一次函数教案(实用19篇)

格式:DOC 上传日期:2023-11-18 04:39:17
一次函数教案(实用19篇)
时间:2023-11-18 04:39:17     小编:灵魂曲

教案的编写应该注重教学活动的设计和组织,提供具体的教学步骤和指导,使学生能够有针对性地进行学习。教案应当综合考虑学生的认知特点和学习需求,灵活运用不同的教学方法和教学手段。教案的编写需要反复修改和完善,以确保教学过程的有效进行。

一次函数教案篇一

通过对这节课的教学研究,我深刻地认识到新课程背景下的数学课堂教学应注意:

1、教师要“放得开”,做一个边缘人。我们应该充分相信学生,给学生成长的机会和空间。不再搞“包办代替”,不能急性子。凡是学生能做的,就应该让他们自主去做;凡是学生之间能合作完成的,就应该让他们自主探究。给学生一滴水的机会,也许他会收获一片海洋。

2、要做到“问题引领”,用问题牵引学习。本节课的设计给予学生的基础,设计了多个学生容易解决的问题串,这样,能够在循序渐进中学到知识。

3、要创造性地使用教材。教学过程中,不应局限于教材,而应充分利用教材这个平台,伸向与教材有关的领域。数学是思维的体操,因此,若能对数学教材科学安排,对问题妙引导,有意识地引导学生有意识地主动学习更多更全面的数学知识,变“传授”为“探究”,充分暴露知识的发生发展过程,以探索者的身份去发现问题、总结规律。

4、注重探究,体验知识的形成过程。数学教学从本质上讲,是教师和学生以课堂为主渠道的交流活动,是教师和学生在某种教学情境中的探究活动。这节课教师本着“让学生充分经历知识的形成、发展和应用过程,充分体验数学的发现和创造历程”的教学理念,对教学过程和教学手段作了充分的准备。整节课学生在教师的引导下逐步探索、不断发现,品尝到了数学学习的乐趣,教师的主导作用和学生的主体地位都得到了很好地体现。

总之,我们的教学工作是一项内涵丰富的系统工程。教学中用问题引领学生,提升效率,不是一朝一夕就可以取得明显成效的,它更是一个复杂的课题。“冰冻三尺,非一日之寒”,在教学中必须循序渐进,长期实践,与时俱进,争取做教学改革的有心人,只有这样才能在教学研究工作中有所作为。因此,在实际教学中,我们应时刻以学生为中心,充分给予学生成长的时间,鼓励学生自主探究,采用适时激励与点拨的方法使学生的思维活跃起来,让课堂真正成为学生学习、发现的乐园。

一次函数教案篇二

本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。

二、学情分析。

本节课主要是研究一次函数的图象与性质,是在学习了正比例函数的.图象与性质,并初步了解了如何研究一个具体函数的图象与性质的基础上进的。原有知识与经验对本节课的学习有着积极的促进作用,在前后知识的比较中,学生进一步理解知识,促进认知结构的完善,发展、比较、抽象与概括能力,进一步体验研究函数的基本思路,而这些目标的达成要求教学必须发挥学生的主体作用,在函数图象及其性质的探索活动中,应给予学生足够的活动、探究、交流、反思的时间与空间,不以老师的讲演代替学生的探索。

(二)教学目标。

基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:

知识技能:

1、理解直线y=kx+b与y=kx之间的位置关系;

2、会利用两个合适的点画出一次函数的图象;

过程与方法:

2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

情感态度:

2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

(三)教学重点难点。

教学重点:一次函数的图象和性质。

教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。

二、教法学法。

1、教学方法。

依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。因此我选用了以下教学方法:

1、自学体验法――利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。

目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。

2、直观教学法――利用多媒体现代教学手段。

目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。

2、学法指导。

做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。本着这样的原则,课上指导学生采用以下学习方法。

1、应用自主探究。培养学生独立思考能力,阅读能力和自主探究的学习习惯。

2、指导学生观察图象,分析材料。培养观察总结能力。

将本文的word文档下载到电脑,方便收藏和打印。

一次函数教案篇三

一次函数和代数式以及方程有着密不可分的联系。如一次函数和正比例函数仍然是函数,同时,等号的两边又都是代数式。需要注意的是,与一般代数式有很大区别。首先,一次函数和正比例函数都只能存在两个变量,而代数式可以是多个变量;其次,一次函数中的变量指数只能是1,而代数式中变量指数还可以是1以外的数。另外,一次函数解析式也可以理解为二元一次方程。

