二次函数课件教案(汇总17篇)

格式:DOC 上传日期:2023-11-17 18:34:29
二次函数课件教案(汇总17篇)
时间:2023-11-17 18:34:29     小编:LZ文人

教案应该具备清晰的教学目标,明确评价标准和评价方式,便于教学效果的评估和反馈。教案的教学步骤应具体详细,能够引导教师操作和学生参与,确保教学效果的实现。通过阅读这些教案范文,大家可以更清晰地了解如何编写一份高质量的教案。

二次函数课件教案篇一

本节内容是人民教育出版社出版的九年级《数学》下第26章第一节第二课时的内容。在此之前,学生已学习了二次函数的概念,对于函数的积累知识有一次函数和反比例函数。本节内容是对二次函数图像及其性质的学习,是后续研究二次函数图像的变换的基础。二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。

本节课中的教学重点利用描点法画出二次函数的图像,建构符合学生认知结构的知识体系,教学难点是运用数形结合的思想描述函数,根据解析式判断函数的开口方向、对称轴、顶点坐标。基于以上对教材的认识,根据数学课程标准,考虑到学生已有的认知结构与心理特征,制定如下的教学目标。

【知识与能力】:

会用描点法画出函数y=ax2的图象。

知道抛物线的有关概念。

会根据公式确定抛物线的顶点坐标、开口方向、对称轴以及抛物线与坐标轴的交点坐标。

【过程与方法】:

1、通过二次函数的教学进一步体会研究函数的一般方法,加深对于数形结合思想的认识。

2.综合运用所学知识、方法去解决数学问题,培养学生提出、分析、解决、归纳问题的数学能力,改善学生的数学思维品质。

【情感与态度目标】:

在数学教学中渗透美的教育,让学生感受二次函数图像的对2。

称之美,激发学生的学习兴趣。认识到数学源于生活,用于生活的辩证观点。

教法选择与教学手段:基于本节课的特点是学习新知及其综合运用,应着重采用复习与总结的教学方法与手段,先从一次函数、反比例函数的图像复习入手,通过提问思考、归纳总结、综合运用等形式对二次函数图像及其性质进行有针对性的、系统性的教学。教学的模式为学生思考,讨论,教师分析,演示、师生共同总结归纳。

利用白板的动态画板功能,画出不同的二次函数图像,进行分析比较和归纳。

学法指导:让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力。

最后,我来具体谈一谈本节课的教学过程。

(一)为对二次函数图像及其性质的相关知识进行重构做准备。通过回忆复习一次函数和反比例函数图像及其性质等相关知识引入新课。利用描点法画出二次函数的图象,总结规律,会根据公式确定抛物线的顶点坐标、开口方向、对称轴。说出a为何值时y随x增大而增大(增大而减小),引导学生掌握用描点法画出二次函数的图象,能从图象上认识二次函数的性质。运用联想、概括方法对二次函数图像及其性质的相关知识进行梳理,领悟数形结合的思想方法,发展学生的化归迁移的数学思维,培养学生的转化能力。

(二)通过对二次函数图像及其性质的学习,采用学生思考,教师分析,解题小结三个环节构成的练习题讲解模式,巩固二次函数图像及其性质的基本题目的一般解题方法,并进一步研究二次函数图像及其性质的应用。

(三)反思概括,方法总结。

总结本节课的知识点、重点和难点,着重理解二次函数图像及其性质的相关知识和基本解题方法,领悟数形结合的数学思想方法,学会用化归思想,解决实际问题。培养学生由题及法,由法及类的数学总结归纳方法。

(四)作业。

课后通过练习来巩固本节课所复习的知识点、重点和难点,强化教学目标。

各位老师,以上所说只是我预设的一种方案,但课堂上是千变万化的,会随着学生和教师的灵性发挥而随机生成的,预设效果如何,最终还有待于课堂教学实践的检验。本说课一定存在诸多不足,恳请各位老师提出宝贵意见,谢谢!

二次函数课件教案篇二

1、教材所处的地位:

2、教学目的要求:

(2)让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系;

(3)知道实际问题中存在的二次函数关系中,多自变量的取值范围的要求。

(4)把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用。

3、教学重点和难点。

本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点:

重点:

(2)能够表示简单变量之间的二次函数关系.。

难点:

具体的分析、确定实际问题中函数关系式。

下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

1、教法研究。

教学中教师应当暴露概念的再创造过程,鼓励学生不但要动口、动脑,而且要动手,学生经过自己亲身的实践活动,形成自己的经验、猜想,产生对结论的感知,这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会主动学习,学会研究问题的方法,培养学生的能力。本节课的设计坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。

