教案的编写需要灵活运用教学理论和教学方法。编写教案之前,教师需要对教学目标有清晰的认识,明确要达到的预期效果。下面是一些教案编写的实用技巧和方法,供大家学习借鉴。
高中数学电子教案篇一
了解双曲线的定义,几何图形和标准方程,知道它的简单性质。
渐近线方程是,离心率,若点是双曲线上的点,则,。
2、又曲线的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是
3、经过两点的双曲线的标准方程是。
4、双曲线的渐近线方程是,则该双曲线的离心率等于。
5、与双曲线有公共的渐近线,且经过点的双曲线的方程为
1、双曲线的离心率等于,且与椭圆有公共焦点,求该双曲线的方程。
2、已知椭圆具有性质:若是椭圆上关于原点对称的两个点,点是椭圆上任意一点,当直线的斜率都存在,并记为时,那么之积是与点位置无关的定值,试对双曲线写出具有类似特性的性质,并加以证明。
3、设双曲线的半焦距为,直线过两点,已知原点到直线的距离为,求双曲线的离心率。
1、双曲线上一点到一个焦点的距离为,则它到另一个焦点的距离为。
2、与双曲线有共同的渐近线,且经过点的双曲线的一个焦点到一条渐近线的距离是。
3、若双曲线上一点到它的右焦点的距离是,则点到轴的距离是
4、过双曲线的左焦点的直线交双曲线于两点,若。则这样的'直线一共有条。
1、已知双曲线的焦点到渐近线的距离是其顶点到渐近线距离的2倍,则该双曲线的离心率
2、已知双曲线的焦点为,点在双曲线上,且,则点到轴的距离为。
3、双曲线的焦距为
4、已知双曲线的一个顶点到它的一条渐近线的距离为,则
5、设是等腰三角形,,则以为焦点且过点的双曲线的离心率为。
高中数学电子教案篇二
近年来,随着对数学学科认识的深入对数学教育观念理解的加深越来越多的人们认识到了数学史在数学教学中的教育价值以下是专门为你收集整理的高中数学教案模板范文供参考阅读!
一、什么是教学案例。
教学案例是而又典型且含有问题的事件简单地说一个教学案例就是一个包含有疑难问题的实际情境的描述是一个教学实践过程中的故事描述的是教学过程中“意料之外情理之中的事”
这可以从以下几个层次来理解:
二、如何进行教学案例研究。
(一)案例研究的准备与实施1.研究主题的选择。
下面介绍两种常用的案例编写的格式:(1)“描述+分析”式。
与“描述+分析”式中的描述相同主要突出主题所反映的课堂教学活动。
c.问题讨论。
d.诠释与研究。
2.案例报告撰写的关键。
(1)掌握四个原则要写好教学案例除了平时多积累素材学习他人的案例作品以提高写作技巧外还应把握以下四点:
(2)用好四种表述教学案例的表述方法很多可以归纳为以下四种方法:
a.故事式陈述法:就是教学全程或某一精彩教学片段实录包括教师和学生的一言一行陈述时根据操作程序作一点“简评”最后作“总评”
三、
案例研究过程中需注意的问题。
高中数学电子教案篇三
集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
教学重点.难点
重点:集合的含义与表示方法.
难点:表示法的恰当选择.
教学目标
l.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号; (3)了解集合中元素的确定性.互异性.无序性;
(4)会用集合语言表示有关数学对象;
2.过程与方法
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.
(2)让学生归纳整理本节所学知识.
3.情感.态度与价值观
使学生感受到学习集合的必要性,增强学习的积极性.
1.教学方法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2.教学手段:在教学中使用投影仪来辅助教学.
(一)创设情景,揭示课题
1.教师首先提出问题:(1)介绍自己的家庭、原来就读的学校、现在的班级。
(2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?
引导学生互相交流.与此同时,教师对学生的活动给予评价.
