教案是教师为教授一门课程而制定的一种教学计划,它包含了课程目标、教学内容、教学方法等方面的安排和设计,是课堂教学的重要依据。教案可以帮助教师把握教学进度,提高教学效果,也可以帮助学生更好地理解和掌握知识,提高学习质量。充分考虑学生的认知特点和发展规律,合理安排教学步骤和时间分配,提高学生的学习效果。通过借鉴他人的教案经验,我们可以更好地指导自己的教学实践。
高三数学教案案例篇一
本节课是北师大版高中数学必修5中第三章第4节的内容。主要是二元均值不等式。它是在系统地学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的优良素材,所以基本不等式应重点研究。
教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探究、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。
就知识的应用价值上来看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的`数学思想方法如数形结合、抽象归纳、演绎推理、分析法证明等在各种不等式的研究中均有着广泛的应用;另外,在解决函数最值问题中,基本不等式也起着重要的作用。
就内容的人文价值上来看,基本不等式的探究与推导需要学生观察、分析、归纳,有助于培养学生创新思维和探索精神,是培养学生数形结合意识和提高数学能力的良好载体。
二、教学目标和目标解析。
教学目标:了解基本不等式的几何背景,能在教师的引导下探究基本不等式的证明过程,理解基本不等式的几何解释,并能解决简单的最值问题;借助于信息技术强化数形结合的思想方法。
在教师的逐步引导下,能从较为熟悉的几何图形中抽象出基本不等式,实现对基本不等式几何背景的初步了解。
学生已经学习了不等式的基本性质,可以运用作差法给出基本不等式的证明,同时,介绍并渗透分析法证明的思想方法,从而完成基本不等式的代数证明。
进一步通过探究几何图形,给出基本不等式的几何解释,加强学生数形结合的意识。
通过应用问题的解决,明确解决应用题的一般过程。这是一个过程性目标。借助例1,引导学生尝试用基本不等式解决简单的最值问题,体会和与积的相互转化,进一步通过例2,引导学生领会运用基本不等式的三个限制条件(一正二定三相等)在解决最值问题中的作用,并用几何画板展示函数图形,进一步深化数形结合的思想。结合变式训练完善对基本不等式结构的理解,提升解决问题的能力,体会方法与策略。
在认知上,学生已经掌握了不等式的基本性质,并能够根据不等式的性质进行数、式的大小比较,也具备了一定的平面几何的基本知识。但是,倘若教师不加以引导,学生并不能自觉地通过已有的知识、记忆去发展和构建几何图形中的相等或不等关系,这就需要教师逐步地引导,并选用合理的手段去激活学生的思维,增强数形结合的思想意识。
另外,尽可能引领学生充分理解两个基本不等式等号成立的条件,为利用基本不等式解决简单的最值问题做好铺垫。在用基本不等式解决最值时,学生往往容易忽视基本不等式,使用的前提条件a,b0同时又要注意区别基本不等式的使用条件为,因此,在教学过程中,借助例题落实学生领会基本不等式成立的三个限制条件(一正二定三相等)在解决最值问题中的作用。而对于“一正二定三相等”的进一步强化和应用,将放于下一个课时的内容。
四、教学支持条件分析。
为了能很好地展示几何图形,体会基本不等式的几何背景,教学中需要有具体的图形来帮助学生理解基本不等式的生成,感受数形结合的数学思想,所以,借助于几何画板软件来加强几何直观十分必要,同时演示动画帮助学生验证基本不等式等号取到的情况,并用电脑3d技术展示基本不等式的又一几何背景,加深对基本不等式的理解,增强教学效果。
教学过程的设计从实际的问题情境出发,以基本不等式的几何背景为着手点,以探究活动为主线,探求基本不等式的结构形式,并进一步给出几何解释,深化对基本不等式的理解。通过典型例题的讲解,明确利用基本不等式解决简单最值问题的应用价值。数形结合的思想贯穿于整个教学过程,并时刻体现在教学活动之中。
六、教法和预期效果分析。
本节课通过6个教学环节,强调过程教学,在教师的引导下,启动观察、分析、感知、归纳、探究等思维活动,从各个层面认识基本不等式,并理解其几何背景。课堂教学以学生为主体,基本不等式为主线,在学生原有的认知基本上,充分展示基本不等式这一知识的发生、发展及再创造的过程。
同时,以多媒体课件作为教学辅助手段,赋予学生直观感受,便于观察,从而把一个生疏的、内在的知识,变成一个可认知的、可交流的对象,提高了课堂效率。
会用基本不等式解决简单的最大(小)值问题并注意等号取到的条件。在教学过程中始终围绕教学目标进行评价,师生互动,在教学过程的不同环节中及时获取教学反馈信息,以学生为主体,及时调节教学措施,完成教学目标,从而达到较为理想的教学效果。
高三数学教案案例篇二
教学目标:
结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。
教学重点:
掌握演绎推理的基本模式,并能运用它们进行一些简单推理。