2、学法研究。

初中学生的思维方式往往还是比较具象的,要让他们在问题的探究过程中充分体验问题的发现、解决及最终表述的方式方法,遇到困难可以和同伴、老师进行交流甚至争论,这样既可以加深学生对问题的理解又可以让学生体验获得学习的快乐。

3、教学方式。

(1)由于本节课的内容是学生在学习了《一次函数》和《正比例函数》的基础上的加深,所以可以利用学生已有的知识在问题一、二中放手让学生先去探究探究两个问题中的变量之间的关系,在得到具体的关系式后,再引导学生观察关系式都有着什么样的特点,可以和多项式中的二次三项式或一元二次方程比较认识,并最终得出二次函数的一般式及二次项系数的取值为什么不为零的道理。

(2)要特别提醒学生注意:二次函数是解决实际生活生产的一个很有效的模板,因而对二次函数解析式中自变量的取值范围一定要从理论上和实际中加以综合讨论和认定。

(3)可以多让学生解决实际生活中的一些具有二次函数关系的实例来加深和提高学生对这一关系模型的理解。

这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

1、温故知新—揭示课题。

由回顾所学过的正比例函数,一次函数入手,引入函数大家庭中还会认识那一种函数呢?再由例子打篮球投篮时篮球运动的轨迹如何?何时达到最高点?引入二次函数。

2、自我尝试、合作探究—探求新知。

通过学生自己独立解决运用函数知识表述变量间关系,即自我探讨环节;合作探究环节,学生间互动,集群体力量,共破难关,来自主探究新知,从而通过观察,归纳得到二次函数的解析式,获取新知。

3、小试身手—循序渐进。

本组题目是对新学的直接应用,目的在于使学生能辨认二次函数,准确指出a、b、c,并应用其定义求字母系数的值,能应用二次函数准确表示具体问题中的变量间关系。本组题目的解决以学生快速解答为主,重点对第2题分析解决方法。这一环节主要由学生处理解决,以检查学生的掌握程度。

4、课堂回眸—归纳提高。

本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。

5、课堂检测—测评反馈。

共有6个题目,由学生独自处理第1、2、3、4、5小题,再发表自己的看法,第6小题可由学生或独自或同组交流均可。教师多以巡视为主,注意掌握学生对本节的掌握情况。

6、作业布置。

作业我选择“同步作业”里的题目,其中基础训练为必做题,全员均做;综合应用为选做题,可供学有余力的学生能力提升用。

通过引入实例,丰富学生认识,理解新知识的意义,进而摆脱其原型,从而进行更深层次的研究,这种“数学化”的方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对于学生的终身发展也有一定的作用。

二次函数课件教案篇三

教师的任务不仅在于教数学,更主要的是创设情境,激励学生凭借自己的能力去获取数学知识,理解数学的道理,构建数学思想。因此,在教学中,我们应鼓励学生通过独立思考或合作学习研究,“发现”或“再创造”出数学知识。

一、教学背景分析:

1、教材分析:二次函数的知识是看中学数学学习的重要内容之一,它是从生活实际问题中抽象出的数学知识,又是在解决实际问题时广泛应用的数学工具,无论是在生活中还是在运用二次函数知识的方法上,都具有重要意义的教学内容。因此,搞好二次函数的图像和性质的教学,对学生能力的培养有重要的奠基意义。

2、教学内容分析:本节课二次函数的图像的第一课时,主要是研究最简单的二次函数的图像的画法,从而总结出它的性质。这既是对学生进行理性思维的培养,又是进行抽象思维的培养,具有较高的数学教育价值。因此学好本节内容对以后的学习也很重要。我确定本节课的重点是:根据图像观察、分析出二次函数的性质。

3、学生情况分析:本节课的教学对象是职高一年级级学生,在此之前他们对一次函数的图像和性质有一定的基础,但他们的观察能力,概括能力还比较弱,因此我确定本节课的难点是继续渗透数形结合的数学思想方法。

二、教学目标的确定:

我根据数学课程标准中关于“二次函数的图像”的教学要求,结合学生的实际情况,从以下三个方面确定了本节课的教学目标:

知识与技能:

(2)根据图像观察、分析出二次函数的性质。

(3)进一步理解二次函数和抛物线的有关知识。

过程与方法:通过画函数图像,总结性质,渗透由特殊到一般的辨证唯物主义观点。渗透数形结合的数学思想方法,培养观察能力和分析问题的能力。

情感态度:培养学生勇于探索创新及实事求是的科学精神。

三、教学方法与手段:

教学方法主要采用问题导学、小组讨论与反馈练习相结合的方法,通过教。

师设置问题,引导学生独立思考,通过总结二次函数的性质组织学生小组讨论,为较差学生提供得到帮助的机会,通过反馈练习了解学生情况,及时分析和矫正,提高课堂教学效果。

教学手段采用分层教学与学案相结合的方法。通过分层提问,使不同的学生获得不同的收获,通过学案的设计帮助学生检测学习情况,反思学习过程,不断提高学习效果。

四、教学过程的反思:

优点:

1、上课一开始,我就注重对所学过的平面直角坐标系的有关知识、平面内如何确定点的坐标、以及各象限内点的坐标特征和关于y轴对称点的坐标特征的复习。使学生在画二次函数图像时描点找得很快、很准确。在讲解抛物线的概念时,出示了同学们很感兴趣的姚明投篮的照片,激发了学生的学习兴趣。为了得出a不同对抛物线图像和性质的影响,在学生画完三个图像后,教师采用“问题导学”式教学方法,设置问题情境,引导学生自主进行观察、发现、归纳、反思等数学活动,得出二次函数y=ax2的图像和性质,在教学中,由学生自己动手,通过列表、描点、连线绘制出二次函数的图像,培养了学生动手动脑的习惯和综合分析归纳的能力。

2、小组合作学习,发现其中的规律。鼓励学生相互交流自己的想法,并说明理由。如在画出图像后,提问学生“我们可以从图中观察到什么”。渗透了数形结合的思想,培养了学生观察、综合分析的能力,增加了学习的自信心和学习的能力。在合作学习中,也培养了他们善于与人交流,合作,肯于负责任的良好个性品质。

3、教师适时地总结、深化,提高认识水平。教师在不断地总结中渗透数学思想方法,抓住时机培养学生思维的深刻性。如这几个基本函数的学习上一节课经历了从实例抽象概括出函数概念,本节课由函数的解析式画出函数的图像,总结出函数的性质,再利用所学知识解决有关问题。在师生的共同讨论中,深化所学知识,培养学生具备反省思维的能力。

4、课堂教学中充分体现了教师和学生的“双主作用”,其中“问题导学”的教学模式起了重要作用。只有教师创造性的教,学生才能创造性地学,一旦学生的学习活动充满创造性的时候,学习过程便充满美的魅力,成为学生积极进取、自我完善的过程。

不足:对y=-x2的读法,教师读的不规范,没有注意小的细节。在总结二。

次函数性质时,对于开口宽度,我在备课时用a的绝对值来表示的,a为负数时与a为正数时正好相反,一个学生说对了,但不是老师要的答案,我当时没有多想,就说他说的不对。忽略了不同的说法。另外老师提出问题后,给学生去分析、归纳、总结的时间还不够,因此本节课中教师有包办现象。

五、得到的启示:

反思这节课,从课前准备到课堂实施再到课后作业效果和检测,我得到如下启示:

1、对教材的处理要灵活,要考虑到前后知识的联系。

2、学生是变化的,要能及时准确的了解学生情况。

3、要不断探索和完善自己的教学方法和手段,向其他老师学习。

4、不断提高学生学习兴趣,不断提高课堂实效。

5、加强个别辅导。指导学生。

二次函数课件教案篇四

(二)能力训练要求。

1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神、

3、通过学生共同观察和讨论,培养大家的合作交流意识、

(三)情感与价值观要求。

2、具有初步的创新精神和实践能力、

二次函数课件教案篇五

让学生经历根据不同的条件,利用待定系数法求二次函数的函数关系式。

:各种隐含条件的挖掘。

:引导发现法。

(一)诊断补偿,情景引入:

(先让学生复习,然后提问,并做进一步诊断)。

(二)问题导航,探究释疑:

(三)精讲提炼,揭示本质:

分析如图,以ab的垂直平分线为y轴,以过点o的y轴的垂线为x轴,建立了直角坐标系。这时,涵洞所在的抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式是。此时只需抛物线上的一个点就能求出抛物线的函数关系式。

解由题意,得点b的坐标为(0。8,-2。4),

又因为点b在抛物线上,将它的坐标代入,得所以因此,函数关系式是。

例2、根据下列条件,分别求出对应的二次函数的关系式。

(1)已知二次函数的图象经过点a(0,-1)、b(1,0)、c(-1,2);

(2)已知抛物线的顶点为(1,-3),且与y轴交于点(0,1);

(3)已知抛物线与x轴交于点m(-3,0)(5,0)且与y轴交于点(0,-3);