2.活动:(1)列举生活中的集合的例子;(2)分析、概括各实例的共同特征
由此引出这节要学的内容。
设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫
(二)研探新知,建构概念
1.教师利用多媒体设备向学生投影出下面7个实例:
(1)1—20以内的所有质数;(2)我国古代的四大发明;
(3)所有的安理会常任理事国; (4)所有的正方形;
(5)海南省在20xx年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)国兴中学20xx年9月入学的高一学生的全体.
2.教师组织学生分组讨论:这7个实例的共同特征是什么?
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.
4.教师指出:集合常用大写字母a,b,c,d,?表示,元素常用小写字母a,b,c,d?表示.
设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神
(三)质疑答辩,发展思维
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.
2.教师组织引导学生思考以下问题:
判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.
3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.
4.教师提出问题,让学生思考
高一(4)班的一位同学,那么a,b与集合a分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.
如果a是集合a的元素,就说a属于集合a,记作a?a.
如果a不是集合a的元素,就说a不属于集合a,记作a?a.
(2)如果用a表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合a的关系分别是什么?请用数学符号分别表示.
(3)让学生完成教材第6页练习第1题.
5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1a组第1题.
6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:
(1)要表示一个集合共有几种方式?
(2)试比较自然语言.列举法和描述法在表示集合时,各自的特点?适用的对象是什么?
(3)如何根据问题选择适当的集合表示法?
使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。
(四)巩固深化,反馈矫正
教师投影学习:
(3)试选择适当的方法表示下列集合:教材第6页练习第2题.
设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象
(五)归纳小结,布置作业
小结:在师生互动中,让学生了解或体会下例问题:
1.本节课我们学习了哪些知识内容? 2.你认为学习集合有什么意义?
3.选择集合的表示法时应注意些什么?
设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。
作业:1.课后书面作业:第13页习题1.1a组第4题.
2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种
呢?如何表示?请同学们通过预习教材.
高中数学电子教案篇四
1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。
2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。
难点:识别三视图所表示的空间几何体。
观察、动手实践、讨论、类比。
(一)创设情景,揭开课题
展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。
(二)讲授新课
1、中心投影与平行投影:
中心投影:光由一点向外散射形成的投影;
平行投影:在一束平行光线照射下形成的投影。
正投影:在平行投影中,投影线正对着投影面。
2、三视图:
正视图:光线从几何体的前面向后面正投影,得到的投影图;
侧视图:光线从几何体的左面向右面正投影,得到的投影图;
俯视图:光线从几何体的上面向下面正投影,得到的投影图。
三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
三视图的画法规则:长对正,高平齐,宽相等。
长对正:正视图与俯视图的长相等,且相互对正;
高平齐:正视图与侧视图的高度相等,且相互对齐;
宽相等:俯视图与侧视图的宽度相等。
3、画长方体的三视图:
正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。
长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。
4、画圆柱、圆锥的三视图:
5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。
(三)巩固练习
课本p15练习1、2;p20习题1.2[a组]2。
(四)归纳整理
请学生回顾发表如何作好空间几何体的三视图
(五)布置作业
课本p20习题1.2[a组]1。
高中数学电子教案篇五
2. 你尊敬老师、团结同学、热爱劳动、关心集体,所以大家都喜欢你。能严格遵守学校的各项规章制度。学习不够刻苦,有畏难情绪。学习方法有待改进,掌握知识不够牢固,思维能力要进一步培养和提高。学习成绩比上学期有一定的进步。平时能积极参加体育锻炼和有益的文娱活动。今后如果能注意分配好学习时间,各科全面发展,均衡提高,相信一定会成为一名更加出色的学生。
3. 你性格活泼开朗,总是带着甜甜的笑容,你能与同学友爱相处,待人有礼,能虚心接受老师的教导。大多数的时候你都能遵守纪律,偶尔会犯一些小错误。有时上课不够留心,还有些小动作,你能想办法控制自己吗?一开学老师就发现你的作业干净又整齐,你的字清秀又漂亮。但学习成绩不容乐观,需努力提高学习成绩。希望能从根本上认识到自己的不足,在课堂上能认真听讲,开动脑筋,遇到问题敢于请教。
4. 你热情大方,为人豪爽,身上透露出女生少有的霸气,作为班干部,你会提醒同学们及时安静,对学习态度端正,及时完成作业,但是少了点耐心,试着把心沉下来,上课集中注意力,跟着老师的思路走,一步一个脚印,一定能走出你自己绚丽的人生!