一次函数教案篇四

一次函数解析式的求法一般是采用待定系法,对于学生而言,如何理解这种方法是解决这一问题的关键。

为了解决这个问题,我举了这样一个例子:已知直线y=kx+b经过点(1,2)和点(-2,3)试求这个函数关系式?学生们很容易想到列方程组解决这个问题,我却提出了一个比较简单的问题,为什么你要选择列方程组解决这个问题,你的目的是什么?我教的那个班的学生沉默了好久,是啊,对于学生来说,他们习惯于如何做题,却从不想为什么采用这种方法,这种方法的出发点是什么?经过一段时间的思考,有的学生终于答出了这个问题:他们说这是为了确定k,b的值,只要k,b的值确定了,那么一次函数解析式就确定下来了。而实际他们回答的恰恰是待定系数法的精髓,学生们只有能理解到这一点才能领会到待定系数法的精髓。进而我总结,如果知道一次函数图象上个点就能确定它的解析式。如上例是显而易见的两点。

接着我给出另一个例题:已知一次函数图象过点(1,-2),且与直线y=3x+2交y轴于同一点,试求该函数的解析式。这个题一个点显而易见,另一个点是隐含的,学生们开始找到一个明线,通过分析找到了另一个暗线,最终大家一致认为两点确定一条直线,想求一次函数的解析式,只要找到两个点的坐标就行。

最后我出了一个例题:一个一次函数的图象,与直线y=2x+1的交点m的横坐标为2,与直线y=-x+2的交点n的纵坐标为1,求这个一次函数的解析式。学生们发现没有一条明线,全是暗线,但只要理解找两个点求一次函数解析式,看似难的问题就会迎刃而解。如果学生能理解透这三道其实是一类题,他们就会利用待定系数法求一次函数解析式了。

一次函数教案篇五

在函数教学中,我们不仅要在教会函数知识上下功夫,而且还应该追求解决问题的“常规方法”——基本函数知识中所蕴含的思想方法,要从数学思想方法的高度进行函数教学。在函数的教学中,应突出“类比”的思想和“数形结合”的思想。

2.注重“数学结合”的教学。

数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的。对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。

(1)让学生经历绘制函数图象的具体过程。

(2)切莫急于呈现画函数图象的简单画法。

(3)注意让学生体会研究具体函数图象规律的方法。

目标。

1、理解直线y=kx+b与y=kx之间的位置关系;

2、会选择两个合适的点画出一次函数的图象;

过程与方法目标。

2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

由一次函数的图像归纳得出一次函数的性质及对性质的理解。

一次函数教案篇六

教学目标:

1、能够用热情、欢快的声音演唱《木瓜恰恰恰》,感受歌曲的欢快情绪和喜悦心情。

2、能够用打击乐器为歌曲伴奏。

3、用叫卖的演唱形式表达歌曲,了解一些相关文化以及“叫卖”的艺术形式。

教学重点及难点:

1、用热情、欢快的声音演唱《木瓜恰恰恰》。

2、正确地演唱《木瓜恰恰恰》的弱起小节及切分节奏。教学准备:多媒体(ppt)、flash动画、歌曲(mp3)、打击乐器(沙锤、双响筒、碰铃等)。

教学过程:

一、播放《卖汤圆》和《冰糖葫芦》,学生走进教室。让学生感受叫卖调(欢快、活泼、幽默、诙谐)。

导课:师:同学们,刚才听的歌曲你们熟悉吗?你们知道是卖什么的?像这种类型的歌曲叫什么歌?介绍叫卖歌。今天,咱们学习一首印尼叫卖歌曲《木瓜恰恰恰》板书课题。

二、走入印尼国家。

1、师:印尼是哪个国家?知道吗?(印度尼西亚)。你们想去看看吗?师:印度尼西亚,是“水中岛国”,是由许多大小岛屿组成的群岛国家,又称“千岛之国”。这里火山活跃,又被称为“火山之国”。该国家盛产水果。它的首都是雅加达,有“歌舞之邦”的美称,生活在各岛上的100多个民族都有自己独特的民歌、舞蹈和乐器,各族人民都非常热爱音乐,尤其在印度尼西亚的著名旅游胜地——巴厘岛,舞蹈已成为人民生活的一部分。

