不等式的基本性质教案(热门17篇)

格式:DOC 上传日期:2023-11-17 20:14:05
不等式的基本性质教案(热门17篇)
时间:2023-11-17 20:14:05     小编:梦幻泡

教案是教师进行教学集束化管理和评价的重要手段,能够提高教学质量和效果。在编写教案时,要注意教学方法的选择和运用,提高教学的效果和趣味性。请大家在设计教案时,根据自己的实际情况进行灵活运用,并结合学生的实际需要调整。

不等式的基本性质教案篇一

难点本节例2。

方法讲练结合教学。

用具。

教学过程集体备课稿个案补充。

等式的`基本性质1等式的两边同时加上(或减去)同一个数或式,所得结果仍是等式若则。

1.书本117做一做。

2.书本118课内练习1。

3.课本117页例1。

三.会依据等式的基本性质将方程变形,求出方程的解。

1.书本118页例2。

2.书本119页作业题3,4。

教学反思。

教学改进。

不等式的基本性质教案篇二

1、使学生理解掌握比的基本性质,能应用比的基本性质进行比的化简。

2、培养学生类比、推理和概括思维能力。

1、前面我们认识了比,想一想2:4与6:12这两个比的大小是相等的吗?你能证明吗?----小研究(后附)。

(1)4人小组交流(2)全班交流。

(3)比值相等可以证明,还可以运用学过的哪个知识也可以证明呢?

(4)商不变的性质是不是对每个比都适用呢?自己举例试一试。

4、学生齐读,我们学习比的基本性质有什么作用呢?分数的性质可以使分数化简,比的性质同样可以使比化简,那么,什么样的比才是最简单的整数比呢?(比的前项和后项是互质数)最简单的整数比就简称为最简比。

5、你能举例说几个最简比吗?说得很好,在计算结果时,我们一般要得到最简比。

1、小组交流。

2、全班交流。

小结:化简比时,我们一般利用比的性质把比的前项和后项化成整数,再化简比较快。但在比的前项和后项都是分数时,用求比值的方法较快,只是注意最后结果要写成真分数、假分数或比的形式。

结合学生的汇报,引导学生注意化简比和求比值的区别。化简比:它是为了得到一个最简单的整数比。结果可以写成比的形式,也可以写成分数的形式,但不能写成带分数、小数获整数的形式。

1、学校体育室有10个篮球,15个足球,篮球与足球的个数比是()。

2、李师傅8小时生产了72个零件,李师傅生产零件总个数和时间的比是()。

3、拓展练习。

3:8=(3+6):(8+)。

(让学生分小组讨论方法)。

这节课有哪些收获?师生共同总结。

()年()班姓名。

你知道2:4与6:12这两个比的大小相等吗?你能证明吗?你有什么发现?

方法一。

方法二。

方法三。

方法四。

我的发现:

聪明的同学:请你结合这节课所学的知识化简下面各比,说说你有什么发现?

序号。

我的方法。

(写出过程)。

1

14:21。

2

36:15。

3

1/6:2/9。

4

2/3:3/4。

5

1.25:2。

6

5.6:4.2。

我的发现:

不等式的基本性质教案篇三

教完“比的基本性质”后,我不停地在思考一个问题:学生学习数学知识有一个最重要的基础:已有知识,尤其对六年级学生而言,他们在以前学习的过程中,积累了丰富的数学知识,尽管这些知识的获得有的来自于他人的帮助,有的来自于自身的感悟,但是不管怎样,不管其来源如何,既然学生已经掌握,就纳入到了学生已有的知识结构体系中,这些的确是客观存在的现实,并作为小学生已有知识的一部分构成进一步学习新知的数学资源。《数学新课程标准》指出:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上”。小学生已有的知识是学生进行数学学习的重要资源。

其实,对于小学生而言,由于他们已经有了许多相关的数学知识,很多教材中的“新知识”对于学生来讲并非“新知识”。正因为这样,我理解的小学生数学学习的实质是,用自己已有的知识与新知进行交互作用,进而重新建构自己的知识体系的过程。学生以前学习的“商不变的规律”、“分数的基本性质”、“比与分数、除法之间的关系”和今天学习的“比的基本性质”相互联系起来,让学生在已有知识的基础上学习新知就可以起到事半功倍的效果。