5. 学习态度端正,效率高,合理分配时间,学习生活两不误,善良热情,热爱生活,乐于助人,与周围同学相处关系融洽。能严格遵守学校的各项规章制度。上课能专心听讲,认真做好笔记,课后能按时完成作业。记忆力好,自学能力较强。希望你能更主动地学习,多思,多问,多练,大胆向老师和同学请教,注意采用科学的学习方法,提高学习效率,一定能取得满意的成绩!
6. 作为本班的班长,你对待班级工作能够认真负责,积极配合老师和班委工作,集体荣誉感很强,人际关系很好,待人真诚,热心帮助人,老师十分欣赏你的善良和聪明,希望在以后能够积极发挥自己的所长,带领全班不仅在班级管理上有进步,而且能在学习上也能成为全班的领头雁,在下学期能取得更大的进步!
7. 身为班委的你,对工作认真负责,以身作则,性格和善,与同学关系融洽,积极参加各项活动,不太张扬的你显得稳重和踏实,在学习上,你认真听课,及时完成各科作业,但是我总觉得你的学习还不够主动,没有形成自己的一套方法,若从被动的学习中解脱出来,应该稳定在班级前五名啊!加油!
8. 你是个懂礼貌明事理的孩子,你能严格遵守班级纪律,热爱集体,对待学习态度端正,上课能够专心听讲,课下能够认真完成作业。你的学习方法有待改进,若能做到学习时心无旁骛就好了,掌握知识也不够牢固,思维能力要进一步培养和提高。只要有恒心,有毅力,老师相信你会在各方面取得长足进步!
9. 你为人热情大方,能和同学友好相处。你为人正直诚恳,尊敬老师,关心班集体,待人有礼,能认真听从老师的教导,自觉遵守学校的各项规章制度,抵制各种不良思想。有集体荣誉感,乐于为集体做事。学习刻苦,成绩有所提高。上课能专心听讲,思维活跃,积极回答问题,积极思考,认真做好笔记。今后如果能注意分配好学习时间,各科全面发展,均衡提高,相信一定会成为一名更加出色的学生。
10. 记得和你说过,你是个太聪明的孩子,你反应敏捷,活泼灵动。但是做学问是需要静下心来老老实实去钻研的,容不得卖弄小聪明和半点顽皮话。要知道,学如逆水行舟,不进则退;心似平原野马,易放难收!望你下学期重新抖擞精神早日进入状态,不辜负关爱你的人对你的殷殷期盼。
高中数学电子教案篇六
了解双曲线的定义,几何图形和标准方程,知道它的简单性质。
【自学质疑】
渐近线方程是 ,离心率 ,若点 是双曲线上的点,则 , 。
2.又曲线 的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是
3.经过两点 的双曲线的标准方程是 。
4.双曲线的渐近线方程是 ,则该双曲线的离心率等于 。
5.与双曲线 有公共的渐近线,且经过点 的双曲线的方程为
【例题精讲】
1.双曲线的离心率等于 ,且与椭圆 有公共焦点,求该双曲线的方程。
2.已知椭圆具有性质:若 是椭圆 上关于原点对称的两个点,点 是椭圆上任意一点,当直线 的斜率都存在,并记为 时,那么 之积是与点 位置无关的定值,试对双曲线 写出具有类似特性的性质,并加以证明。
3.设双曲线 的半焦距为 ,直线 过 两点,已知原点到直线 的距离为 ,求双曲线的离心率。
【矫正巩固】
1.双曲线 上一点 到一个焦点的距离为 ,则它到另一个焦点的距离为 。
2.与双曲线 有共同的渐近线,且经过点 的双曲线的一个焦点到一条渐近线的距离是 。
3.若双曲线 上一点 到它的右焦点的距离是 ,则点 到 轴的距离是
4.过双曲线 的左焦点 的直线交双曲线于 两点,若 。则这样的直线一共有 条。
【迁移应用】
2. 已知双曲线 的焦点为 ,点 在双曲线上,且 ,则点 到 轴的距离为 。
3. 双曲线 的焦距为
4. 已知双曲线 的一个顶点到它的一条渐近线的距离为 ,则
5. 设 是等腰三角形, ,则以 为焦点且过点 的双曲线的离心率为 .