师:你们感受到印尼美吗?(学生答)。

2、出示印尼水果市场。

师:我们又来到了哪里?(水果市场)印度尼西亚的水果特别多,集市上到处都有各种各样的水果,可真是琳琅满目。到处都有吆喝声叫卖水果声。咱们有没有兴趣来学学各种叫卖声,看谁的叫卖声最能吸引顾客来光顾。

二、感受歌曲,解决重难点。

1、播放《木瓜恰恰恰》flash动画。

师:歌曲给你带来什么感受?(欢快、活泼、高兴等)。

2、范唱歌曲。

师:你听出来歌曲中唱到哪些水果?(番石榴、菠萝等)。

3、介绍弱起小节和切分音。

4、跟老师一起读有节奏的.叫卖声,双手拍腿。

师:这个恰恰恰是轻快的还是笨重的?出现在每个乐句的前面还是末尾?(师生一起说“恰恰恰”。)。

4、师生一起随着歌声唱唱轻快的“恰恰恰”。(“恰恰恰”声音要求轻巧、有弹性)。

5.如果让你给这段歌声加上伴奏的话,你觉得在哪儿加比较合适?(生略)让我们拿起自己制作的沙锤或其他打击乐器为音乐加上伴奏。

6、师:除了用乐器还可以用什么来表现恰恰恰韵律(扭胯)。

7、我们一起边说边做,看谁的动作既能合上音乐的感觉又和别人都不一样(师生共同扭胯)。(发现较好学生,请她上台带领同学们再来一次。)。

8、师:刚才我们又唱又跳,真开心!师:下面我们来学唱这首歌。

四、学唱歌曲。

1、让学生用“啦”哼唱歌曲。

2、跟琴学唱歌谱。

3、完整演唱歌谱。

4、按节奏读歌词。

5、教唱歌词。

6、完整演唱歌曲。

五、用多种形式表演歌曲。

分组唱:一组唱,另一组打节奏。

师生合作:跟伴奏,边唱边表演打节奏。

教师小结。

师:今天,我们通过对叫卖歌曲的学习,了解了叫卖歌曲的特点,这些极富情趣的演唱给了我们极大的艺术享受。其实啊,这些音乐都来源于我们的生活,只要你多做有心人,你也一定可以创作出动听有趣的音乐。好,今天的音乐课我们就上到这里,下课。

一次函数教案篇七

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

教学重难点。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

教学过程。

(一)引入新课。

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。

(二)进行新课。

填空:二元一次方程可以转化为________。

(3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?

此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从形的角度看,解方程组相当于确定两条直线交点的坐标。

进一步归纳出:从数的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。

3、列一元二次不等式。

解法1:设上网时间为分,若按方式a则收元;若按方式b则收元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式a省钱;当上网时间等于400分时,选择方式a、b没有区别;当上网时间多于400分时,选择方式b省钱。

解法2:设上网时间为分,方式b与方式a两种计费的差额为元,得到一次函数:,即,然后画出函数的图象,计算出直线与轴的交点坐标,类似地用点位置的高低直观地找到答案。

注意:所画的函数图象都是射线。

4、习题。

(1)、以方程的解为坐标的所有点都在一次函数_____的图象上。

(2)、方程组的解是________,由此可知,一次函数与的图象必有一个交点,且交点坐标是________。

5、旅游问题。

古城荆州历史悠久,文化灿烂。

一次函数教案篇八

2、内容解析:教材的地位和作用:本节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会两点法的简便,向学生渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。培养学生主动学习、主动探索、合作学习的能力。本节课为探索一次函数性质作准备。

1、教学目标的确定。

教学目标是教学的.出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。

知识目标。

(1)能用两点法画出一次函数的图象。

(2)结合图象,理解直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响。

能力目标。

(1)通过操作、观察,培养学生动手和归纳的能力。

(2)结合具体情境向学生渗透数形结合的数学思想。

情感目标。

(1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。

(2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。

2、教学重点、难点。

用两点法画出一次函数的图象是研究一次函数的性质的基础,是本节课的重点。直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响,是本节课的难点。关键是通过学生的直观感知、动手操作、合作交流归纳其规律。

