说说哪些地方还能看到圆。(学生举例)今天这一节课我们一起来进一步的认识圆(板书课题)。

二、实践操作,探索圆的特征。

1、画圆:同学们,圆这样美,想不想把它画下来?

师:请你借助老师提供的工具画一个圆。(小组合作)。

反馈:你是怎样画的?(学生回答后多媒体随即动画演示)。

(1)借助圆形实物画:你是这样画的吗?还有不同的画法吗?

(2)借助图钉和线段画:你是怎样画的?

(3)借助圆规画:你是怎样画的?

师:同学们,刚才我们用不同的方法画了圆,但是通常我们会借助圆规来画圆。请拿出圆规。师简单介绍:圆规有2只脚,一只脚是针尖,另一只脚是用来画圆的笔,两脚可以随意叉开。那怎样用圆规画圆呢?谁能说一说?(然后老师边示范边讲解)。

(4)请你用圆规画一个圆。

2、体验:在画圆的过程中,你觉得圆是怎样的一个平面图形?

3、认识圆心、半径、直径。

(1)结合圆规画的圆(屏幕),师介绍圆心、半径、直径的概念。并分别用字母表示。

半径有什么特点?直径呢?

(2)学生在自己的圆上画一条半径和直径,并分别用字母表示圆心、半径、直径。

看一看、比一比:圆规两脚间的距离和半径的长度(同样长)。

(3)画一个半径是2厘米的圆(圆规两脚间的距离是多少)。

师:刚才我们认识了圆心、半径、直径。下面我们一起来研究圆的特征。

4、探索圆的特征。

(1)小组合作探索。

出示例3:在圆形小纸片上画一画、量一量、比一比、折一折,思考下列问题。

在同一个圆里可以画多少条半径,多少条直径?

在同一个圆里,半径的长度都相等吗?直径呢?

同一个圆的半径和直径有什么关系?

圆是轴对称图形吗?它有几条对称轴?

(2)交流。

(3)电脑演示,加深理解。(多媒体将学生验证的圆的特征运用了旋转、重合等手段,进行动态演示)这些都是圆的特征。多媒体出示::所有的直径都相等,所有的半径都相等,d=2r,r=d/2)。

通过验证,你们发现的这些圆的特征正确吗?

质疑:那老师的圆的半径和你的圆的半径相等吗?(强调:在同一个圆内)。

(4)学生概括,总结特征。谁能把圆的特征用自己的语言来归纳概括一下。

三、巩固练习(多媒体出示)。

1、练一练第1题(指名说一说,说出理由)。

多媒体出示。

2、练习十七第1题:多媒体出示,学生口答。

3、判断题(指名说一说,说出理由)。

(1)圆的直径是半径的2倍。

(2)圆有无数条半径。

(3)通过圆心的线段是直径。

(4)画直径4厘米的圆,圆规两脚间的距离是4厘米。

(5)半径2厘米的圆比直径3厘米的圆小。

4、练习十七第2题。

四、实际应用。

1、体育老师要画一个半径是3米的圆,怎么办?(商量商量,帮老师出出点子)学生交流后看动画演示,说明和圆规画圆的道理是一样的。(固定点就是圆心,绳子长就是半径)。

2、师:同学们,圆不仅给我们的生活带来美,还给我们的生活带来方便,所以生活中的很多东西都设计成了圆形,比如:车轮为什么要设计成圆形,车轴应装在哪里?(学生讨论)。

(多媒体播放车轮是圆形的行进动画)。

附板书:

圆的认识。

画圆:两脚叉开、针尖固定、旋转成圆。

(圆形图)。

在同一个圆里,半径的长度都相等,直径的长度都相等。直径的长度等于半径的2倍。

六年级数学教学设计方案篇十二

“变化的量”是学习正比例与反比例的起始课。教材通过系列情境,结合日常生活中的问题,让学生体会变量和变量之间相互依存的关系,并尝试对这些关系进行大致的描述,从而拓宽学生理解正比例、反比例的背景。

知识技能:结合具体的数学情境认识“变化的量”,并通过描述活动,了解其中一个变量是怎样随着另一个变量而变化的。

数学思考:通过举例与交流活动,找到生活中互相依存的变量,描述日常生活中一个变量是怎样随着另一个变量的变化而变化的。

问题解决:能从图表中获取信息,正确表述量的变化关系;或用数学关系式表示两个变量之间的关系。

情感态度:知道列表与画图都是表示变量关系的常用的方法,积累表征变量的数学活动经验;从大量生活情境中获取数学学习的兴趣和动力。

一、情境引入。

1、出示一则新闻信息:xxxx年11月14日零时,国家发改委发布了最新的国内成品油最高零售限价,受国际油价持续大跌的影响,国内也出现了罕见的油价“八连跌”现象。

2、交流:你知道油价持续下跌会产生怎样的影响吗?