教学过程。
一、复习。
二、引入新课。
1.假言推理。
假言推理是以假言判断为前提的演绎推理。假言推理分为充分条件假言推理和必要条件假言推理两种。
(1)充分条件假言推理的基本原则是:小前提肯定大前提的前件,结论就肯定大前提的后件;小前提否定大前提的后件,结论就否定大前提的前件。
(2)必要条件假言推理的基本原则是:小前提肯定大前提的后件,结论就要肯定大前提的前件;小前提否定大前提的前件,结论就要否定大前提的后件。
2.三段论。
三段论是指由两个简单判断作前提和一个简单判断作结论组成的演绎推理。三段论中三个简单判断只包含三个不同的概念,每个概念都重复出现一次。这三个概念都有专门名称:结论中的宾词叫“大词”,结论中的主词叫“小词”,结论不出现的那个概念叫“中词”,在两个前提中,包含大词的叫“大前提”,包含小词的叫“小前提”。
3.关系推理指前提中至少有一个是关系判断的推理,它是根据关系的逻辑性质进行推演的。可分为纯关系推理和混合关系推理。纯关系推理就是前提和结论都是关系判断的推理,包括对称性关系推理、反对称性关系推理、传递性关系推理和反传递性关系推理。
(1)对称性关系推理是根据关系的对称性进行的推理。
(2)反对称性关系推理是根据关系的反对称性进行的推理。
(3)传递性关系推理是根据关系的传递性进行的推理。
(4)反传递性关系推理是根据关系的反传递性进行的推理。
4.完全归纳推理是这样一种归纳推理:根据对某类事物的全部个别对象的考察,已知它们都具有某种性质,由此得出结论说:该类事物都具有某种性质。
オネ耆归纳推理可用公式表示如下:
オs1具有(或不具有)性质p。
オs2具有(或不具有)性质p……。
オsn具有(或不具有)性质p。
オ(s1s2……sn是s类的所有个别对象)。
オニ以,所有s都具有(或不具有)性质p。
オタ杉,完全归纳推理的基本特点在于:前提中所考察的个别对象,必须是该类事物的全部个别对象。否则,只要其中有一个个别对象没有考察,这样的归纳推理就不能称做完全归纳推理。完全归纳推理的结论所断定的范围,并未超出前提所断定的范围。所以,结论是由前提必然得出的。应用完全归纳推理,只要遵循以下两点,那末结论就必然是真实的:(1)对于个别对象的断定都是真实的;(2)被断定的个别对象是该类的全部个别对象。
小结:本节课学习了演绎推理的基本模式.
高三数学教案案例篇三
一年级学生是一个特殊的群体,他们刚刚从受保护的幼儿园环境中脱离,正走向自我管理的小学生活中。他们面对全新的环境,老师,同学,心里总有局促不安。熟悉环境,心理调适显的尤为重要。因此老师要向学生介绍小学生活的基本习惯,减少学生对小学生活的陌生感。教学环节:
1.教师自我介绍,建立良好的师生关系。
首先,我在黑板上写一个“银”字,我让他们数出“银”有几画,我顺势告诉他们数数是数学常用的一种数学方法,数数要有顺序的数。每位学生从姓名,年龄,学前班所在地3个方面做自我介绍。目的是让大家大胆介绍自己,使大家尽快的熟悉。
2.向学生介绍听说读写走坐的基本学习习惯。
听:引导学生学会倾听。
说:清楚,完整的表达自己的想法。
坐:头正,身直,足平。走:上下楼梯和在走廊要靠右走。在引导学生在靠右走时,学生不知道该怎么走。在举起右手提示他们时,有的同学说:“个位手”,有的同学说:“十位手”。最后同学说出了右手。我对他们说:“个位和十位、认识左右就是我们要学习的内容。
3.介绍排队的基本要求。
让学生自觉从矮到高的顺序排队。我问几个同学你为什么站在他的后面,学生都回答我比他高。我顺势说出比较也是一种数学思想。
高三数学教案案例篇四
教学目标:
1、知识与技能:
1)了解导数概念的实际背景;
2)理解导数的概念、掌握简单函数导数符号表示和基本导数求解方法;
3)理解导数的几何意义;
4)能进行简单的导数四则运算。
2、过程与方法:
先理解导数概念背景,培养观察问题的能力;再掌握定义和几何意义,培养转化问题的能力;最后求切线方程及运算,培养解决问题的能力。
3、情态及价值观;
让学生感受数学与生活之间的联系,体会数学的美,激发学生学习兴趣与主动性。
教学重点:
1、导数的求解方法和过程;
2、导数公式及运算法则的熟练运用。
教学难点:
1、导数概念及其几何意义的理解;
2、数形结合思想的灵活运用。
教学课型:复习课(高三一轮)。
教学课时:约1课时。
高三数学教案案例篇五
教学目标:
结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。
教学重点:
掌握演绎推理的基本模式,并能运用它们进行一些简单推理。
教学过程。
一、复习。
二、引入新课。
1.假言推理。
假言推理是以假言判断为前提的演绎推理。假言推理分为充分条件假言推理和必要条件假言推理两种。
(1)充分条件假言推理的基本原则是:小前提肯定大前提的前件,结论就肯定大前提的后件;小前提否定大前提的后件,结论就否定大前提的前件。
(2)必要条件假言推理的基本原则是:小前提肯定大前提的后件,结论就要肯定大前提的前件;小前提否定大前提的前件,结论就要否定大前提的后件。
2.三段论。