(4)已知抛物线的顶点为(3,-2),且与x轴两交点间的距离为4。

分析(1)根据二次函数的图象经过三个已知点,可设函数关系式为的形式;(2)根据已知抛物线的顶点坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a的值;(3)根据抛物线与x轴的两个交点的坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a的值;(4)根据已知抛物线的顶点坐标(3,-2),可设函数关系式为,同时可知抛物线的对称轴为x=3,再由与x轴两交点间的距离为4,可得抛物线与x轴的两个交点为(1,0)和(5,0),任选一个代入,即可求出a的值。

解这个方程组,得a=2,b=-1。

(2)因为抛物线的顶点为(1,-3),所以设二此函数的关系式为,又由于抛物线与y轴交于点(0,1),可以得到解得。

(3)因为抛物线与x轴交于点m(-3,0)、(5,0),

所以设二此函数的关系式为。

又由于抛物线与y轴交于点(0,3),可以得到解得。

(4)根据前面的分析,本题已转化为与(2)相同的题型请同学们自己完成。

(四)题组训练,拓展迁移:

1、根据下列条件,分别求出对应的二次函数的关系式。

(1)已知二次函数的图象经过点(0,2)、(1,1)、(3,5);

(2)已知抛物线的顶点为(-1,2),且过点(2,1);

(3)已知抛物线与x轴交于点m(-1,0)、(2,0),且经过点(1,2)。

2、二次函数图象的对称轴是x=-1,与y轴交点的纵坐标是–6,且经过点(2,10),求此二次函数的关系式。

(五)交流评价,深化知识:

确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则。二次函数的关系式可设如下三种形式:(1)一般式:,给出三点坐标可利用此式来求。

(2)顶点式:,给出两点,且其中一点为顶点时可利用此式来求。

(3)交点式:,给出三点,其中两点为与x轴的两个交点、时可利用此式来求。

本课课外作业1。已知二次函数的图象经过点a(-1,12)、b(2,-3),

(2)用配方法把(1)所得的函数关系式化成的形式,并求出该抛物线的顶点坐标和对称轴。

二次函数课件教案篇六

在整个中学数学知识体系中,二次函数占据极其关键且重要的地位,二次函数不仅是中高考数学的重要考点,也是线性数学知识的基础。那老师应该怎么教呢?今天,小编给大家带来初三数学二次函数教案教学方法。

一、重视每一堂复习课数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。

四、要多了解学生。你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的改进教学方法。

将本文的word文档下载到电脑,方便收藏和打印。

二次函数课件教案篇七

在整个中学数学知识体系中,二次函数占据极其关键且重要的地位,二次函数不仅是中高考数学的重要考点,也是线性数学知识的基础。那老师应该怎么教呢?今天,小编给大家带来初三数学二次函数教案教学方法。

一、重视每一堂复习课数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。

四、要多了解学生。你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的改进教学方法。

二、立足课堂,提高效率:做到教师入题海,学生出题海.教师应多做题、多研究近几年的中考试题,并根据本班学生的实际情况,从众多复习资料中,选择适合本班学生的最佳练习,也可通过对题目的重组。

三、教师在设计教学目标时,要做到胸中有书,目中有人,让每一节课都给学生留有时间,让他们有独立思考、合作探究交流的过程,最大限度的调动学生的参与度,激发他们的学习兴趣,达到最佳的复习效果.

四、激发兴趣,提高质量:兴趣是学习最好的动力,在上复习课时尤为重要.因此,我们在授课的过程中,在关注知识复习的同时,也要关注学生的学习欲望和学习效果,要让学生在学习的过程中体验成功的快感.这样他们才会更有兴趣的学习下去.

1.质疑问难是学生自主学习的重要表现,优化课堂结构,激活学生的主体意识,必须鼓励学生质疑问难。教师要创造和谐融合的课堂气氛,允许学生随时“插嘴”、提问、争辩,甚至提出与教师不同的看法。

2.二次函数是初中阶段继一次函数、反比例函数之后,学生要学习的最后一类重要的代数函数,它也是描述现实世界变量之间关系的重要的数学模型。

3.学生有疑而问、质疑问难,是用心思考、自主学习、主动探究的可贵表现,理应得到老师的热情鼓励和赞扬。现在对学生的随时“插嘴”,提出的各种疑难问题,应抱欢迎、鼓励的态度给与肯定,并做出正确的解释。

4.初中阶段主要研究二次函数的概念、图像和性质,用二次函数的观点审视一元二次方程,用二次函数的相关知识分析和解决简单的实际问题。

1.教学案例、教学设计、教学实录、教学叙事的区别:教学案例与教案:教案(教学设计)是事先设想的教育教学思路,是对准备实施的教育措施的简要说明,反映的是教学预期;而教学案例则是对已发生的教育教学过程的描述,反映的是教学结果。

2.教学案例与教学实录:它们同样是对教育教学情境的描述,但教学实录是有闻必录(事实判断),而教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断)。