1、由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合两点确定一条直线,学生能画出一次函数图象。

2、根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响有难度。所以教学中应尽可能多地让学生动手操作,突出图象变化特征的探索过程,自主探索出其规律。

3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。

恰当运用现代教育技术手段,采用自主探究合作交流式教学,让学生动手操作,主动去探索,小组合作交流。而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。

(一)、设疑,导入新课(2分钟)。

通过前面的学习我们可以发现,一次函数是一种特殊的函数,那么一次函数的图象是什么形状呢?一次函数的图象。(板书课题)。

一次函数教案篇九

函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

2、教学重难点。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

3、教学目标。

解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

二、教法说明。

对于认知主体学生来说,他们已经具备了初步探究问题的能力,但是对知识的.主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在生动活泼、民主开放、主动探索的氛围中愉快地学习。

三、教学过程。

(一)感知身边数学。

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。

[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用上网收费这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成心求通而未能得,口欲言而不能说的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。

(二)享受探究乐趣。

[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

[设计意图]学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。

(三)乘坐智慧快车。

[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:你家选择的上网收费方式好吗?再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。

(四)体验成功喜悦。

1、抢答题。

2、旅游问题。

[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

(五)分享你我收获。

在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?

[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。

(六)开拓崭新天地。

1、数学日记。

2、布置作业。

[设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让不同的人在数学上得到不同的发展。

四、教学设计反思。

1、贯穿一个原则以学生为主体的原则。

2、突出一个思想数形结合的思想。

3、体现一个价值数学建模的价值。

4、渗透一个意识应用数学的意识。

一次函数教案篇十

1.知识与能力目标。

(3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。

2.情感态度价值观目标。

通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。

教材分析。

前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。

教学重点。

教学难点。

方程和函数之间的对应关系即数形结合的意识和能力。

教学方法。

学生操作------自主探索的方法。

学生通过自己操作和思考,结合新旧知识的联系,自主探索出方程与图象之间的对应关系,以引入二元一次方程组的图象解法,同时也建立了“数”----二元一次方程组和“形”----函数的图象(直线)之间的对应关系,培养了学生数形结合的意识和能力。

教学过程。

一、故事引入。

迪卡儿的故事------蜘蛛给予的启示。

在蜘蛛爬行的启示下,迪卡儿创建了直角坐标系,在坐标系下几何图形(形)和方程(数)建立联系。迪卡儿坐标系起到了桥梁和纽带的作用。从而我们可以把图形化成方程来研究,也可以用图象来研究方程。

二、尝试探疑。

1、y=x+1。

你们把我叫一次函数,我也是二元一次方程啊!这是怎么回事,你知道吗?

学生先是疑惑:方程就是方程,函数就是函数,它们能有什么联系呢?然后通过思考、交流,最后恍然大悟。初步感受一次函数与二元一次方程的内在联系。

2、函数y=x+1上的任意一点的坐标是否满足方程x-y=-1?

学生会迫不及待地拿起笔来计算。从函数y=x+1图象上找几个点看它们的坐标是否满足方程x-y=-1。结果都满足。然后学生就会自主和同伴交流,问一问同伴函数y=x+1图象上的点满足不满足方程x-y=-1。结果也都满足。这样他们就会搭成共识:函数y=x+1上的任意一点的坐标都满足方程x-y=-1。

然后学生会用同样的方法得出另一个结论:以方程x-y=-1的解为坐标的点一定在函数y=x+1的图象上。然后开始思索函数y=x+1和方程x-y=-1到底有何关系呢?通过交流自动得出结论:以方程x-y=-1的解为坐标的点组成的图象与一次函数y=x+1的图象相同。

3.在同一坐标系下,化出y=x+1与y=4x-2的图象,他们的交点坐标是什么?