三段论是指由两个简单判断作前提和一个简单判断作结论组成的演绎推理。三段论中三个简单判断只包含三个不同的概念,每个概念都重复出现一次。这三个概念都有专门名称:结论中的宾词叫“大词”,结论中的主词叫“小词”,结论不出现的那个概念叫“中词”,在两个前提中,包含大词的叫“大前提”,包含小词的叫“小前提”。
3.关系推理指前提中至少有一个是关系判断的推理,它是根据关系的逻辑性质进行推演的。可分为纯关系推理和混合关系推理。纯关系推理就是前提和结论都是关系判断的推理,包括对称性关系推理、反对称性关系推理、传递性关系推理和反传递性关系推理。
(1)对称性关系推理是根据关系的对称性进行的推理。
(2)反对称性关系推理是根据关系的反对称性进行的推理。
(3)传递性关系推理是根据关系的传递性进行的推理。
(4)反传递性关系推理是根据关系的反传递性进行的推理。
4.完全归纳推理是这样一种归纳推理:根据对某类事物的全部个别对象的考察,已知它们都具有某种性质,由此得出结论说:该类事物都具有某种性质。
完全归纳推理的基本特点在于:前提中所考察的个别对象,必须是该类事物的全部个别对象。否则,只要其中有一个个别对象没有考察,这样的归纳推理就不能称做完全归纳推理。完全归纳推理的结论所断定的范围,并未超出前提所断定的范围。所以,结论是由前提必然得出的。应用完全归纳推理,只要遵循以下两点,那末结论就必然是真实的:(1)对于个别对象的断定都是真实的;(2)被断定的个别对象是该类的全部个别对象。
高三数学教案案例篇六
一、概述。
九年制义务教育九年级数学(北师大版)下册第三章第五节“直线和圆的位置关系”。本节是探索直线与圆的位置关系,课本通过操作、观察直线与圆的相对运动,提示直线与圆的三种位置关系,探索直线与的位置关系,和圆心到直线的距离与半径之间的大小关系的联系,并突出研究了圆的切线的性质和判定。在本节的设计中,充分体现了学生已有经验的作用,用运动的观点研究直线与圆的位置关系,使学生明确图形在运动变化中的特点和规律。
二、设计理念。
鼓励学生从事观察、测量、折叠、平移、旋转、推理证明等活动,帮助学生有意识地积累活动经验,获得成功的体验。教学中应鼓励学生动手、动口、动脑和交流,充分展示“观察、操作——猜想、探索——说理(有条理地表达)”的过程,使学生能在直观的基础上学习说理,体现合情推理和演绎推理的融合,促进学生形成科学地、能动地认识世界的良好品质。
(1)激发学生亲自探索直线和圆的位置关系。
(2)通过实践让学生理解直线与圆的三种位置关系——相交、相切、相离的含义。
(3)探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。
四、教学重点。
直线与圆的三种位置关系——相交、相切、相离。
从设置情景提出问题,到动手操作、交流,直至归纳得出结论,整个过程学生不仅得到了直线与圆的位置关系,更重要的是经历了知识过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学、应用数学。
五、教学难点。
探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。
高三数学教案案例篇七
复习:
1、(课本p28a13)填空:
(1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是;
(2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是;
(3)5名工人要在3天中各自选择1天休息,不同方法的种数是;
探究新知(复习教材p14~p25,找出疑惑之处)。
问题1:判断下列问题哪个是排列问题,哪个是组合问题:
(1)从4个风景点中选出2个安排游览,有多少种不同的方法?
(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?
应用示例。
例2、7位同学站成一排,分别求出符合下列要求的不同排法的种数、
(1)甲站在中间;
(2)甲、乙必须相邻;
(3)甲在乙的左边(但不一定相邻);
(4)甲、乙必须相邻,且丙不能站在排头和排尾;
(5)甲、乙、丙相邻;
(6)甲、乙不相邻;
(7)甲、乙、丙两两不相邻。
反馈练习。
当堂检测。
1、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目、如果将这两个节目插入原节目单中,那么不同插法的种数为()。
a、42b、30c、20d、12。
课后作业。
高三数学教案案例篇八
【教学目标】:
(1)知识目标:
通过实例,了解简单的逻辑联结词“且”、“或”的含义;
(2)过程与方法目标:
(3)情感与能力目标:
在知识学习的基础上,培养学生简单推理的技能。
【教学重点】:
通过数学实例,了解逻辑联结词“或”、“且”的含义,使学生能正确地表述相关数学内容。
【教学难点】:
简洁、准确地表述“或”命题、“且”等命题,以及对新命题真假的判断。
【教学过程设计】:
教学环节教学活动设计意图。
情境引入问题:
下列三个命题间有什么关系?