4.教学案例必须从教学任务分析的目标出发,有意识地选择有关信息,必须事先进行实地作业,因此日常教育叙事日志可以作为写作教学案例的素材积累。

二次函数课件教案篇八

学习目标:

1、能够分析和表示变量间的二次函数关系,并解决用二次函数所表示的问题。

2、用三种方式表示变量间二次函数关系,从不同侧面对函数性质进行研究。

3、通过解决用二次函数所表示的问题,培养学生的运用能力。

学习重点:

能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题。

能够根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究。

学习难点:

能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题。

学习过程:

一、学前准备。

函数的三种表示方式,即表格、表达式、图象法,我们都不陌生,比如在商店的广告牌上这样写着:一种豆子的售价与购买数量之间的关系如下:

x(千克)00。511。522。53。

y(元)0123456。

二、探究活动。

(一)合作探究:

交流完成:

(1)一边长为xcm,则另一边长为cm,所以面积为:用函数表达式表示:=________________________________。

(2)表格表示:

123456789。

10—。

(3)画出图象。

(二)议一议。

(1)在上述问题中,自变量x的取值范围是什么?

(2)当x取何值时,长方形的面积最大?它的最大面积是多少?你是怎样得到的?请你描述一下y随x的变化而变化的情况。

点拨:自变量x的取值范围即是使函数有意义的自变量的取值范围。请大家互相交流。

(1)因为x是边长,所以x应取数,即x0,又另一边长(10—x)也应大于,即10—x0,所以x10,这两个条件应该同时满足,所以x的取值范围是。

(2)当x取何值时,长方形的面积最大,就是求自变量取何值时,函数有最大值,所以要把二次函数y=—x2+10x化成顶点式。当x=—时,函数y有最大值y最大=。当x=时,长方形的面积最大,最大面积是25cm2。

可以通过观察图象得知。也可以代入顶点坐标公式中求得。。

(三)做一做:学生独立思考完成p62,p63的函数表达式,表格,图象问题。

(1)用函数表达式表示:y=________。

(2)用表格表示:

(3)用图象表示:

三、学习体会。

本节课你有哪些收获?你还有哪些疑问?

四、自我测试。

1、把长1。6米的铁丝围成长方形abcd,设宽为x(m),面积为y(m2)。则当最大时,所取的值是()。

a0。5b0。4c0。3d0。6。

2、两个数的和为6,这两个数的积最大可能达到多少?利用图象描述乘积与因数之间的关系。

二次函数课件教案篇九

1.经历探索二次函数y=ax2的图象的作法和性质的过程,获得利用图象研究函数性质的经验。

2.能够利用描点法作出函数y=ax2的图象,并能根据图象认识和理解二次函数y=ax2的性质,初步建立二次函数表达式与图象之间的联系。

3.能根据二次函数y=ax2的图象,探索二次函数的性质(开口方向、对称轴、顶点坐标)。

教学重点:二次函数y=ax2的图象的作法和性质。

教学难点:建立二次函数表达式与图象之间的联系。

教学方法:自主探索,数形结合。

利用具体的二次函数图象讨论二次函数y=ax2的性质时,应尽可能多地运用小组活动的形式,通过学生之间的合作与交流,进行图象和图象之间的比较,表达式和表达式之间的比较,建立图象和表达式之间的联系,以达到学生对二次函数性质的真正理解。

一、认知准备:

1.正比例函数、一次函数、反比例函数的图象分别是什么?

2.画函数图象的方法和步骤是什么?(学生口答)。

你会作二次函数y=ax2的图象吗?你想直观地了解它的性质吗?本节课我们一起探索。

二、新授:

(一)动手实践:作二次函数y=x2和y=-x2的图象。

(同桌二人,南边作二次函数y=x2的图象,北边作二次函数y=-x2的图象,两名学生黑板完成)。

(二)对照黑板图象议一议:(先由学生独立思考,再小组交流)。

1.你能描述该图象的形状吗?

2.该图象与x轴有公共点吗?如果有公共点坐标是什么?

3.当x0时,随着x的增大,y如何变化?当x0时呢?

4.当x取什么值时,y值最小?最小值是什么?你是如何知道的?

5.该图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点。

(三)学生交流:

1.交流上面的五个问题(由问题1引出抛物线的概念,由问题2引出抛物线的顶点)。

2.二次函数y=x2和y=-x2的图象有哪些相同点和不同点?

3.教师出示同一直角坐标系中的两个函数y=x2和y=-x2图象,根据图象回答:

(1)二次函数y=x2和y=-x2的图象关于哪条直线对称?

(2)两个图象关于哪个点对称?