方程组y=x+1的解是什么?二者有何关系?

y=4x-2。

y=x+1的解。

y=4x-2。

教师作最后总结:因为函数和方程有以上关系,所以我们就可以用图象法解决方程问题,也可以用方程的方法解决图象问题。

解方程组x-2y=-2。

2x-y=2。

学生会很快的用消元法解出来。

老师发问:谁还有其他的方法?如果有,鼓励学生大胆提出。并给予口头表扬。如果没有人用其他的`方法,老师提出问题:你能不能用图象的方法求方程组的解呢?这时,学生就会去探索新的思路、方法。

一回忆方程与函数的关系,有了!方程组的解不就是两个方程变形得到的两个函数图象的交点坐标吗?学生就会迅速动笔用这种方法把方程解出来。作完之后,互相交流。学生总结一下做题步骤:

1.把两个方程都化成函数表达式的形式。

2.画出两个函数的图象。

3.画出交点坐标,交点坐标即为方程组的解。

问题又出来了,有的同学的解是x=2有的同学的解是x=2.1y=2.1。

y=1.9有的同学的解是……虽然都和消元法得到的结果相近,但各不相同。

老师提问:你能说一下用图象法解方程组的不足吗?

学生争先恐后的回答:用这种方法求的解是近似值。不准确。学生提出疑问:既然不准确,那学习它有什么用呢?用消元法就足够了!

教师解释一下:在现实生活和生产中,我们会遇到特别复杂的方程,用消元法解不太容易,我们就可以用电脑绘制成函数图象,很容易找出交点坐标。教师可以用z+z智能教育平台演示一下。

用作图象的方法解方程组,这体现了两个知识点的内在联系。学数学知识,探索知识点之间的联系,可起到化新为旧的作用,达到事半功倍的效果。逐步让学生学会这种学习新知识的技巧。

四、引申。

方程组x+y=2。

x+y=5解的情况如何?你能从函数的角度解释一下吗?

学生用消元法开始解方程组,结果无解,怎么回事呢?学生会尝试运用方程组的图象解法。画出两个函数图象。答案有了!图象是平行的,没有交点。所以方程组无解了。哇!太神奇了!方程的问题可以用图象的方法解决了。

因为有了上面的用作图象法解方程组,在这里,学生就会自觉地从函数的角度探究方程的问题,初步具有了数形结合的意识和能力。

五、课后小结。

本节课我们通过操作和思考,揭示了二元一次方程和函数图象之间的对应关系,从而引入二元一次方程组的图象解法,同时也建立了“数”----二元一次方程与“形”------函数图象之间的对应关系,培养了学生初步的数形结合的意识和能力。

六、作业。

1.用作图象法解方程组2x+y=4。

2x-3y=12。

2.如图,直线l、l相交于点a,试求出a点坐标。

教学反思。

这节课由故事引入,激发了学生极大的学习兴趣。然后提出了三个尖锐的问题,让学生尝试探索,在探索中既体会到了探索的艰辛,又体会到了成功的喜悦。在应用和引申过程中,尽量让学生自主的发现问题,自主的解决问题。学生在紧张、愉快中完成了这节课的学习。

一次函数教案篇十一

活动1:观察:

展示学生作图作品(书p28例2),强调列表及图象上的点的对应关系。

课前一两分钟对学生上交的作图作品进行快速筛选,进量多选出一部分,课上多肯定多表扬多鼓励。再从中选取一两幅优秀的作品上课为示例。

目的有四:

2、课上展示学生作品本身就是对学生完成作业情况的肯定,这又恰好给予了学生足够的成功感和荣誉感,这便增加了学生学习数学的信心,乐意学习数学,激发了学习热情,听课更加专心。

3、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。

4、令教师对学生有了更深层次的了解,能更好地把握课堂。

(二)尝试探索、体验新知:

活动1、观察探索:

比较两个函数图象的相同点与不同点?

第一步;根据你的观察结果回答问题。(书中原问题1、2、3)。

目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。

目的:这样通过启发学生视觉见到的两点,即与坐标轴的交点{(0,b),和(-b/k,0)两点};此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。

活动2:知识再体验:在同一直角坐标系中画出四个k值不同的一次函数图象,并观察分析。

目的:进一步巩固两点作图法,为探究一次函数的性质作准备。

活动3:展示“上下坡”材料,解决象限问题。(多媒体展示)。

目的:让学生触发漫画中“上下坡”的情景,引导思考k、b对图象的影响——设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。

活动4:师生互动(师生角色互换),提高拓展。(多媒体展出内容)。

目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。

(三)课堂小结。

引导学生回忆所学知识。通过这节课的学习你得到什么启示和收获?谈谈你的感受.