3、思考:从这些影响中你发现了什么?(生活中存在着大量相互依存的变量)。

4、揭示课题:今天我们就来研究像这样相互依存的变化的量。(板书课题)。

二、探究新知。

1、发现生活中特定时期相互依存的变化的量。

出示妙想6岁前的体重变化的文字信息。

(1)提问:你有什么方式能将这些信息更加简洁明了的表示出来吗?

(2)观察:出示淘气和笑笑呈现信息的.表格和图,口答哪些量在发生变化?再说说用表格和图呈现两个变量分别有什么优点。

(3)交流:妙想6岁前的体重是如何随年龄增长而变化的?

(5)反馈:练一练第1题,说说圆柱的体积和高之间的变化关系。

2、了解生活中“周期性”重复出现的相互依存的变化的量。

(1)提问:出示情境图2,说一说,图中有哪两个变量?这两个量是怎样变化的?

(2)交流:学生独立看图,并口答教材中的三个问题。

(3)反馈:完成练一练第2题。

(4)讨论:与上一题比较,这里相互依存的变化量变化规律有什么异同点?

3、感知生活中用数学关系式表示的相互依存的变化的量。

出示练一练第3题:蟋蟀叫的次数与气温之间的关系。

(2)引导比较:这里两个量之间的关系与前面的又有什么不同呢?

(3)反馈练习:将练一练第1题体积与高之间的关系用数量关系式表示出来。

三、综合应用。

2、你还能找出生活中一个量随着另一个量的变化而变化的例子吗?

四、全课小结。

小结本节课所学知识,铺垫下一课时。

板书设计:

变化的量变化形式。

年龄体重特定区域。

时间体温周期性。

nt数量关系。

六年级数学教学设计方案篇十三

教学目标:

1.在理解圆锥体积公式的基础上,能运用公式解决有关实际问题,加深对知识的理解。

2.培养学生观察、实践能力。

3.使学生在解决实际问题中感受数学与生活的密切联系。

教学重、难点:结合实际问题运用所学的知识。

教学理念:

1.数学源于生活,高于生活。

2.学生动手实践,自主学习与合作交流相结合。

一回顾旧知:

1.圆锥的体积公式是什么?s、h各表示什么?

2.求圆锥的体积需要知道什么条件?

3.还知道哪些条件也能计算出圆锥的体积?怎样计算?

投影出示:

(1)s=10,h=6v=?

(2)r=3,h=10v=?

(3)v=9.42,h=3s=?

二运用知识,解决实际问题。

2.这些数据都是可以测量的。现在给你数据:高为1.2米,底面直径为4米。

(1)麦堆的底面积:__________________。

(2)麦堆的体积:____________________。

3.知道了体积,这堆小麦大约有多少重能知道吗?(每立方米小麦约735千克)(得数保留整千克数)。

4.一个圆锥形沙堆,占地面积为3.14平方米,高1.5米。(1)沙堆的体积是多少平方米?(2)如果每立方米沙约重1.6吨,这些沙子共重多少吨?(结果保留一位小数)。

(1)(出示图)什么情况下削出的圆锥是的?为什么?

(2)削去的木料占原来木料的几分之几?

三综合练习。

1.一个圆柱的底面积为81平方厘米,高12厘米,和它等体积等底的圆锥高为()厘米;和它等体积等高的圆锥的底面积为()厘米。

六年级数学教学设计方案篇十四

1.通过复习近平面图形的变换方法,整体上进一步把握图形与变换的意义和方法。

2.会用平移、旋转的方法改变图形的位置,能按比例放大、缩小图形,培养学生的动手实践能力。

4.通过复习,进一步体会平移和旋转、放大与缩小的方法,激发学生的学习热情,培养学生的创新意识。

教学准备:教师准备教学光盘。

1.提问:你知道变换图形的位置的方法有哪些?

引导学生说出变换图形的位置的方法主要是平移和旋转。

火车、电梯和缆车的运动是平移;风扇叶片、螺旋桨和钟摆的运动是旋转。与时针旋转方向相同的是顺时针旋转,方向相反的是逆时针旋转。

2.怎样能不改变图形的形状而只改变图形的大小?

引导学生说出运用放大和缩小的方法可以只改变图形的大小,而不改变图形的形状。

3.比较平移与旋转与放大和缩小这两种方法有什么联系和区别?

