2023年初二数学第一章教案(通用15篇)

格式:DOC 上传日期:2023-11-17 09:46:08
2023年初二数学第一章教案(通用15篇)
时间:2023-11-17 09:46:08     小编:JQ文豪

教案可以帮助教师更好地组织课堂教学活动,提高学生的学习效果。在编写教案时,要合理安排教学过程,注意活动设计和讲解方式的选择。在这里,我们为大家提供了一些优秀的教案范文,供大家参考。

初二数学第一章教案篇一

当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。

初二数学第一章教案篇二

1.经历平行四边形判别条件的探索过程,发现平行四边形的常用判别条件。

2.掌握平行四边形的判别条件;对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形。

3.逐步掌握说理的基本方法。

1.在探索平行四边形的判别条件的过程中,发展学生的合情推理意识,主动探索的习惯。

2.鼓励学生用多种方法进行说理。

1.培养学生探索创新的能力,开拓学生思路,发展学生的思维能力。

2.培养学生合作学习,增强学生的自我评价意识。

教材通过创设“钉制平行四边形框架”这一情境,便于学生发现和探索平行四边形的常用判别方法。如有条件可要求学生自己准备,由学生自我操作。也可由教师演示。

教学重点:平行四边形的判别方法。

教学难点:利用平行四边形的判别方法进行正确的说理。

初二学生对平面图形的认识能力正在形成,抽象思维还不够,学习几何知识处于现象描述和说理的过渡时期。因此,对这部分内容的学习,要引导学生学会正确的说理,理清楚四边形在什么条件下用判定定理,在什么条件下用性质定理。

一、创设情境,引入新课

师:请同学们拿出课前准备的小木条,帮助小明的爸爸钉制平行四边形的框架。

学生活动:学生按小组进行探索。

初二数学第一章教案篇三

可设小明爸爸前年存了x元,那么二年后共得利息为。

2.43%×x×2,利息税为2.43%x×2×20%。

根据等量关系,得2.43%x·2—2.43%x×2×20%=48.6。

2.43%x·2.80%=48.6。

解方程,得x=1250。

大家想一想这15元的利润是怎么来的?

标价的80%(即售价)-成本=15。

若设这种服装每件的成本是x元,那么。

每件服装的标价为:(1+40%)x。

每件服装的实际售价为:(1+40%)x·80%。

每件服装的利润为:(1+40%)x·80%—x。

由等量关系,列出方程:

(1+40%)x·80%—x=15。

解方程,得x=125。

答:每件服装的成本是125元。

初二数学第一章教案篇四

教学重点和难点

一元一次方程解简单的应用题的方法和步骤、

课堂教学过程设计

为了回答上述这几个问题,我们来看下面这个例题、

例1 某数的3倍减2等于某数与4的和,求某数、

(首先,用算术方法解,由学生回答,教师板书)

解法1:(4+2)÷(3-1)=3、

答:某数为3、

(其次,用代数方法来解,教师引导,学生口述完成)

解法2:设某数为x,则有3x-2=x+4、

解之,得x=3、

答:某数为3、

师生共同分析:

1、本题中给出的已知量和未知量各是什么?

2、已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)

上述分析过程可列表如下:

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得

x-15%x=42 500,

所以 x=50 000、

答:原来有 50 000千克面粉、

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

教师应指出:

(2)例2的解方程过程较为简捷,同学应注意模仿、

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(2)根据题意找出能够表示应用题全部含义的一个相等关系、(这是关键一步);

(4)求出所列方程的解;

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨、解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误、并严格规范书写格式)

解:设第一小组有x个学生,依题意,得

3x+9=5x-(5-4),

解这个方程: 2x=10,

所以 x=5、

其苹果数为 3× 5+9=24、

答:第一小组有5名同学,共摘苹果24个、

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程、

(设第一小组共摘了x个苹果,则依题意,得 )

3、某工厂女工人占全厂总人数的 35%,男工比女工多 252人,求全厂总人数、

首先,让学生回答如下问题:

1、本节课学习了哪些内容?

2、列一元一次方程解应用题的方法和步骤是什么?

3、在运用上述方法和步骤时应注意什么?

依据学生的回答情况,教师总结如下:

(2)以上步骤同学应在理解的基础上记忆、

1、买3千克苹果,付出10元,找回3角4分、问每千克苹果多少钱?