因此,学生的已有知识理所当然地成为他们数学学习的一个重要基础,进而成为我们进行数学教学的一个庞大资源库。而这些学生已经掌握的数学知识,为他们进一步学习数学提供了一个有利的条件。教师如果能够注意到这些情况,并将学生已有的知识科学合理进行利用,与学习数学新知互相结合起来,必将起到良好的效果。因此,关注学生已有的知识,贴近学生的实际情况,既是数学学科的特点所决定的,更是数学学习所必需的。

不等式的基本性质教案篇四

“分式的基本性质”是人教版八年级上册第十一章第一节“分式”的重点内容之一,它是后面分式变形、通分、约分及四则运算的理论基础,掌握本节内容对于学好本章及以后学习方程、函数等问题具有关键作用。

2、教学重点、难点分析:

3、教材的处理。

学习是学生主动构建知识的过程。学生不是简单被动的接受信息,而是对外部信息进行主动的选择、加工和处理,从而获得知识的意义。学习的过程是自我生成的过程,是由内向外的生长,其基础是学生原有知识与经验。本节课中,学生原有的知识是分数的基本性质,因此我首先引导学生通过分数的基本性质,这就激活了学生原有的知识,然后引导学生通过分数的基本性质用类比的方法得出分式的基本性质。让学生自我构建新知识。通过例题的讲解,让学生初步理解“性质”的运用,再通过不同类型的练习,使其掌握“性质”的运用.最后引导学生对本节课进行小结,使学生的知识结构更合理、更完善。

数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。教学的目的就是应从实际出发,创设有助于学生自主学习的问题情境,引导学生通过思考、探索、交流获得知识,形成技能,发展思维,学会学习,使学生生动活泼地、主动地、富有个性的学习,促进学生全面、持续、和谐地发展。为此,我从知识技能、数学思考解决问题、情感态度四个方面确定了教学目标:

1、知识技能:

2、数学思考:通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的.思想方法。

3、解决问题:通过探索分数的基本性质,积累数学活动的经验。

4、情感态度:通过研究解决问题的过程,培养学生合作交流意识与探索精神。

1、教学方法。

数学是一门培养人的思维,发展人的思维的重要学科。在新课程理念下,获得数学知识的过程比获得知识更为重要。基于本节课的特点,课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。

2、学法指导。

现代新教育理念认为,学习数学不应只是单调刻板,简单模仿,机械背诵与操练,而应该采用设置现实问题情境,有意义富有挑战性的学习内容来引发学习者的兴趣。,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究,主动总结,主动提高,突出学生是学习主体,他们在感知识知识的过程中无疑提高了探索、发现、实践、总结的能力。

3、教学手段。

我所采用的教学手段是多媒体辅助教学法。

活动1创设情境,引入课题。

教师提出问题,下列分数是否相等?可以进行变形的依据是什么?需要注意的是什么?类比分数的基本性质,你能猜想出分工有什么性质吗?学生思考、交流,回答问题。在活动中教师要关注:(1)学生对学过的知识是否掌握得较好;(2)学生对新知识的探索是否有深厚的兴趣。

设计意图:通过具体例子,引导学生回忆分数的基本性质,再用类比的方法得出分式的基本性质。这样安排,首先激活了学生原有的知识,为学习分式的基本性质做好铺垫。体现了学生的学习是在原有知识上自我生成的过程。

活动2类比联想,探究交流。

教师提出问题:如何用语言和式子表示分式的基本性质?学生独立思考、分组讨论、全班交流。

设计意图:教师引导学生用语言和式子表示分式的基本性质,体现了学生的学习是在原有知识上自我生成的过程。这样安排,学生的知识不是从老师那里直接复制或灌输到头脑中来的,而是让学生自己去类比发现、过程让学生自己去感受、结论让学生自己去总结,实现了学生主动参与、探究新知的目的。