区别:平移和旋转不改变图形的大小,只改变图形的位置。而放大和缩小不改变图形的形状,只改变图形的大小。

联系:两种方法都不改变图形的形状。

引导学生得出:长方形、正方形、等腰三角形、等边三角形、等腰梯形、圆都是轴对称图形。长方形有2条对称轴,正方形有4条对称轴,等腰三角形和等腰梯形有1条对称轴,等边三角形有3条对称轴,圆有无数条对称轴。(教师出示相应的图片)。

先让学生独立判断,然后结合学生的判断,进一步明确轴对称图形的基本含义,即把一个平面图形沿一条直线对折,折痕两边的部分能够完全重合,那么这个图形叫做轴对称图形。接着让学生画出轴对称图形的所有对称轴。

可以先让学生按要求依次进行操作,再通过交流帮助学生进一步明确相关的操作方法。

其中画出一个图形的另一半使它成为一个轴对称图形,以及画出一个图形旋转或平移后的图形,都可以先找出一些重要的点或线段,然后确定这些点或线段在另一半图形中的位置,或平移旋转后的位置,最后连一连。

要使学生认识到:决定平移后图形位置的关键是平移的`方向和平移的距离。决定旋转后图形位置的关键是旋转的方向和旋转的角度。

把一个图形按指定的比例放大,可以先在原图中找到平行四边形的底和高,算出放大后的底和高,然后画出放大后的这些线段,最后连一连。

要让学生思考按怎样的比是把原图形放大,按怎样的比是把原图形缩小。

可以先让学生讨论确定圆的位置,需要把圆向右移动几格?圆心应画在哪里?画出的圆的大小应与原来的圆大小相等。在此基础上依次解决书上的几个问题。

可以提醒学生以直角三角形的两条直角边作标准,先数一数每条直角边各有几格长,再算一算按指定的比例缩小后又应该是几格长。在此基础上,让学生动手画一画,并进行比较。求出新图形的面积与原来图形面积的比。

可以先让学生观察拼成的两个大正方形图案,说说它们分别是由哪两种瓷砖拼成的?在此基础上,鼓励学生各自按要求设计图案。要提醒学生:第一,每次只能选择两种瓷砖;第二,每种瓷砖都可以适当旋转。

展示学生设计的图案,及时组织学生互相评价。

通过复习,你对图形变换方面的知识又有了哪些新的认识?

完成《补充习题》的相关练习。

六年级数学教学设计方案篇十五

教学目标:

1、学生通过小组合作学习对单元知识进行概括,建立知识结构;。

2、会解决实际问题;。

3、归纳整理的能力及解决问题的能力;。

4、积极探索、团结协作的精神,获得收获的成功感。

教学重点:运用所学知识解决实际问题。、

教学难点:归纳整理,形成知识脉络。

教学方法:引发矛盾,引入课题小组合作,归纳整理多元评价,建构知识应用实际,解决问题强化总结,拓展迁移。

教学过程:

一、引发矛盾,引入课题。

猜一猜:老师今年多少岁了?

猜这个谜语,我们需要哪些数学知识呢?

齐读课题,你想到什么?

那好吧,我们就开始复习。

二、梳理知识,形成脉络。

1、集中呈现。

现在请大家以小组为学习单位,按照你们的想法,把学过的数。

2、逐个梳理。

1)小组活动:请大家在小组中,每人挑1至2个名词说说意思。

2)全班交流(根据学生的发言提示随意在黑板上贴出各个名词)。

3)整理完善知识结构。

在数的整除这部分首先学习的是整除,这是为什么?请大家讨论一下,再推荐代表发言。(巡视,参与学生讨论。)。

组织学生汇报交流、讨论。

提示:整除是基础,整除前提下产生了约数与倍数,它们是相互依存的关系。(逐步引出公倍数、公约数、最小公倍数、最大公约数、互质数、合数、质数、质因数、分解质因数、奇数、偶数等。)。

说得真好!这些知识之间是有密切联系的。

对于今天整理出来的数的整除脉络图,大家有什么想法?

通过整理,可以使这部分知识更加条理化、系统化。

3、自学课本,看一看还有什么不清楚的问题?

三、应用、解决问题。

1、填空题。

在1----20的自然数中,有()个奇数,有()个偶数,有()个质数,有()个合数,奇数中的()是合数,偶数中的()是质数,既不是质数也不是合数的数是()。

2、能同时被2、5、3整除的最小两位数是(),最大三位数是()。

3、选择题。

(1)一个合数的约数有()。

a)1个b)2个c)3个d)4个。

(2)如果a和b是互质数,那么它们的最小公倍数是()。

a)ab)bc)abd)1。

4、判断题。

(1)整除一定是除尽,除尽不一定整除。()。

(2)相邻的两个自然数一定互质。()。

(3)所有偶数都是合数。()。

(4)24分解质因数24=22231。()。

(5)一个自然数的最大约数一定等于它的最小公倍数。()。

5、把下面的数按照不同的标准分成两类,你能想到几种?

21581720。

四、强化总结,拓展迁移。

老师想把自己的手机号码告诉大家,大家以后有什么问题都可以和我联系,好吗?