高中数学电子教案篇七
1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。
本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。
1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。
(一)本大纲教学要求用语的表述1.认知要求(分为三个层次)
了解:初步知道知识的含义及其简单应用。
理解:懂得知识的概念和规律(定义、定理、法则等)以及与其他相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)
计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。
空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。
分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。
数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。
(二)教学内容与要求1.基础模块(128学时)第1单元集合(10学时)
第2单元不等式(8学时)
第3单元函数(12学时)
第4单元指数函数与对数函数(12学时)
第5单元三角函数(18学时)
第6单元数列(10学时)
第7单元平面向量(矢量)(10学时)
第8单元直线和圆的方程(18学时)
第9单元立体几何(14学时)
第10单元概率与统计初步(16学时)
2.职业模块
第1单元三角计算及其应用(16学时)
第2单元坐标变换与参数方程(12学时)
第3单元复数及其应用(10学时)
高中数学电子教案篇八
高中数学趣味竞赛题(共10题)
5个高中生有,她们面对学校的新闻采访说了如下的话:
爱:“我还没有谈过恋爱。” 静香:“爱撒谎了。”
玛丽:“我曾经去过昆明。” 惠美:“玛丽在撒谎。”
千叶子:“玛丽和惠美都在撒谎。” 那么,这5个人之中到底有几个人在撒谎呢?
有天使、恶魔、人三者,天使时刻都说真话,恶魔时时刻刻都说假话,人呢,有时候说真话,有时候说假话。
听说祖父家的波斯猫生了好多小猫,喜欢猫的我兴高采烈地来到祖父家。可是,只剩下1只小猫了。
一只爱吃墨水的虫子把下图的算式中的数字全部吃掉了。当然,没有数字的部分它没有吃(因为没有墨水)。
那么,请问原来的算式是什么样子的呢?
用16根火柴摆成5个正方形。请移动2根火柴,
使
正形变成4。
把正三角形的纸如图那样折过来时,角?的度数是多少度?
求星形尖端的角度之和。
丈夫临死前,给有身孕的妻子留下遗言说,生的是男孩就给他财产的 2/3 、如果生的是女孩就给他财产的 2/5 、剩下的给妻子。
结果,生出来的是孪生兄妹——双胞胎。这可难坏了妻子,3个人怎么分财产好呢?
用折纸做成45度很简单是吧。那么,请折成15度,你会吗?
高中数学电子教案篇九
圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。
我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。
由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率.
1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。
2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。
3.借助多媒体辅助教学,激发学习数学的兴趣.
教学重点。
1.对圆锥曲线定义的理解。
2.利用圆锥曲线的定义求“最值”
3.“定义法”求轨迹方程。
教学难点:。
巧用圆锥曲线定义解题。
【设计思路】。
(一)开门见山,提出问题。
一上课,我就直截了当地给出——。
例题1:(1)已知a(-2,0),b(2,0)动点m满足|ma|+|mb|=2,则点m的轨迹是()。
(a)椭圆(b)双曲线(c)线段(d)不存在。
(2)已知动点m(x,y)满足(x1)2(y2)2|3x4y|,则点m的轨迹是()。
(a)椭圆(b)双曲线(c)抛物线(d)两条相交直线。
【设计意图】。
定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的.认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。
为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。
【学情预设】。
入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。
在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。
(二)理解定义、解决问题。
高中数学电子教案篇十
知识与技能。
在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的.圆心半径,掌握方程x+y+dx+ey+f=0表示圆的条件。
过程与方法。
通过对方程x+y+dx+ey+f=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。
情感态度与价值观。
渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。
重点。
掌握圆的一般方程,以及用待定系数法求圆的一般方程。
难点。
二元二次方程与圆的一般方程及标准圆方程的关系。
(一)复习旧知,引出课题。
1、复习圆的标准方程,圆心、半径。
2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?