(1)12能被3整除;
(2)12能被4整除;
知识建构归纳总结:
一般地,用逻辑联结词“且”把命题p和命题q联结起来,就得到一个新命题,
记作,读作“p且q”。
引导学生通过通过一些数学实例分析,概括出一般特征。
1、引导学生阅读教科书上的例1中每组命题p,q,让学生尝试写出命题,判断真假,纠正可能出现的逻辑错误。学习使用逻辑联结词“且”联结两个命题,根据“且”的含义判断逻辑联结词“且”联结成的新命题的真假。
2、引导学生阅读教科书上的例2中每个命题,让学生尝试改写命题,判断真假,纠正可能出现的逻辑错误。
归纳总结:
当p,q都是真命题时,是真命题,当p,q两个命题中有一个是假命题时,是假命题,
学习使用逻辑联结词“且”改写一些命题,根据“且”的含义判断原先命题的真假。
引导学生通过通过一些数学实例分析命题p和命题q以及命题的真假性,概括出这三个命题的真假性之间的一般规律。
高三数学教案案例篇九
数学教学是数学活动的教学,是师生交往、互动、共同发展的过程。有效的数学教学应当从学生的生活经验和已有的知识水平出发,向他们提供充分地从事数学活动的机会,在活动中激发学生的学习潜能,促使学生在自主探索与合作交流的过程中真正理解和掌握基本的数学知识、技能和思想方法。提高解决问题的能力,并进一步使学生在意志力、自信心、理性精神等情感、态度方面都得到良好的发展。
二.对教学内容的认识。
1.教材的地位和作用。
本节课是在学生学习过“一百万有多大”之后,继续研究日常生活中所存在的较小的数,进一步发展学生的数感,并在学完负整数指数幂的运算性质的基础上,尝试用科学记数法来表示百万分之一等较小的数。学生具备良好的数感,不仅对于其正确理解数据所要表达的信息具有重要意义,而且对于发展学生的统计观念也具有重要的价值。
2.教材处理。
基于设计理念,我在尊重教材的基础上,适时添加了“银河系的直径”这一问题,以向学生渗透辩证的研究问题的思想方法,帮助学生正确认识百万分之一。
通过本节课的教学,我力争达到以下教学目标:
3.教学目标。
(1)知识技能:
借助自身熟悉的事物,从不同角度来感受百万分之一,发展学生的数感。能运用科学记数法来表示百万分之一等较小的数。
(2)数学思考:
通过对较小的数的问题的学习,寻求科学的记数方法。
(3)解决问题:
能解决与科学记数有关的实际问题。
(4)情感、态度、价值观:
使学生体会科学记数法的科学性和辩证的研究问题的思想方法。培养学生的合作交流意识与探究精神。
4.教学重点与难点。
根据教学目标,我确定本节课的重点、难点如下:
重点:对较小数据的信息做合理的解释和推断,会用科学记数法来表示绝对值较小的数。
难点:感受较小的数,发展数感。
三.教法、学法与教学手段。
1.教法、学法:
本节课的教学对象是七年级的学生,这一年级的学生对于周围世界和社会环境中的实际问题具有越来越强烈的兴趣。他们对于日常生活中一些常见的数据都想尝试着来加以分析和说明,但又缺乏必要的感知较大数据或较小数据的方法及感知这些数据的活动经验。
因此根据本节课的教学目标、教学内容,及学生的认知特点,教学上以“问题情境——设疑诱导——引导发现——合作交流——形成结论和认识”为主线,采用“引导探究式”的教学方法。学生将主要采用“动手实践——自主探索——合作交流”的学习方法,使学生在直观情境的观察和自主的实践活动中获取知识,并通过合作交流来深化对知识的理解和认识。
2.教学手段:
1.采用现代化的教学手段——多媒体教学,能直观、生动地反映问题情境,充分调动学生学习的积极性。
2.以常见的生活物品为直观教具,丰富了学生感知认识对象的途径,使学生对百万分之一的认识更贴近生活。
四.教学过程。
(一).复习旧知,铺垫新知。
问题1:光的速度为300000km/s。
问题2:地球的半径约为6400km。
问题3:中国的人口约为1300000000人。
(十).教学设计说明。
本节课我以贴近学生生活的数据及问题背景为依托,使学生学会用数学的方法来认识百万分之一,丰富了学生对数学的认识,提高了学生应用数学的能力,并为培养学生的终身学习奠定了基础。在授课时相信会有一些预见不到的情况,我将在课堂上根据学生的实际情况做相应的处理。
高三数学教案案例篇十
教学重点:理解等比数列的概念,认识等比数列是反映自然规律的重要数列模型之一,探索并掌握等比数列的通项公式。
教学难点:遇到具体问题时,抽象出数列的模型和数列的等比关系,并能用有关知识解决相应问题。
教学过程:
一.复习准备。
1.等差数列的通项公式。
2.等差数列的前n项和公式。
3.等差数列的性质。
二.讲授新课。
引入:1“一尺之棰,日取其半,万世不竭。”
2细胞分裂模型。
3计算机病毒的传播。
由学生通过类比,归纳,猜想,发现等比数列的特点。
进而让学生通过用递推公式描述等比数列。
让学生回忆用不完全归纳法得到等差数列的通项公式的过程然后类比等比数列的通项公式。
注意:1公比q是任意一个常数,不仅可以是正数也可以是负数。
2当首项等于0时,数列都是0。当公比为0时,数列也都是0。
所以首项和公比都不可以是0。
3当公比q=1时,数列是怎么样的,当公比q大于1,公比q小于1时数列是怎么样的?