(3)由y=x2的图象如何得到y=-x2的图象?

(四)动手做一做:

1.作出函数y=2x2和y=-2x2的图象。

(同桌二人,南边作二次函数y=-2x2的图象,北边作二次函数y=2x2的图象,两名学生黑板完成)。

2.对照黑板图象,数形结合,研讨性质:

(1)你能说出二次函数y=2x2具有哪些性质吗?

(2)你能说出二次函数y=-2x2具有哪些性质吗?

(3)你能发现二次函数y=ax2的图象有什么性质吗?

(学生分小组活动,交流各自的发现)。

3.师生归纳总结二次函数y=ax2的图象及性质:

(2)性质。

a:开口方向:a0,抛物线开口向上,a〈0,抛物线开口向下[。

b:顶点坐标是(0,0)。

c:对称轴是y轴。

d:最值:a0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0。

e:增减性:a0时,在对称轴的左侧(x0),y随x的增大而减小,在对称轴的右侧(x0),y随x的增大而增大,a〈0时,在对称轴的左侧(x0),y随x的增大而增大,在对称轴的右侧(x0),y随x的增大而减小。

4.应用:(1)说出二次函数y=1/3x2和y=-5x2有哪些性质。

(2)说出二次函数y=4x2和y=-1/4x2有哪些相同点和不同点?

三、小结:

通过本节课学习,你有哪些收获?(学生小结)。

1.会画二次函数y=ax2的图象,知道它的图象是一条抛物线。

2.知道二次函数y=ax2的性质:

a:开口方向:a0,抛物线开口向上,a〈0,抛物线开口向下。

b:顶点坐标是(0,0)。

c:对称轴是y轴。

d:最值:a0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0。

e:增减性:a0时,在对称轴的左侧(x0=,y随x的增大而减小,在对称轴的右侧(x0),y随x的增大而增大,a〈0时,在对称轴的左侧(x0),y随x的增大而增大,在对称轴的右侧(x0),y随x的增大而减小。

二次函数课件教案篇十

这节课我首先让学生思考了三个列函数关系式的实际问题,接着在学生探究这三个实际问题的基础上,思考、归纳出二次函数的定义以及探讨对二次函数的判断,最后针对二次函数的定义和能用二次函数表示变量之间关系进行了巩固应用。本节课通过丰富的现实背景,使学生感受二次函数的意义,感受数学的广泛联系和应用价值。通过学生的探究性活动(经历数学化的过程),和学生之间的合作与交流,通过分析实际问题,引出二次函数的概念,使学生感受二次函数与生活的密切联系。在新知的巩固应用环节,我精心设计了不同题型的问题,很好巩固应用了本节的新知,课堂达到了较好的教学效果。通过本节课也让我真正意识到:对于每节课的教学不能仅仅凭经验设计。在每节课的课前,一定要进行精心的预设。在课堂中,同时要结合课堂的实际效果和学生的情况注意灵活处理课堂生成。课堂上在进行分组教学时,提前预设好教学时间,在每节课上,既要放的开,同时又要注意在适当的时机收回,以保证每节教学基本任务完成。

将本文的word文档下载到电脑,方便收藏和打印。

二次函数课件教案篇十一

根据我们学校人人皆知的船模特色项目设计了这样一个情境:

让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的情况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。求此船龙骨的抛物线的解析式。

让学生在练习中体会二次函数的图象与性质在解题中的作用。

二次函数课件教案篇十二

教学目标:

1、继续经历利用二次函数解决实际最值问题的过程。

2、会综合运用二次函数和其他数学知识解决如有关距离等函数最值问题。

3、发展应用数学解决问题的能力,体会数学与生活的密切联系和数学的应用价值。

教学重点和难点:

重点:利用二次函数的知识对现实问题进行数学地分析,即用数学的方式表示问题以及用数学的方法解决问题。

难点:例2将现实问题数学化,情景比较复杂。

教学过程:

一、复习:

1、利用二次函数的性质解决许多生活和生产实际中的最大和最小值的问题,它的一般方法是:

(1)列出二次函数的解析式,列解析式时,要根据自变量的实际意义,确定自变量的取值范围。

(2)在自变量取值范围内,运用公式或配方法求出二次函数的最大值和最小值。

2、上节课我们讨论了用二次函数的性质求面积的最值问题。出示上节课的引例的动态。

图形(在周长为8米的矩形中)(多媒体动态显示)。

设问:(1)对角线(l)与边长(x)有什何关系?