高中数学电子教案篇十一
2、能识别和理解简单的框图的功能。
3。、能运用三种基本逻辑结构设计流程图以解决简单的问题。
1。、通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知。
2。、在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构。
一、问题情境。
1、情境:
某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为x。
其中(单位:)为行李的重量.。
试给出计算费用(单位:元)的一个算法,并画出流程图。
二、学生活动。
学生讨论,教师引导学生进行表达。
解算法为:
输入行李的重量;
如果,那么,
否则;
输出行李的重量和运费.。
上述算法可以用流程图表示为:
教师边讲解边画出第10页图1—2—6.。
在上述计费过程中,第二步进行了判断.。
1、选择结构的概念:
先根据条件作出判断,再决定执行哪一种操作的结构称为选择结构。
(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和两个退出点。
3、思考:教材第7页图所示的算法中,哪一步进行了判断?
高中数学电子教案篇十二
数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
(1)、基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;。
1、教学重点。
理解并掌握诱导公式、
2、教学难点。
正确运用诱导公式,求三角函数值,化简三角函数式、
1、教法。
2、学法。
3、预期效果。
(一)创设情景。
1、复习锐角300,450,600的三角函数值;。
2、复习任意角的三角函数定义;。
3、问题:由,你能否知道sin2100的值吗?引如新课、
高中数学电子教案篇十三
(2)进一步理解曲线的方程和方程的曲线。
(3)初步掌握求曲线方程的方法。
(4)通过本节内容的教学,培养学生分析问题和转化的能力。
求曲线的方程。
计算机。
启发引导法,讨论法。
【引入】。
1.提问:什么是曲线的方程和方程的曲线。
学生思考并回答,教师强调。
2.坐标法和解析几何的意义、基本问题。
对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何,解析几何的两大基本问题就是:
(1)根据已知条件,求出表示平面曲线的方程。
(2)通过方程,研究平面曲线的性质。
【问题】。
如何根据已知条件,求出曲线的方程。
【概括总结】通过学生讨论,师生共同总结:
分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:
首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:
(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;
(2)写出适合条件的点的集合;
(3)用坐标表示条件,列出方程;
(4)化方程为最简形式;
(5)证明以化简后的方程的解为坐标的点都是曲线上的点.
上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正。
下面再看一个问题:
【小结】师生共同总结:
(1)解析几何研究研究问题的方法是什么?
(2)如何求曲线的方程?
【作业】课本第72页练习1,2,3;
高中数学电子教案篇十四
1.理解流程图的选择结构这种基本逻辑结构.。
2.能识别和理解简单的框图的功能.。
3.能运用三种基本逻辑结构设计流程图以解决简单的问题.。
一、问题情境。
1.情境:
某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为。
其中(单位:)为行李的重量.。
试给出计算费用(单位:元)的.一个算法,并画出流程图.。
二、学生活动。
学生讨论,教师引导学生进行表达.。
解算法为:
输入行李的重量;
如果,那么,
否则;
输出行李的重量和运费.。
上述算法可以用流程图表示为:
教师边讲解边画出第10页图1-2-6.。
在上述计费过程中,第二步进行了判断.。
1.选择结构的概念:
先根据条件作出判断,再决定执行哪一种。
操作的结构称为选择结构.。
2.说明:(1)有些问题需要按给定的条件进行分析、比较和判断,并按判。
断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;
(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执。
行,但或两个框中可以有一个是空的,即不执行任何操作;
(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和。
两个退出点.。
3.思考:教材第7页图所示的算法中,哪一步进行了判断?
【本文地址:http://www.xuefen.com.cn/zuowen/12758587.html】