4以及等比数列和指数函数的关系。
5是后一项比前一项。
列:1,2,(略)。
小结:等比数列的通项公式。
三.巩固练习:
1.教材p59练习1,2,3,题。
2.作业:p60习题1,4。
第二课时5.2.4等比数列(二)。
教学重点:等比数列的性质。
教学难点:等比数列的通项公式的应用。
一.复习准备:
提问:等差数列的通项公式。
等比数列的通项公式。
等差数列的性质。
二.讲授新课:
1.讨论:如果是等差列的三项满足。
那么如果是等比数列又会有什么性质呢?
由学生给出如果是等比数列满足。
2练习:如果等比数列=4,=16,=?(学生口答)。
如果等比数列=4,=16,=?(学生口答)。
3等比中项:如果等比数列.那么,
则叫做等比数列的等比中项(教师给出)。
4思考:是否成立呢?成立吗?
成立吗?
又学生找到其间的规律,并对比记忆如果等差列,
5思考:如果是两个等比数列,那么是等比数列吗?
如果是为什么?是等比数列吗?引导学生证明。
6思考:在等比数列里,如果成立吗?
如果是为什么?由学生给出证明过程。
三.巩固练习:
列3:一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项。
解(略)。
列4:略:
练习:1在等比数列,已知那么。
2p61a组8。
高三数学教案案例篇十一
1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。
2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。
3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。
二、识技能目标。
1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。
2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。
三、情感目标。
1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣。
2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。
教学重点难点:
1对数函数的定义、图象和性质。
2对数函数性质的初步应用。
教学工具:多媒体。
【学前准备】对照指数函数试研究对数函数的定义、图象和性质。
高三数学教案案例篇十二
一、依据教学大纲要求与学生的实际情况制定了以下教学目标:
1、知识目标:学习古代诗歌语言富于暗示的特点,进而提高鉴赏古典诗歌的能力。并积累古诗句。
2、能力目标:能运用本课所学知识及获得的方法分析诗歌同类现象。
3、情感目标:借助在品味诗句时的审美体验,唤起学生对古代文化的热爱。
二、本文的教学重点就定为。
1、走进课文,引导学生品味作者引用的诗文,准确体察语言的富于暗示的特点,来解读诗歌语言的内涵和意境。
2、走出课文,淡化教材,引入课外同类文学现象,让学生能够触类旁通,举一反三,真正提高学生独立分析鉴赏的能力,只把教材做为一个例子。本课教材的淡化体现为课外的内容将要占到课时的一半。
三、本文的课时为1课时。
四、教学方法为:归纳总结,讨论交流,拓展延伸。
教学流程:
一、导语:我设计的导语是:“袅袅兮秋风,洞庭兮木叶下”“亭皋木叶下,陇首秋云飞”“九月寒砧催木叶,十年征戍辽阳”“无边落木萧萧下,不见长江滚滚来”……众多名句,为何如此青睐木叶呢?什么是“木叶”呢,由木叶又可嗅出怎样的气息呢?此导语在于用书中优美的诗句入题,创造一种美的意境,再进行设疑,引起学生阅读的兴趣。
二、第二个环节是提出问题,确定学习重点。
课前学生做过预习,提出的问题采用先宏观,后微观的方式,这样便于学生先把握住文章的大方向,再在细枝末节上去深入地求证、印证中心,进而对课文有个准确的理解。
宏观问题是:
1、作者发现了一个文学现象,是什么。
中国诗歌语言富于暗示性。
2、文章题目为“说‘木叶’”,为了说得有序,说得深透,本文采用了句首标义法,每段开头都用一句话领起下文,容易让读者把握“说”的要领。请默读全文,抓住一些关键语句,理清文章结构。
1-3段:“木叶”为诗人所钟爱。
4-6段:“木”被人喜欢的两个原因。
7段:总结。
经过四个到六个学生的回答,教师加以总结。这样处理教材可以练习学生的抽象概括能力,让他们能够高屋建瓴地来把握文章,提纲挈领,切中肯綮。
微观问题是:。
1、我们可以看出“木叶”与“树叶”相比,有两个艺术特征,请大家在文章中找出来。
(1)木叶,本身就含有落叶的因素。
(2)木,不但让人想起树干,还能让人想到木的颜色。
2、这两个艺术特征,谁能用课文中的一个3字词语概括一下?