活动3例题分析运用新知。

教师提出问题进行分式变形。学生先独立思考问题,然后分小组讨论。教师参与并指导学生的数学活动,鼓励学生勇于探索、实践,灵活运用分式基本性质进行分式的恒等变形。在活动中教师要关注:(1)学生能否紧扣“性质”进行分析思考;(2)学生能否逐步领会分式的恒等变形依据。(3)学生是否能认真听取他人的意见。

活动4练习巩固拓展训练。

教师出示问题训练单。学生先独立思考完成,并安排三名同学板演。教师巡视,注意对学习有困难的学生进行个别辅导。在活动中教师要关注:(1)大部分学生能否准确、熟练完成任务;(2)学生能否用数学语言表述发现的规律;(3)学生在运算中表现出来的情感与态度是否积极。

设计意图:通过思考问题,鼓励学生在独立思考的基础上,积极地参与到对数学问题的讨论中来,勇于发表自己的观点,善于理解他人的见解,在交流中获益。第二个问题指明了分式的变号法则。

不等式的基本性质教案篇五

教法与学法:

1.教学理念:“人人学有用的数学”

2.教学方法:观察法、引导发现法、讨论法.。

3.教学手段:多媒体应用教学。

4.学法指导:尝试,猜想,归纳,总结。

根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。

下面我将具体的教学过程阐述一下:

一、创设情境,导入新课。

上课伊始,我将用一个公园买门票如何才划算的例子导入课题。

(此处学生是很容易得出买30张门票需要4x30=120(元),买27张门票需要5x27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式)。

紧接着进一步提问:若人数是x时,又当如何买票划算?

二、探求新知,讲授新课。

引例列出了数与数之间的不等关系和含有未知量1205x的不等关系。那么在不等式概念提出之前,先让学生回顾等式的概念,“类比”等式的概念,尝试着去总结归纳出不等式的概念。使学生从一个低起点,通过获得成功的体验和克服困难的经历,增进应用数学的自信心,为下面的学习调动了积极。

接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。

(1)a是负数;

(2)a是非负数;

(3)a与b的和小于5;

(4)x与2的差大于-1;

(5)x的4倍不大于7;

(6)的一半不小于3。

关键词:非负数,非正数,不大于,不小于,不超过,至少。

难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。

反馈练习:用一个小练习巩固三条性质。

如果ab,那么。

(1)a-3b-3(2)2a2b(3)-3a-3b。

提出疑问,我们讨论性质2,3是好象遗忘了一个数0。

引出让学生归纳,等式与不等式的区别与联系。

三、拓展训练。

根据不等式基本性质,将下列不等式化为“”或“”的形式。

再次回到开头的门票问题,让学生解出相应的x的取值范围。

四、小结。

1.新知识。

2.与旧知识的联系。

五、作业的布置。

以上是我对这节课的教学的看法,希望各位专家指正。谢谢!

“让学生主动参与数学教学的全过程,真正成为学习的主人”

不等式的基本性质教案篇六

教学内容:

课本第57页的内容及例1,完成做一做题和练习十四的第5~9题。

教学目的.:

教学过程:

一、复习。

1.除法中的商不变规律是什么?

3.比与除法有什么关系?

4.比与分数有什么关系?

二、新授。

将本文的word文档下载到电脑,方便收藏和打印。

不等式的基本性质教案篇七

《不等式的基本性质》它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:

本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。

根据《新课程标准》的要求,教材的`内容兼顾我校八年级学生的特点,我制定了如下教学目标:

知识与技能:

1.感受生活中存在的不等关系,了解不等式的意义。

过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。

情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。

教学重难点:

不等式的基本性质教案篇八

填空:

教师追问:第三题()里可以填多少个数?第4题呢?

为什么3、4题()里可以填无数个数?

()里填任何数都行吗?哪个数不行?(板书:零除外)。

这里为什么必须“零除外”?

(板书课题:分数基本性质)。

4.深入理解分数基本性质.。

教师提问:分数的基本性质里哪几个词比较重要?

为什么“都”和“相同”很重要?

为什么“分数大小不变”也很重要?

为什么“零除外”也很重要?