目的:总结回顾学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。

(四)作业布置。

加强“教、学”反思,进一步提高“教与学”效果。

四、说板书设计。

采用了如下板书,要点突出,简明清晰。

正比例函数图像的画法:确定两点为(0,0)和(1,k)一次函数选择的两点为:(0,k)和(-b\k,0)。

五、说课后小结。

一次函数教案篇十二

2、过程与方法。

经历探索一次函数的应用问题,发展抽象思维、

3、情感、态度与价值观。

培养变量与对应的,形成良好的函数观点,体会一次函数的应用价值、

1、重点:一次函数的应用、

2、难点:一次函数的应用、

3、关键:从数形结合分析思路入手,提升应用思维、

采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的。应用、

y=。

拓展:若a城有肥料300吨,b城有肥料吨,其他条件不变,又应怎样调运?

课本p119练习、

由学生自我本节课的表现、

课本p120习题14、2第9,10,11题、

1、一次函数的应用例:

练习:

一次函数教案篇十三

1、知识差异。初中数学知识少、浅、难度容易、知识面笮。高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。

2、学习方法的差异。初中学生模仿做题,反复训练。初中学生大量地模仿使学生带来了不利的思维定势,对高中学生带来了保守的、僵化的思想,封闭了学生的丰富反对创造精神。

3、学生自学能力的差异。初中学生自学能力低,基本上学生不需自学。但高中的知识面广,知识全部要教师训练完高考中的习题类型是不可能的,学生必须自学才能深刻理解和创新来适应。

4、思维习惯上的差异。初中学生由于学习数学知识的范围小,知识层次低,知识面笮,对实际问题的思维受到了局限。高中数学知识的多元化和广泛性,将会使学生全面、细致、深刻、严密的分析和解决问题。也将培养学生高素质思维,提高学生的思维递进性。

5、定量与变量的差异。初中数学中,题目、已知和结论用常数给出的较多,一般地,答案是常数和定量。在高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性。

将本文的word文档下载到电脑,方便收藏和打印。

一次函数教案篇十四

我们小组的.观察点是教师是否关注学生,是否根据学生的认知基础引导学生自主构建知识体系。观察维度是教学环节设计如何提高学生的数形结合能力和解决实际问题的能力。总的来说,这节课教学环节时间分配较合理,教师引导及时恰当。教师教学思路清晰,教学重点突出,教师由浅入深、轻松愉悦地完成了教学目标。教师亲切的表情、流畅的语言、课件的精心准备等等方面都为学生的引领提供了一个轻松和谐的学习环境。课堂环节设计,教师仔细引导学生通过图象识图辩图,掌握信息,体会分析自变量和因变量的潜在规律,根据了解到的信息,解决提出的问题,提高了学生的数形结合能力。

(1)在教学过程中,学生的主体地位没有充分展示出来,对于问题的生成,最好是教师引导学生去发现问题,提出问题,给每个学生充分的讲话机会,让他们大胆讲出自己的问题,大胆地参与探索和交流,彼此分享各自的观点和灵感,这样才可以调动学生的自主学习积极性。而不是教师牵着学生走,扼杀了学生的思维。

(2)缺少对学生动手能力的培养。缺少鼓励性评价性语言。通过交流,让学生之间互评,可以充分交流、碰撞,提高学习的主动性,积极性,参与性和创造性,是一种体验式的学习。

(3)小组合作探究再增加一个问题环节效果更好。对于例2的讲解,教师应更加强小组合作的模式,通过小组内探讨发现,找到问题,培养学生数形结合的能力和语言表达能力。

课前整体设计是一体的,但在课堂巩固练习环节时间偏短,可适当在自主探究上再缩短时间,如让学生根据图象口答问题,可直接回答,节省时间。

一次函数教案篇十五

本课的内容是华师大版八年级数学下册第18章第3节第2课时,一次函数在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。本章中关于一次函数的知识结构如图:

本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习"用函数观点看方程(组)与不等式"的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习"数形结合"这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。

(二)教学目标。

基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:

知识目标:

1、理解直线y=kx+b与y=kx之间的位置关系;

2、会利用两个合适的点画出一次函数的图象;

能力目标。

2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

情感态度目标:

2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

(三)教学重点难点。

教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。

1、教学方法。

1、自学体验法——利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。

目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。

2、直观教学法——利用多媒体现代教学手段。

目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。

2、学法指导。

1、应用自主探究,培养学生独立思考能力,阅读能力和自主探究的学习习惯。

2、指导学生观察图象,分析材料。培养观察总结能力。

(一)、创设情境,导入新课。

活动1:观察:

展示学生作的函数图象(课本p41做一做),强调列表及图象上的点的对应关系。

1.课前让两名学生将图像画到黑板上,以备上课时应用。

2、课上展示学生函数图像作业,既为学生完成作业情况检查,又为本节课打下基础。

这样安排的目的:

1、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。

2、教师对学生有了更深层次的了解,能更好地把握课堂。

(二)尝试探索、体验新知:

活动2、观察探索:

比较两个函数图象的相同点与不同点?

第一步;根据你的观察结果回答问题。(书中原问题1、2、3)。

目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。

目的:这样通过启发学生视觉见到的两点,即与坐标轴的交点{(0,b),和(-b/k,0)两点};此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。

活动3:知识再体验:在同一直角坐标系中画出四个k值不同的一次函数图象,并观察分析。

目的:进一步巩固两点作图法,为探究一次函数的性质作准备。

活动4:展示"上下坡"材料,解决象限问题。(多媒体展示)。

目的:让学生触发漫画中"上下坡"的情景,引导思考k、b对图象的影响——设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。

活动5:师生互动(师生角色互换),提高拓展。(多媒体展出内容)。

目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。

(三)课堂小结。

引导学生回忆所学知识。通过这节课的学习你得到什么启示和收获?谈谈你的感受。

目的:总结回顾学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。

(四)。作业布置。

加强"教、学"反思,进一步提高"教与学"效果,

做课本42页44页习题。

一次函数教案篇十六

本节课安排了两个内容:一是探索一次函数与二元一次方程(组)的关系,这是本节的重点;二是综合运用函数与方程、不等式的关系解决简单的实际问题,这是本节的难点。

教师先让学生把一个具体的二元一次方程转化成一次函数,再通过画图来揭示二元一次方程与一次函数之间的关系,然后在同一坐标系中画出另一条直线,观察、思考得到二元一次方程组与一次函数之间的关系,进而得到二元一次方程组的解与两条直线交点坐标之间的关系,这些都为从函数的观点认识解方程组作好了铺垫。学生经历了前面的探究学习后,很自然从“形”的角度来认识解方程组。为了帮助学生从“数”的角度来认识解方程组,教师设计一个练习,先让学生体验再引导学生归纳结论,使学生的思维活跃起来。这种呈现知识的形式符合学生的认知规律。

在例题的教学中,教师引导学生分析题意,建立函数模型,然后让学生讨论交流比较大小的方法.对于利用图象比较大小的两种方法,第一种是教师让学生独立画图,分析比较,然后强调自变量的取值范围;对于第二种方法,教师着重引导学生作差得到一个新函数,并把要解决的`问题设计成填空的形式,让学生结合画图分析完成。

这节课较好地体现了教材的编写意图,结合实际,不误时机地对学生进行“数形结合”思想方法的教学,并让学生在动口、动手、动脑的过程中体会四个“一次”之间的关系。教师注重知识形成过程的教学,突出学生活动这条主线,多媒体辅助教学应用自然,师生互动、生生互动,较好地体现了“以人为本”的教学理念。

一次函数教案篇十七

今天我说课的内容是人教版八年级上册第十四章一次函数第一课时,本节内容四个课时完成。我设计的是第一课时的教学,主要内容是一次函数概念。学生已经学过了正比列函数之后来学习一次函数。一次函数既为前面学过的正比列函数知识得以概括和升华,也为后面学习函数知识打下了坚实的基础,因此,一次函数的学习起到了承上启下的作用。

1.知识技能目标。

(1)掌握一次函数的概念和解析式的特点;

(2)知道一次函数和正比列函数的关系;

(3)会利用一次函数解决简单的数学问题。

2.过程和方法。

(1)通过登山问题和正比例函数的概念引出一次函数的概念,培养学生的探究能力;

(2)在教学过程中,让学生学会知识迁移、以及类比的思想。

3.情感和态度。

(1)通过“登山问题”的研究,体会建立函数模型思想;

(1)通过本节课的学习,向学生渗透数学和实践生活的紧密联系。

1.一次函数的定义和解析式的特点;