暗示性。
因为“木”有“疏朗”和“枯黄”的暗示内涵,所以就有了“深秋”的意味,而“树”则没有。
三、第三个环节是分析品味:
(一)首先我设计了一道关于填补“树或木”的一组诗歌。意在激发学生的求知欲。
青青伤心色,曾入几人离恨中。
碧玉妆成一高,万条垂下绿丝绦。
野旷天低,江清月近人。
枯藤老昏鸦,小桥流水人家。
一寒梅白玉条,迥离村树傍溪桥。
碧玉妆成一高,万条垂下绿丝绦。
皆秋色,山山唯落晖。
雨中黄叶树,灯下白头人。
我家洗砚池边树,朵朵花开淡磨痕。
国破山河在,城春草木深。
曲径通幽处,禅房花木深。(《题破山寺后禅院》常建)。
草木知春不久归,百般红紫斗芳菲。(唐?韩愈晚春)。
枯木傍溪崖,由来岁月赊。
草木无情亦可嗟,重开明镜照无涯。
(二)和学生一起就文中涉及的例句进行精到的理解。如第一处“袅兮秋风,洞庭波兮木叶下,这句诗写屈原看到秋风中飘零的树叶感伤自己的;“后皇嘉树,橘徕服兮”这个意象是一棵美好的树,自然而然让人想到一棵形态美好、仪态万千的树,这是屈原对自己高洁品格的暗示。这时教师尽量少数或不说,让学生自己品味出来,充分发挥学生的潜力和创造力,让学生通过比较讨论分析意象,准确把握意象表达的情意,这个环节意在通过练习咬文嚼字使学生感悟诗歌语言精妙的表达效果,提高学生文学鉴赏能力,鼓励学生谈自己的见解,通过讨论达到共鸣。四、第四个环节是课外拓展。只要一提到“木”字大家就会想到在在瑟瑟秋风中凋零的树木,引发人们的感伤情绪。以此类推,很多意象在长期的文化进程中形成了稳定的感情色彩,这时引入梅和柳两个意象。
比如说梅的意象,让学生说出它代表的是一种什么样的品质和情绪。梅:傲雪坚强不屈不挠逆境梅花:梅花在严寒中最先开放,然后引出烂漫百花散出的芳香,因此梅花与菊花一样,受到了诗人的敬仰与赞颂。
宋人陈亮《梅花》:“一朵忽先变,百花皆后香。”诗人抓住梅花最先开放的特点,写出了不怕打击挫折、敢为天下先的品质,既是咏梅,也是咏自己。
王安石《梅花》:“遥知不是雪,为有暗香来。”诗句既写出了梅花的因风布远,又含蓄地表现了梅花的纯净洁白,收到了香色俱佳的艺术效果。
陆游的词作《咏梅》:“零落成泥碾作尘,只有香如故。”借梅花来比喻自己备受摧残的不幸遭遇和不愿同流合污的高尚情操。
元人王冕《墨梅》:“不要人夸颜色好,只留清气满乾坤。”也是以冰清玉洁的梅花反映自己不愿同流合污的品质,言浅而意深。
让学生看这几句咏梅的诗歌,对梅的意象进行分析讨论。
第二个意象是柳,柳,又名杨柳,可种可插,极易成活。“有心栽花花不发,无心插柳柳成荫”,从这句俗语中我们可以看出柳的生命力多么旺盛。柳树姿态优美、秀色可餐,深得文人墨客的喜爱。
柳是春的使者。
韩翃在《寒食》中写到,“春城无处不飞花,寒食东风御柳斜。”
唐人贺知章有一首《咏柳》名篇:“碧玉妆成一树高,万条垂下绿丝绦。不知细叶谁裁出,二月春风似剪刀。”诗歌问得新奇,答得有趣,精妙传神,洋溢着春天的气息,充满了对春的喜爱之情。
清代高鼎的《村居》这样描绘春景:“草长莺飞二月天,拂堤杨柳醉春烟。儿童散学归来早,忙趁东风放纸鸢。”诗歌前两句写草长莺飞、醉柳拂堤的景色,后两句写一群活泼儿童飞纸鸢的情景。短短四句诗,为我们描绘了一幅饶有趣味充满生活气息的乡村图景。
柳条藤蔓系离情。
最早写柳的诗,可追溯到春秋时期的《诗经》。“昔我往矣,杨柳依依”,作者以轻柔优美的杨柳,反衬辞别家园的依恋伤感之情。从此,柳就与送别结下了不解之缘,加上“柳”与“留”谐音,所以就有了折柳相送的习俗。
隋代无名氏的《送别》:“杨柳青青著地垂,杨花漫漫搅天飞。柳条折尽花飞尽,借问行人归不归?”诗歌先写青青的杨柳,再写漫漫的飞絮,然后以折尽柳条来表达希望亲人早日归来的美好愿望。
唐代山水诗人王维有一首非常有名的送别诗《渭城曲》:“渭城朝雨浥轻尘,客舍青青柳色新。劝君更尽一杯酒,西出阳关无故人。”一场雨过,轻尘不起,房舍青青,沐雨后的杨柳清新翠绿。后两句笔锋一转,以美酒劝慰友人,方把“送”意表露。这是一幅十分感人的送别情景。
送别时要折柳相赠,所以柳便成了分别时的见证。离人看到柳,睹物思人,自然会勾起无穷无尽的思念。
三首诗,每个组任选一首。让学生任选主要考虑学生可能愿意选简单熟悉的那一首诗,这时鼓励学生知难而上,也是为了增加课堂的趣味性。