三、课堂练习.。

1.用直线把相等的分数连接起来.。

2.把下列分数按要求分类.。

和相等的分数:

和相等的分数:

3.判断下列各题的对错,并说明理由.。

4.填空并说出理由.。

5.集体练习.。

四、照应课前谈话.。

问:现在谁知道哥哥、姐姐、弟弟三个人,谁吃的西瓜多呢?

板书:

五、课堂小结.。

这节课你有什么收获?

六、布置作业.。

1.指出下面每组中的两个分数是相等的还是不相等的.。

2.在下面的括号里填上适当的数.。

将本文的word文档下载到电脑,方便收藏和打印。

不等式的基本性质教案篇九

《不等式的基本性质》它是北师大版八年级下册第二章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:

本节内容不等式的基本性质,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。

根据《新课程标准》的要求,教材的内容兼顾我班学生的特点,我制定了如下教学目标:

知识与技能:

1.感受生活中存在的不等关系,了解不等式的意义。

过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。

情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。

教学重难点:

不等式的基本性质教案篇十

教材第50、第51页的内容及练习十一的第4~8题。

教学目标。

1、根据除法中商不变的规律和分数的基本性质,利用知识的迁移,使学生领悟并理解比的基本性质。

2、通过学生的自主探讨,掌握化简比的方法并会化简比。

3、初步渗透事物是普遍联系的辩证唯物主义观点。

重点难点。

重点:理解比的基本性质,推导化简比的方法,正确化简比。

难点:正确化简比。

教具学具。

练习题投影片。

教学过程。

一导入。

1、比与分数、除法的关系。

如果学生有困难,可以先完成下表。填表后再说一说比与分数、除法有怎样的关系。

老师:请大家回忆一下,分数有什么性质?商不变有什么规律?它们的内容分别是什么?

(指名学生发言)。

二教学实施。

1、猜想。

老师:比和分数、除法的关系相当密切,那么,在比中有没有类似的性质呢?如果有,请同学们猜想一下,可能会是怎样的。

汇报时,让学生说说猜想的根据,老师也可引导学生在“分数的基本性质”上进行替换。

引导学生用语言表述,比的前项相当于分数的分子,后项相当于分母,分数的分子和分母同时乘或除以相同的数(0除外),分数的'大小不变。因此,比的前项和后项同时乘或除以相同的数(0除外),比值不变。或者比的前项相当于除法中的被除数,后项相当于除数,被除数和除数同时乘或除以相同的数(0除外),商不变。因此,比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、验证。

以小组为单位,讨论、验证一下刚才的猜想是否正确。

学生汇报。

3、小结。

经过同学们的验证,我们知道这个猜想是正确的,并且经过补充使它更完整了,在比中确实存在这种性质。

4、化简比。

出示例1(1)。

老师整理情境中的信息:“神舟”五号搭载了两面联合国旗,一面长15cm,宽10cm,另一面长180cm,宽120cm,问题是求这两面联合国旗长和宽的最简单的整数比分别是多少。

学生反复读几遍。

提问:你怎样理解“最简单的整数比”这个概念?

学生讨论,指名回答,达成共识,最简单的整数比必须是一个比,它的前项和后项都是整数,而且前项和后项应该是互质数。

15∶10=(15÷5)∶(10÷5)=3∶2。

180∶120=(180÷60)∶(120÷60)=3∶2。

出示例1(2)。

学生尝试把下面各比化成最简单的整数比。

老师强调:不管选择哪种方法,最后的结果都应该是一个最简单的整数比,而不是一个数。

5、反馈练习。

(1)完成教材第51页的“做一做”,集体订正。

(2)完成教材第53页练习十一的第4题。

提问:题目要求你怎么理解?什么叫后项是100的比?后项是100,前项要怎么办?