(2)对角线(l)是否也有最值?如果有怎样求?

l与x并不是二次函数关系,而被开方数却可看成是关于x的二次函数,并且有最小值。引导学生回忆算术平方根的性质:被开方数越大(小)则它的算术平方根也越大(小)。指出:当被开方数取最小值时,对角线也为最小值。

二、例题讲解。

多媒体动态演示,提出思考问题:(1)两船的距离随着什么的变化而变化?

(2)经过t小时后,两船的行程是多少?两船的距离如何用t来表示?

设经过t小时后ab两船分别到达a’,b’,两船之间距离为a’b’=ab’2+aa’2=(26-5t)2+(12t)2=169t2-260t+676。(这里估计学生会联想刚才解决类似的问题)。

因此只要求出被开方式169t2-260t+676的最小值,就可以求出两船之间的距离s的最小值。

解:设经过t时后,a,bab两船分别到达a’,b’,两船之间距离为。

s=a’b’=ab’2+aa’2=(26-5t)2+(12t)2。

=169t2-260t+676=169(t-1013)2+576(t0)。

当t=1013时,被开方式169(t-1013)2+576有最小值576。

所以当t=1013时,s最小值=576=24(km)。

答:经过1013时,两船之间的距离最近,最近距离为24km。

练习:直角三角形的两条直角边的和为2,求斜边的最小值。

三、课堂小结。

应用二次函数解决实际问题的一般步骤。

四、布置作业。

见作业本。

二次函数课件教案篇十三

11月18日,我在九年三班上了《2.1二次函数所描述的关系》这节课,结合一些听课老师的建议,现总结教学反思如下:

1.对二次函数的学习,本节课通过丰富的现实背景和学生感兴趣的问题出发,以多媒体演示图片的形式使学生感受二次函数的意义,感受数学的广泛联系和应用价值。对二次函数的学习,通过学生的探究性活动,通过学生之间的合作与交流,通过分析实际问题,如探究面积问题,利息问题、观察表格找规律及用关系式表示这些关系的过程,引出二次函数的概念,使学生感受二次函数与生活的密切联系。

2.在新知巩固环节,我精心设计了具有代表性和易错题型的问题,巩固应用了本节的新知,课堂达到了较好的教学效果。

3.在合作讨论的环节中,银行利率问题中文字叙述不够严密,两年后的利息一句产生分歧,应该改成第二年的利息。

4.在课堂时间的安排上不算太合理,有一道能力提升的问题没讲。总之,通过本节课,让我真正意识到:对于每节课的教学不能仅仅凭经验设计。在每节课的课前,一定要进行精心的预设。在课堂中,同时要结合课堂的实际效果和学生的情况注意灵活处理课堂生成。课堂上在进行分组教学时,提前预设好教学时间,在每节课上,既要放的开,同时又要注意在适当的时机收回,以保证每节教学基本任务完成。

二次函数课件教案篇十四

(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。

2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?

(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)。

3.函数y=-4(x-2)2+1具有哪些性质?

(当x2时,函数值y随x的增大而增大,当x2时,函数值y随x的增大而减小;当x=2时,函数取得最大值,最大值y=1)。

5.你能画出函数y=-x2+x-的图象,并说明这个函数具有哪些性质吗?

二、解决问题。

由以上第4个问题的解决,我们已经知道函数y=-x2+x-的图象的开口方向、对称轴和顶点坐标。根据这些特点,可以采用描点法作图的方法作出函数y=-x2+x-的图象,进而观察得到这个函数的性质。

解:(1)列表:在x的取值范围内列出函数对应值表;。

x…-2-101234…。

y…-6-4-2-2-2-4-6…。

(2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点。

(3)连线:用光滑的曲线顺次连接各点,得到函数y=-x2+x-的图象,如图所示。

说明:(1)列表时,应根据对称轴是x=1,以1为中心,对称地选取自变量的值,求出相应的函数值。相应的函数值是相等的。

(2)直角坐标系中x轴、y轴的长度单位可以任意定,且允许x轴、y轴选取的长度单位不同。所以要根据具体问题,选取适当的长度单位,使画出的图象美观。

让学生观察函数图象,发表意见,互相补充,得到这个函数韵性质;。

当x=1时,函数取得最大值,最大值y=-2。

三、做一做。

教学要点。

(1)在学生画函数图象的同时,教师巡视、指导;。

(2)叫一位或两位同学板演,学生自纠,教师点评。

教学要点。

教师组织学生分组讨论,各组选派代表发言,全班交流,达成共识;。

y=ax2+bx+c。

=a(x2+x)+c。

=a[x2+x+2-()2]+c。

=a[x2+x+()2]+c-。

=a(x+)2+。

当a0时,开口向上,当a0时,开口向下。

对称轴是x=-b/2a,顶点坐标是(-,)。

四、课堂练习。

课本练习第1、2、3题。

五、小结。

通过本节课的学习,你学到了什么知识?有何体会?