五、最后布置作业。在课件中展示松、竹、月“乌(鸦)”“昏鸦”“寒鸦”“轻舟”“孤舟”“扁舟”等意象,让学生任选一个意象,课下搜集几首诗写成一篇小文章,谈这个意象的艺术特征(相同或不同)。这个环节想对本课知识进行强化,也是对本课知识的检验。最后这两个环节是在运用斯金纳的强化律,对学习行为进行及时强化。
本课的板书设计为:
意象艺术特征。
木-------空阔黄色。
树-------饱满绿色。
梅-------高洁坚贞。
柳-------柔美依恋。
本课可以运用多媒体手段辅助教学,首页以树叶的画面切入,让学生进入教学情境,能够开启学生的想象力,可能会想到枯黄叶子表达什么情意。中间部分用了一组诗歌让学生思考,在拓展部分,用梅等图象,达到视觉上的美感,使学生思维处于活跃状态,从而极大的激发了学生思考探究的兴趣,使学生主动探索诗歌意象所表达的情意。
高三数学教案案例篇十三
学习目标:
1、了解本章的学习的内容以及学习思想方法2、能叙述随机变量的定义。
3、能说出随机变量与函数的关系,4、能够把一个随机试验结果用随机变量表示。
重点:能够把一个随机试验结果用随机变量表示。
难点:随机事件概念的透彻理解及对随机变量引入目的的认识:
环节一:随机变量的定义。
1.通过生活中的一些随机现象,能够概括出随机变量的定义。
2能叙述随机变量的定义。
3能说出随机变量与函数的区别与联系。
一、阅读课本33页问题提出和分析理解,回答下列问题?
1、了解一个随机现象的规律具体指的是什么?
2、分析理解中的两个随机现象的随机试验结果有什么不同?建立了什么样的对应关系?
总结:
3、随机变量。
(1)定义:
这种对应称为一个随机变量。即随机变量是从随机试验每一个可能的结果所组成的。
到的映射。
(2)表示:随机变量常用大写字母.等表示.
(3)随机变量与函数的区别与联系。
函数随机变量。
自变量。
因变量。
因变量的范围。
相同点都是映射都是映射。
环节二随机变量的应用。
1、能正确写出随机现象所有可能出现的结果2、能用随机变量的描述随机事件。
例1:已知在10件产品中有2件不合格品。现从这10件产品中任取3件,其中含有的次品数为随机变量的学案.这是一个随机现象。(1)写成该随机现象所有可能出现的结果;(2)试用随机变量来描述上述结果。
例2连续投掷一枚均匀的硬币两次,用x表示这两次正面朝上的次数,则x是一个随机变。
量,分别说明下列集合所代表的随机事件:
(1){x=0}(2){x=1}。
(3){x2}(4){x0}。
变式:连续投掷一枚均匀的硬币三次,用x表示这三次正面朝上的次数,则x是一个随机变量,x的可能取值是?并说明这些值所表示的随机试验的结果.
练习:写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机变量的结果。
(1)从学校回家要经过5个红绿灯路口,可能遇到红灯的次数;。
小结(对标)。
高三数学教案案例篇十四
(3)使学生初步了解有限集、无限集、空集的意义。
重点难点】。
教学重点:集合的基本概念及表示方法。
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合。
授课类型:新授课。
课时安排:1课时。
教具:多媒体、实物投影仪。
内容分析】。
高三数学教案案例篇十五
引出数形结合思想方法,强调其含义和重要性,告诉学生,本节课将利用数形结合方法来研究,会使学习变得轻松有趣。
采用这样的引入方法,目的是打消学生对函数学习的畏难情绪,引起学生注意,也激起学生好奇和兴趣。
(二)新知探索主要环节,分为两个部分。
教学过程如下:
第一部分————师生共同研究得出正弦函数的性质。
1.定义域、值域2.周期性。
3.单调性(重难点内容)。
为了突出重点、克服难点,采用以下手段和方法:
(1)利用多媒体动态演示函数性质,充分体现数形结合的重要作用;。
(2)以层层深入,环环相扣的课堂提问,启发学生思维,反馈课堂信息,使问题成为探索新知的线索和动力,随着问题的解决,学生的积极性将被调动起来。
(3)单调区间的探索过程是:
先在靠近原点的一个单调周期内找出正弦函数的一个增区间,由此表示出所有的增区间,体现从特殊到一般的知识认识过程。
**教师结合图象帮助学生理解并强调“距离”(“长度”)是周期的多少倍。
为什么要这样强调呢?