老师的手机号码是11位数字,每一位数字依次是:

1)是质数也不是合数;。

2)最小奇数与最小质数的和;。

3)最小的自然数;。

4)质数中最小的两个数的和;。

5)既是质数,又是偶数;。

6)最小质数与最小合数的积;。

7)有约数2和3的一位数;。

8)自然数中最小的奇数;。

9)最大约数与最小倍数都是7的数;。

10)所有自然数的约数;。

11)最大的一位数。

同学们以后有事需要老师帮忙,随时call我。

这节课上到这里可以吗?

六年级数学教学设计方案篇十六

教学目标:。

1、通过动手操作实验,推导出圆锥体体积的计算公式。

2、理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题。

3、通过学生动脑、动手,培养学生的观察、分析的综合能力。

教具准备:等底等高的圆柱体和圆锥体5套,大小不同的圆柱体和圆锥体5套、水槽5个,以及多媒体辅助教学课件。

一、复习旧知,做好铺垫。

1、认识圆柱(课件演示),并说出怎样计算圆柱的体积?(屏幕出示:圆柱体的体积=底面积×高)。

2、口算下列圆柱的体积。

(1)底面积是5平方厘米,高6厘米,体积=?

(2)底面半径是2分米,高10分米,体积=?

(3)底面直径是6分米,高10分米,体积=?

3、认识圆锥(课件演示),并说出有什么特征?

二、沟通知识、探索新知。

教师导入:同学们,我们已经认识了圆锥,掌握了它的特征,但是,对于圆锥的学习我们不能只停留在认识上,有关圆锥的知识还有很多有待于我们去学习、去探究。这节课我们就来研究“圆锥的体积”。(板书课题)。

1、探讨圆锥的体积计算公式。

学生回答,教师板书:

圆柱------(转化)------长方体。

圆柱体积计算公式--------(推导)长方体体积计算公式。

教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较后,再用课件演示。

(1)提问学生:你发现到什么?(圆柱和圆锥的底和高有什么关系?)。

(学生得出:底面积相等,高也相等。)。

教师:底面积相等,高也相等,用数学语言说就叫“等底等高”。

(板书:等底等高)。

(不行,因为圆锥体的体积小)。

教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)。

用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。

(3)学生分组做实验,并借助课件演示。

(教师深入小组中了解活动情况,对个别小组予以适当的帮助。)。

a、谁来汇报一下,你们组是怎样做实验的?

b、你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?

(学生发言:圆柱体的体积是圆锥体体积的3倍)。

教师:同学们得出这个结论非常重要,其他组也是这样的吗?

学生回答后,教师用教学课件演示实验的全过程,并启发学生在小组内有条理地表述圆锥体体积计算公式的推导过程。

(板书圆锥体体积计算公式)。

教师:我们学过用字母表示数,谁来把这个公式用字母表示一下?(指名发言,板书)。

学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。(教师拿起一个小圆锥、一个大圆柱)如果老师在这个大圆锥体里装满了水,往这个小圆柱体里倒,需要倒三次才能倒满吗?(不需要)。

为什么你们做实验的圆锥体里装满了水往圆柱体里倒,要倒三次才能倒满呢?(因为是等底等高的圆柱体和圆锥体。)。

(教师给体积公式与“等底等高”四个字上连线。)。

进一步完善体积计算公式:

圆锥的体积=等底等高的圆柱体体积×1/3。

=底面积×高×1/3。

v=1/3sh。

教师:现在我们得到的这个结论就更完整了。(指名反复叙述公式。)。

课件出示:

想一想,讨论一下:?

(1)通过刚才的实验,你发现了什么?

(2)要求圆锥的体积必须知道什么?

学生后讨论回答。

三、应用求体积、解决问题。

1、口答。

(1)有一个圆柱的体积是27立方分米,与它等底等高的圆锥体积是多少?

(2)有一个圆锥的体积是9立方分米,与它等底等高的圆柱体积是多少?

2、出示例题,学生读题,理解题意,自己解决问题。

a、学生完成后,进行小组交流。

b、你是怎样想的和怎样解决问题的。(提问学生多人)。

c、教师板书:。

1/3×19×12=76(立方厘米)。

答:它的体积是76立方厘米。

3、练习题。

一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)。

我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。

4、出示例2:要求学生自己读题,理解题意。

在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)。

(1)提问:从题目中你知道了什么?

(2)学生独立完成后教师提问,并回答学生的质疑:

3.14×(4÷2)2×1.2×1/3表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?….

5、比较:例1和例2有什么不同的地方?

(1)例1直接告诉了我们底面积,而例2没有直接告诉,要求我们先求出底面积,再求出圆锥体积;(2)例1是直接求体积,例2是求出体积后再求重量。

【本文地址:http://www.xuefen.com.cn/zuowen/12993828.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档