六、作业。

1.同步练习。

2.选用课时作业优化设计。

课时作业优化设计。

1.填空:

(1)抛物线y=x2-2x+2的顶点坐标是_______;。

(2)抛物线y=2x2-2x-的开口_______,对称轴是_______;。

(4)抛物线y=-x2+2x+4的对称轴是_______;。

(5)二次函数y=ax2+4x+a的最大值是3,则a=_______.

2.画出函数y=2x2-3x的图象,说明这个函数具有哪些性质。

3.通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。

(1)y=3x2+2x;(2)y=-x2-2x。

(3)y=-2x2+8x-8(4)y=x2-4x+3。

4.求二次函数y=mx2+2mx+3(m0)的图象的对称轴,并说出该函数具有哪些性质。

二次函数课件教案篇十五

1.注意渗透局部和全体、有限和无限、近似和精确等矛盾对立统一的观点。

2.注意培养学生观察分析问题的能力。比如,结合所画二次函数y=x2的图象,要求学生思考:

(1)y=x2的图象的图象有什么特点。(答:具有对称性。)。

(2)如何判断y=x2的图象有上面所说的特点?(答:由观察图象看出来;或由列表求值得出来;或由解析式y=x2看出来。)。

二次函数课件教案篇十六

1.教学案例、教学设计、教学实录、教学叙事的区别:教学案例与教案:教案(教学设计)是事先设想的教育教学思路,是对准备实施的教育措施的简要说明,反映的是教学预期;而教学案例则是对已发生的教育教学过程的描述,反映的是教学结果。

2.教学案例与教学实录:它们同样是对教育教学情境的描述,但教学实录是有闻必录(事实判断),而教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断)。

4.教学案例必须从教学任务分析的目标出发,有意识地选择有关信息,必须事先进行实地作业,因此日常教育叙事日志可以作为写作教学案例的素材积累。

二次函数课件教案篇十七

二次函数对学生来讲,既是难点又是重点,通过我对这一章的教学,让我学到很多道理和教学方法。下面是我对二次函数的复习课的一些反思感受:首先,我认为在课堂上,我对知识的掌握还是有一定的欠缺,把二次函数用自己的眼光和感受想象的太简单,但是对于学生而言,这又是一个重点,尤其是一个难点。所以我课堂上有的习题深度没有掌握好,没有做到面向全体。

其次,本节课体现的是分层教学,而我只是在后面的比赛中简单的体现分层,对于提问中得分层,习题中的分层还是做的不够好,这说明我对于分层教学的这种方法还是有待于进一步的提高,应该真正的站在学生的角度来分层。

第三,课堂上的语言不够精辟,尤其是评价性的话语很少,很单调。没有做到让学生为我的一句话而振奋,没有因为为了争得我的一句话而好好做题等等,这是我一直以来欠缺的一个重要点。

那么针对以上几点,我从自己的角度思考,收获了以下这些:

1.上课之前一定要反复的推敲,琢磨课本,找出本节课知识的“灵魂”,然后站在学生的角度,仔细研究,如何讲授学生们才能愿意听,才能听得明白。尤其不能把学生想像的水平很高,不是不自信,而是不能把学生逼到“危险之地”,以免打击自尊心,熄灭刚刚点燃的兴趣之光。真正做到“低起点”。

2.既然选择和实施了分层教学,就应该多下功夫去琢磨,去进行它。既然是分层就应该把它做到“顺其自然”,而不仅仅是一种形式。在分层的同时应该找到一个点,就是说,这个点上的问题是承上启下的,是应该全班都能够掌握的。对于尖子生,不能在课堂上想让他们吃饱,对于他们应该在课下,或者是采用小纸条的方法单独来测试,不能为了他们的能力把题目难度定的过高。再者,分层应该体现在一节课的所有环节,例如,在提问时,对于一个问题应该分层次来提,来回答。

3.应该及时地,迅速的提高自己的言语水平。

一堂课的精彩与否,教师的课堂语言也是很重要的一个方面,例如一节课的讲授过程,或者是对于学生的评价等等。

督促自己多读书,多练习,以丰富自己的语言。

4.最后,我觉得自己真的需要多学习,多见识,这样才能提高,才能迅速的提高。对于自己的优势,我也看到了,那就是我的教学之路很长,很多方法,很多思路都有时间,有条件去尝试,所以在以后的工作中要多动脑,多为学生着想。俗话说“天下无难事,只怕有心人”,所以只要我认真的付出,认真的思考,我想我的明天会是美好的。

【本文地址:http://www.xuefen.com.cn/zuowen/12823279.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档