因为这是对知识的一种意义建构,有助于以后理解记忆正弦型函数的相关性质。
4.对称性。
设计意图:
(1)因为奇偶性是特殊的对称性,掌握了对称性,容易得出奇偶性,所以着重讲清对称性。体现了从一般到特殊的知识再现过程。
(2)从正弦函数的对称性看到了数学的对称之美、和谐之美,体现了数学的审美功能。
5.最值点和零值点。
有了对称性的理解,容易得出此性质。
第二部分————学习任务转移给学生。
设计意图:
(3)通过课堂教学结构的改革,提高课堂教学效率,最终使学生成为独立的学习者,这也符合建构主义的教学原则。
(三)巩固练习。
补充和选作题体现了课堂要求的差异性。
(四)结课。
高三数学教案案例篇十六
(2)使学生初步了解“属于”关系的意义。
(3)使学生初步了解有限集、无限集、空集的意义。
【重点难点】。
教学重点:集合的基本概念及表示方法。
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合。
授课类型:新授课。
课时安排:1课时。
教具:多媒体、实物投影仪。
【内容分析】。
高三数学教案案例篇十七
(一)教法说明教法的确定基于如下考虑:
(1)心理学的研究表明:只有内化的东西才能充分外显,只有学生自己获取的知识,他才能灵活应用,所以要注重学生的自主探索。
(2)本节目的是让学生学会如何探索、理解正、余弦函数的性质。教师始终要注意的是引导学生探索,而不是自己探索、学生观看,所以教师要引导,而且只能引导不能代办,否则不但没有教给学习方法,而且会让学生产生依赖和倦怠。
(3)本节内容属于本源性知识,一般采用观察、实验、归纳、总结为主的方法,以培养学生自学能力。
所以,根据以人为本,以学定教的原则,我采取以问题为解决为中心、启发为主的教学方法,形成教师点拨引导、学生积极参与、师生共同探讨的课堂结构形式,营造一种民主和谐的课堂氛围。
(二)教学手段说明:
为完成本节课的教学目标,突出重点、克服难点,我采取了以下三个教学手段:
(1)精心设计课堂提问,整个课堂以问题为线索,带着问题探索新知,因为没有问题就没有发现。
(3)为节省课堂时间,制作幻灯片演示正、余弦函数图象和性质,也可以使教学更生动形象和连贯。
高三数学教案案例篇十八
我发现,许多学生的学习方法是:直接记住函数性质,在解题中套用结论,对结论的来源不理解,知其然不知其所以然,应用中不能变通和迁移。
本节的学习方法对后续内容的学习具有指导意义。为了培养学法,充分关注学生的可持续发展,教师要转换角色,站在初学者的位置上,和学生共同探索新知,共同体验数形结合的研究方法,体验周期函数的研究思路;帮助学生实现知识的意义建构,帮助学生发现和总结学习方法,使教师成为学生学习的高级合作伙伴。
教师要做到:
授之以渔,与之合作而渔,使学生享受渔之乐趣。因此。
1.本节要教给学生看图象、找规律、思考提问、交流协作、探索归纳的学习方法。
2.通过本课的探索过程,培养学生观察、分析、交流、合作、类比、归纳的学习能力及数形结合(看图说话)的意识和能力。
高三数学教案案例篇十九
§3.1.1数列、数列的通项公式目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。
重点:1数列的概念。按一定次序排列的一列数叫做数列。数列中的每一个数叫做数列的项,数列的第n项an叫做数列的通项(或一般项)。由数列定义知:数列中的数是有序的,数列中的数可以重复出现,这与数集中的数的无序性、互异性是不同的。
3.4.-1的正整数次幂:-1,1,-1,1,…。
5.无穷多个数排成一列数:1,1,1,1,…。
二、提出课题:数列。
1.数列的定义:按一定次序排列的一列数(数列的有序性)。
2.名称:项,序号,一般公式,表示法。
3.通项公式:与之间的函数关系式如数列1:数列2:数列4:
4.分类:递增数列、递减数列;常数列;摆动数列;有穷数列、无穷数列。
5.实质:从映射、函数的观点看,数列可以看作是一个定义域为正整数集n-(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值,通项公式即相应的函数解析式。
6.用图象表示:—是一群孤立的点例一(p111例一略)。
三、关于数列的通项公式1.不是每一个数列都能写出其通项公式(如数列3)。
2.数列的通项公式不唯一如:数列4可写成和。
3.已知通项公式可写出数列的任一项,因此通项公式十分重要例二(p111例二)略。
五、小结:1.数列的有关概念2.观察法求数列的通项公式。
六、作业:练习p112习题3.1(p114)1、2。
2.写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)1、、、;(2)、、、;(3)、、、;(4)、、、。
3.求数列1,2,2,4,3,8,4,16,5,…的一个通项公式。
6.在数列{an}中a1=2,a17=66,通项公式或序号n的一次函数,求通项公式。
7.设函数(),数列{an}满足(1)求数列{an}的通项公式;(2)判断数列{an}的单调性。
7.(1)an=(2)。
【本文地址:http://www.xuefen.com.cn/zuowen/12773111.html】