3.一次函数定义的应用以及解决相关的问题。

一次函数和正比列函数的关系以及一次函数的应用。

二、学情分析。

学生已经学过了正比列函数的相关知识,并结合实际的情境认识了正比例函数的意义、图像和性质以及一元一次方程等相关的知识。能利用正比列函数的思想解决简单的实际问题,为学生学习一次函数奠定了基础。

三、学法分析。

用观察、思考、概括、总结、归纳、类比、联想是学法指导的重点。

四、教法分析。

采用“引导------发现式”的教学法。

五、教学过程。

一次函数教案篇十八

函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

2、教学重难点。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

3、教学目标。

解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

二、教法说明。

对于认知主体――学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。

三、教学过程。

(一)感知身边数学。

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。

[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用“上网收费”这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。

教学引入。

师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

动画演示:

场景一:正方形折叠演示。

师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质―边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

[学生活动:各自测量。]。

鼓励学生将测量结果与邻近同学进行比较,找出共同点。

讲授新课。

找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

动画演示:

场景二:正方形的性质。

师:这些性质里那些是矩形的性质?

[学生活动:寻找矩形性质。]。

动画演示:

场景三:矩形的性质。

师:同样在这些性质里寻找属于菱形的性质。

[学生活动;寻找菱形性质。]。

动画演示:

场景四:菱形的性质。

师:这说明正方形具有矩形和菱形的全部性质。

及时提出问题,引导学生进行思考。

师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

[学生活动:积极思考,有同学做跃跃欲试状。]。

师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

“有一组邻边相等的矩形叫做正方形。”

“有一个角是直角的菱形叫做正方形。”

“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

(二)享受探究乐趣。

[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

[设计意图]学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。

(三)乘坐智慧快车。

[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:“你家选择的上网收费方式好吗?”再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。

(四)体验成功喜悦。

1、抢答题。

2、旅游问题。

[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

(五)分享你我收获。

在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?

[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。

(六)开拓崭新天地。

1、数学日记。

2、布置作业。

[设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让“不同的人在数学上得到不同的发展”。

四、教学设计反思。

1、贯穿一个原则――以学生为主体的原则。

2、突出一个思想――数形结合的思想。

3、体现一个价值――数学建模的价值。

4、渗透一个意识――应用数学的意识。

一次函数教案篇十九

各位评委、老师们:

大家好!

今天能有这个展示的机会,得到各位评委、老师的指导,感到非常荣幸、

基于以上对教学内容的理解,结合我所教学生的特点,我确定本节课教学目标为:

1.理解一次函数与二元一次方程(组)的关系、

3.通过现实化的实际问题背景,反映祖国科技和经济的发展、

本课的教学过程分为五个环节完成、首先请看“创设情境,提出问题”的教学过程、(插入录像1)。

设计意图:因为学生对刚学过的一次函数理解得还不够透彻,有一定的畏难情绪,并且他们对一元一次方程、二元一次方程(组)和一元一次不等式都很熟悉,因而缺乏学习这部分内容的热情,或者只是机械地背记结论,所以我从本课引入部分,就力求能马上吸引住学生。通过对一道七年级课本中曾经解决过的问题的再认识,使学生在认知上形成冲突,从而产生学习新知的需要;接着我设计了一个师生互动的游戏,使学生对老师是怎么迅速判断出方程组解的情况产生了强烈的好奇心,从而有了学习新知的强烈愿望、(插入录像2)。

1、进入新知的学习,我首先通过一段视频为学生创设了一个贯穿整节课的问题情境,使学生始终在倍感新鲜的环境中进行学习、本课新知由两部分构成,一是研究一次函数与二元一次方程的关系,二是研究一次函数与二元一次方程组的关系,下面请看第一部分的教学过程、(插入录像3)。

2、下面请看学生如何“研究一次函数与二元一次方程组的关系”、(插入录像4)。

为了帮助学生加深对所学内容的理解,我设计了下面的例题、(插入录像5)。

下面请看第四个环节“解决问题,加深认识”的教学过程、(插入录像6)。

这就是我对这节课的教学设计,其中难免有很多不足之处,真诚的希望得到各位老师的批评指正,以使我在今后的教学中加以改进、谢谢!

【本文地址:http://www.xuefen.com.cn/zuowen/12887979.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档