(3)完成教材第53页练习十一的第5题。

(4)完成教材第53页练习十一的第6~8题。

让学生说明理由,注意思维的逻辑性和语言的条理性。

三课堂作业新设计。

1、把下面各比化成最简单的整数比。

四思维训练参考答案。

课堂作业新设计。

1、6∶73∶13∶85∶67∶54∶14∶510∶1。

2、(1)4∶5(2)3∶2(3)7∶4(4)5∶2。

思维训练。

板书设计。

比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。

化简比:前项和后项只有公因数1的比,叫做最简单的整数比。把比化简成最简。

单的整数比,叫做化简比。

备课参考教材与学情分析。

比的基本性质是在学生学习了比的意义,比与分数、除法的关系,商不变的规律和分数基本性质的基础上进行教学的。教材联系学过的除法中商不变的规律和分数基本性质,通过“想一想”启发学生找出比中有什么相应的性质,然后概括出比的基本性质,应用这个性质可以把比化成最简单的整数比。学生在以前的学习中,已经掌握了商不变的规律和分数的基本性质,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、除法的关系,推导出比的基本性质,这节课通过让学生猜想―验证―应用,让学生理解比的基本性质,应用性质化简比。

课堂设计说明。

我们知道,比与分数、除法只是形式上的不同,实质上它们是可以互相转化的。教学时,我们先回顾比与分数、除法的关系,复习商不变的规律和分数的基本性质。引导学生想一想:比会不会也有自己的性质,启发他们用举例的方法验证自己的猜想。最后总结出比的基本性质。

根据比的基本性质将比化简,可以使这两个数量之间的关系更加简单、明了,便于学生分析一些事物现象。

不等式的基本性质教案篇十一

1.经历探索分数的基本性质的过程,理解分数的基本性质。

2.能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变得分数。

3.经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

探索和理解分数的基本性质

理解分数的基本性质,并能应用其解决一些简单问题。

圆、长方形纸片

出示40的圆形图,画出阴影,提问:你可以用分数表示出阴影部分得面积吗?

折一折

说一说这些分数有什么共同之处。

归纳:分数的分子和分母都乘或除以相同的数(0除外)分数的大小不变。

学生独立尝试填写,教师巡视指导,然后让学生交流自己的思考过程。

指导学生进行练习,并让学生说说是运用了分数的什么性质?

练一练

涂一涂,填一填。完成第1、2题。

学生填写完要说说想法,重点说说分母由3变成了18要乘6,所以分子2也要乘6。

完成练一练第3、4题。

板书设计:

找规律

分数的分子和分母都乘以

或除以相同的数(0除外),

分数的大小不变

不等式的基本性质教案篇十二

教学目的:

理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

3.较好实现知识教育与思想教育的'有效结合。

教学难点:

理解和掌握分数的基本性质,并运用分数的基本性质解决问题,进一步加深分数与除法之间的关系。

教学准备:

板书有关习题的幻灯片。

教学过程:

一、复习。

1.出示。

在括号里填上适当的数:

指名说一说结果,并说一说你是根据什么填的?

二、课堂练习:

1.自主练习第4题。

学生先独立做,教师巡视,并个别指导,集体订正。

教师板书题目中的线段,指名让学生板演。

在直线那些分数用同一个点表示是什么意思?(就是问哪几个分数相等。)。

怎样找出相等的分数?

让学生自己找。集体订正是要求学生说一说你是根据什么找出相等的分数的?

然后要求学生在书上把这几个相应的点找出来。指名板演。

2.自主练习第5题。

先让学生独立做,教师巡视。个别指导。

指名说一说你的结果,并说一说你是根据什么填的。重点要求学生说清楚利用分数的基本性质来进行填空。

教师根据学生的回答选择几个题目进行板书。

3.自主练习第6题。

先让学生独立做。教师巡视并个别指导。注意差生中出现的问题。

集体订正。指名说一说自己的计算过程和结果。

教师根据学生的回答选择几个题目进行板书。

4.自主练习第7题。

学生独立做。教师要求有困难的学生分组讨论,教师个别指导。

集体订正。指名说一说自己的计算过程。教师注意要求学生说清楚计算的根据和理由。

5.自主练习第8题。

学生先独立做。

不等式的基本性质教案篇十三

根据新课标的要求,本节的重点是应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程,难点是用基本不等式求最值。本节课是基本不等式的第一课时。

在新课讲解方面,我仔细研读教材,发现本节课主要是让学生明白如何用基本不等式求最值。如何用好基本不等式,需要学生理解六字方针:一正二定三等。这是比较抽象的内容。尤其是“定”的相关变化比较灵活,不可能在一节课解决。因为我把这部分内容放到第二节课。本节课主要让学生掌握“正”“等”的意义。

我设计从例一入手,第一小题就能说明“积定和最小”,第二小题说明“和定积最大”。通过这道例题的讲解,让学生理解“一正二定三等”。然后再利用这六字方针就最值。这是再讲解例二,让学生熟悉用基本不等式解题的步骤。然后让学生自己解题。

巩固练习中设计了判断题,让学生理解六字方针的内涵。还从“和定”、“积定”两方面设计了相关练习,让学生逐步熟悉基本不等式求最值的方法。

课堂实施的过程中以学生为主体。包括课前预习,例题放手让学生做,还有练习让学生上台板书等环节,都让学生主动思考,并在发现问题的过程中展示典型错误,及时纠错,达到良好的效果。

不足之处是:复习引入的例子过难,有点不太符合文科学生的实际。且复习时花的时间太多,重复问题过多,讲解琐碎;例题分析时不够深入,由于担心时间不够,有些问题总是欲言又止。练习题讲解时间匆促,没有解释透彻。

不等式的基本性质教案篇十四

练一练,练习十一第1~3题。

1、使学生经历探索分数基本性质的过程,初步理解分数的基本性质。

2、使学生能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象,概括的能力,体现数学学习的乐趣。

1、我们已经学习了分数的有关知识,这节课在已经掌握的知识基础上继续学习。

2、出示例1图。

你能看图写出哪些分数?你是怎样想的?说出自己的想法。

1、教学例1。

(1)这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?

(2)你其中哪几个分数是相等的吗?你是怎么知道这三个分数相等的?

(3)演示验证。

2、教学例2。

(1)取出正方形纸,先对折,用涂色部分表示它的1/2。学生操作活动。

(2)你能通过继续对折,找出和1/2相等的其它分数吗?学生操作活动。交流汇报。对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?(板书)。

(3)得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?

(5)小结。分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。板书课题:分数的基本性质。

(6)为什么要“0”除外呢?

(7)你能根据分数的基本性质,写出一组相等的.分数吗?学生尝试完成。

(8)根据分数和除法的关系,你能用整数除法中商不变的规律来说明分数的基本性质吗?在小组中说一说。

3、完成练一练。

(1)完成第1题。涂色表示已知分数,再在右图中涂出相等部分。说说怎么想的?

2、完成第2题。独立完成,交流想法。

不等式的基本性质教案篇十五

内容:p15、16例1、2,练习四第1-3题。

目标:

1.知识与技能:经历探索分数基本性质的过程、理解分数的基本性质。

2.过程与方法:能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

3.情感、态度与价值观:经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

过程:

一、创设情境,导入新课。

“大圣”分桃:

二、师生共研、发现规律。

师生共同揭秘“分桃”内幕。

人分桃的全过程,我们可将“齐天大圣”的分桃秘招公著如下:

1÷2=1/2=2/4=4/8。

从上面这三个分数的相等关系,你发现了什么?

从左往右看:

1/2=1×2/2×2=2/4。

从右往左看:

2/4=2÷2/4÷2=1/2。

1/2的分子、分母同乘2,分数大小不变;2/4的分子、分母同除以2,分数大小不变。

观察分子、分母的变化,同时归纳小结。

学生试,验证自己提出的观点是否正确。

小结:

分数的分子和分母同时乘上或者除以相同的数(零除外)分数的大小不变。

三、数学小报,再次验证。

1.指导阅读,并参照课本进行折纸(按小组活动)注意4张报纸要大小相同。

2.将折得的小报中数学趣题版用阴影显示出来。

3.将四张的折叠结果重叠,得出数学趣题版面大小。

4.针对式子进行口头表述。

四、理解性质、简单运用。

例2的教学。

(1)出示例2:把3/4、15/24化成分母都是8而大小不变的分数。

请同学们理清题意,然后进行转化。

(2)反馈。

(3)质疑。

让学生通过讨论,深化对分数大小不变的要求的'理解。

(4)议一议。

由于分数与除法的密切关系,所以分数的基本性质与除法的商不变性质是一致的。在实际应用中可以通用。

五、练习巩固、拓展提高。

1.课堂活动。

2.提取第一题的结果,进行深入思考:

结论:大小不变,分数单位要变。

六、全课总结:

七、作业:

练习四第1-3题。

不等式的基本性质教案篇十六

教学内容:人教版五年级数学下册57页内容。

教学目标:

知识与能力:使学生理解和掌握分数的基本性质,并能应用这一规律解决简单的实际问题。

过程与方法:能在观察、比较、猜想、验证等学习活动的过程中,有条理、有根据地思考、探究问题,培养学生分析和抽象概括的能力。

情感态度价值观:体验数学验证的思想,培养乐于探究的学习态度。

教学准备:多媒体课件、正方形纸、直尺、彩笔。

教学过程:

一、铺垫孕伏,温故迁移。

1.比一比:看谁算得又对又快。

2.说一说:商不变的性质是什么?

3.想一想:分数与除法有怎样的关系?

4.猜一猜:除法中有商不变的规律,分数中是否具有类似的规律?

二、设疑激趣,探究新知。

(一)故事激趣,引出分数。

说出自己从故事中听到的分数。

(二)小组合作,直观感知。

1.折一折:拿出三张同样大小的正方形纸,分别用对折的方法平均分成2份、4份、8份。

2.画一画:画出折痕所在的直线。

3.涂一涂:

(1)给平均分成2份的正方形纸的其中的1份涂上颜色。

(2)给平均分成4份的正方形纸的其中的2份涂上颜色。

(3)给平均分成8份的正方形纸的其中的4份涂上颜色。

4.比一比:比较3张正方形纸涂色部分的大小。

5.议一议:和同伴说说自己的想法。

(二)观察比较,探究规律。

1.这三个分数的分子、分母都不同,分数的大小却相等。你能找出它们之间的变化规律吗?请同学们四人一组,讨论这个问题。

2.汇报交流。

3.启发点拨。

通过从左往右观察、比较、分析,你发现了什么?

引导学生小结得出:分数的分子、分母同时乘相同的数,分数的大小不变。

那么,从右往左看呢?

让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。

(三)独立尝试,运用规律。

1.学生独立思考,完成例2。

2.反馈交流,订正点拨。

3.小结:我们可以运用分数的基本性质把一个分数化成分母不同但大小不变的分数。

三、达标检测,内化提升(见《达标测试题》)。

四、总结收获,评价激励。

这节课你有什么收获?你对自己的哪些表现比较满意?

板书设计:

例1:

分数的分子、分母同时乘或者除以相同的数(0除外),分数的大小不变。

例2:

不等式的基本性质教案篇十七

教学内容:教科书第60~61页,例1、例2、练一练,练习十一第1~3题。

教学目标:

2、使学生能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象,概括的能力,体现数学学习的乐趣。

教学过程:

一、导入新课。

1、我们已经学习了分数的有关知识,这节课在已经掌握的知识基础上继续学习。

2、出示例1图。

你能看图写出哪些分数?你是怎样想的?说出自己的想法。

二、教学新课。

1、教学例1。

(1)这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?

(2)你其中哪几个分数是相等的吗?你是怎么知道这三个分数相等的?

(3)演示验证。

2、教学例2。

(1)取出正方形纸,先对折,用涂色部分表示它的1/2。学生操作活动。

(2)你能通过继续对折,找出和1/2相等的其它分数吗?学生操作活动。交流汇报。对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?(板书)。

(3)得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?

(5)小结。分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。板书课题:分数的基本性质。

(6)为什么要“0”除外呢?

(7)你能根据分数的基本性质,写出一组相等的分数吗?学生尝试完成。

(8)根据分数和除法的关系,你能用整数除法中商不变的规律来说明分数的基本性质吗?在小组中说一说。

3、完成练一练。

(1)完成第1题。涂色表示已知分数,再在右图中涂出相等部分。说说怎么想的?

三、巩固练习。

2、完成第2题。独立完成,交流想法。

四、课题总结。

今天有了什么收获?你认为学习了分数的基本性质有什么作用?在什么时候可能会用到它?

【本文地址:http://www.xuefen.com.cn/zuowen/12848344.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档