2、用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

初二数学第一章教案篇五

1、本节课首先从最简单的正比例函数入手、从正比例函数的定义、函数关系式、引入次函数的概念。

2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。

1、虽然这是一节全新的数学概念课,学生没有接触过。但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。

2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习其它函数的基础。

3、学生认知障碍点:根据问题信息写出一次函数的表达式。

1、理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。

2、能根据问题信息写出一次函数的表达式。能利用一次函数解决简单的实际问题。

3、经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。

1、一次函数、正比例函数的概念及关系。

2、会根据已知信息写出一次函数的表达式。

初二数学第一章教案篇六

1.了解分式的基本性质,掌握分式的约分和通分法则。掌握分式的四则运算。

2.会用待定系数法求反比例函数的解析式,能利用函数性质分析和解决一些简单的实际问题。

3.体验勾股定理的探索过程,会运用勾股定理解决简单问题。会运用勾股定理的逆定理判定直角三角形。

4.探索并掌握平行四边形、矩形、菱形、正方形、等腰梯形的有关性质和常用判定方法,并运用这些知识进行有关的证明和计算。

5.进一步理解平均数、中位数和众数等统计量的统计意义,会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况。

过程与方法

进一步培养学生的合情推理能力和发展学生逻辑思维能力和推理论证的表达能力;解决一些实际问题,体会化归思想和函数的变化与对应的思想;养成用数据说话的习惯和实事求是的科学态度;培养学生的探究能力、数学归纳能力,在活动中培养学生的合作交流能力;逐步形成独立思考,主动探索的习惯。

情感、态度与价值观

丰富学生从事数学活动的经验和体验,通过对问题的共同探讨,培养学生的协作精神,通过对知识方法的总结,培养反思的习惯,和理性思维。培养学生面对教学活动中的困难,能通过合作交流解决遇到的困难。

初二数学第一章教案篇七

(一)地位、作用:

(二)教学目标:

1、知识目标:使学生掌握有理数的减法法则,熟练地进行有理数的减法运算。

2、能力目标:培养学生探究思维能力和分析解决问题的能力。

3、情感目标:使学生了解加与减两种运算的对立统一的关系,了解数学中转化的数学思想方法,渗透辩证唯物主义思想,培养探究分析数学知识方法的兴趣。

(三)重点、难点:

重点:有理数的减法法则,熟练地进行有理数的减法运算。

难点:理解有理数减法的意义,正确熟练地进行有理数的减法运算。

根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法、多媒体辅助教学方法等。教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

附教学工具:温度计、投影仪、多媒体。

根据学法指导自主性的原则,让学生在教师创设的问题情境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。

(一)引入课题环节:

1、复习有理数的加法法则,为新课的.讲授作好铺垫。

2、(提问)用算式表示:与—3的和等于—10的数。

(根据学过的知识,引导学生列出减法算式后提出问题:怎样进行这里的减法运算呢?有理数的减法运算法则是什么呢?由问题的给出,激发学生探求解决问题方法的兴趣,从而引出本节课的课题。

(二)新课讲解环节:

1、通过投影仪给出以下算式:

减法加法。

(+10)—(+3)=+7(+10)+(—3)=+7。

让学生比较上面这两个算式并讨论后得出:

(+10)—(+3)=(+10)+(—3)。

再给出以下算式:

减法加法。

(+5)—(+2)=+3(+5)+(—2)=+3。

继续让学生比较上面这两个算式并讨论后得出:

(+5)—(+2)=(+5)+(—2)。

从而,它启发我们有理数的减法可以转化成加法进行。

2、讲解课本p80的内容,回答复习题2提出的问题即如何求(—10)—(—3)的结果。通过分析讲解,请学生自己归纳出有理数的减法法则,最后老师再完整地总结出法则。

文字叙述:减去一个数,等于加上这个数的相反数。

实际运算时会更加方便)。

强调运用法则时:被减数不变,减号变加号,减数变成其相反数。

减数变号。

(减法============加法)。

3、出示温度计,用多媒体出现(如p81的图2—20),并进行动画演示,通过求15℃比5℃高多少?15℃比—5℃高多少?的实例来说明减法法则的合理性以及有理数减法的实际意义。同时进行练习反馈:课本p82的练习1,4、通过例题教学使学生巩固方法,初步具备解决问题的能力。

例1、计算:(1)(—3)—(—5);(2)0—7。

例2、计算(1)7.2—(—4.8);(2)(—3—)—5。

说明:讲解时注意让学生复述有理数法减法法则,加深学生对法则的认识,并注意归纳有理数减法的规律,而不机械地将减法转化成加法,为今后进一步学习减法运算逐步省略化成加法的中间步骤作准备。

(三)巩固练习环节:

让学生完成课本p82的练习2、3,巩固有理数减法法则的运用,强化学生对这节课的掌握。第2题口答,第3题请6个学生上台板演。对回答好的同学给予表扬肯定,如果有错误,请其他同学纠正。

(四)课堂小结环节:(师生共同完成)。

本节课学习了有理数的减法运算,进行有理数的减法运算时转化成加法进行计算,即a—b=a+(—b)。

(五)布置课后作业:课本p83习题2、6的2、3、4、5的偶数题。

通过作业反馈对学生所学知识掌握的效果,以利课后解决学生尚有疑难的地方。

(六)板书设计:(略)。

初二数学第一章教案篇八

经历探索一次函数的应用问题,发展抽象思维.。

培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值.。

1.重点:一次函数的应用.。

2.难点:一次函数的应用.。

3.关键:从数形结合分析思路入手,提升应用思维.。

采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.。

y=。

拓展:若a城有肥料300吨,b城有肥料200吨,其他条件不变,又应怎样调运?

课本p119练习.。

由学生自我评价本节课的表现.。

课本p120习题14.2第9,10,11题.。

初二数学第一章教案篇九

1、由于新教材数学教学的特殊性,我的讲解基本上还拘泥于教材的信息,而开放型的、能激发学生想象力与创造力和发散学生思维的课堂比例还较小。在课堂教学中,有时缺乏积极有效的师生互动,部分课时过于注重讲授,没有以精讲精练的要求正确处理好讲与练的关系,导致教与学不合拍,忽视对学生的基础、能力的关注。

2、课堂教学不能针对学生实际,缺乏“备学生”、“备学案”这一必要环节;对教材的处理和把握仍然拘泥于教材,没有进行有效地取舍、组合、拓展、加深;课堂教学没有真正做到对学生进行基础知识点、中考热点和中考难点的渗透,学生原有的知识不能得到及时、适时地活化;课堂密度要求不足,学生参与机会少、参与面小;课堂留给学生自疑、自悟、自学、自练、自得的时间十分有限。

3、对中考的研究不够,对中考的考试范围、要求、形式、出题的特点及规律的了解不够明确,在课堂教学中依赖于复习资料,缺乏对资料的精选与整合,忽视教师自身对知识框架的主动构建,从而课堂教学缺乏对学生英语知识体系的方法指导和能力培养。

4、课堂设计缺乏适当适时的教学评价,不能及时获悉学生在课堂上有没有收获,有多大收获等学情;课前设计“想教学生什么”,课堂反馈“学生学到什么”和课后反思“学生还想学什么”三个环节没有得到程度上的统一。

由于课堂教学中以上问题的存在,学生的数学学习与复习出现了许多问题。

1.学生对数学学习缺乏兴趣、自信心和学习动力;在数学课堂上不积极参与,缺少主动发言的热情或根本不愿意发言;另外,相当一部分学生在听新课时跟不上老师的`节奏或不能理解教师相对较快的指示语。

2.学生对数学课堂知识的掌握不实在、理解不全面,课外花的冤枉时间多;而大部分学生对书本知识不够重视,找不到数学学科复习的有效载体,不能有效的利用课本,适时地回归课本,数学复习缺乏系统性,数学学习缺乏主动性。

3.部分学生缺少教师明确的指导,在复习时缺乏系统安排和科学计划,或者学习和复习没有个性化特点,导致学习效果不明显。

4.基于以上情况,我认为作为学生中考的把关者,初中数学教师首先要有正确地意识,应充分认识到:一节课有没有效益,并不是指教师有没有教完内容或教得认真不认真,而是指学生有没有学到什么或学生学得好不好。如果学生不想学或学了没有收获,即使教师教得很辛苦也是无效教学;或者学生学得很辛苦,却没有得到应有的发展,也是无效或低效教学。

针对以上问题,我们可以从以下几个方面进行提高:

1、教师要有课堂效益意识。有效的媒体手段有助于课堂容量、密度和速度的提高。尤其是在复习课堂上适当地使用多媒体手段,不但可以活跃课堂,更能提高学生的参与面,短、频、快的大容量课堂节奏能有效的吸引并集中学生的学习注意,从而最终提高学习的听课效益;其次,课堂效益意识还体现在教学的设计中要充分为学而教,以学生如何有效获取知识,提高能力的标准来设计教学。课堂设计要有助于学生在课堂上积极参与,有助于他们有效内化知识与信息,复习过程中要重视学习方法的指导,在教学中恰当地渗透中考的信息,拓宽教学内容。

2、数学课堂上教师应及时有效获取学情反馈,有效地进行课前回顾,课堂小结等环节的落实。为有效地提高英语课堂教学效益,教师还可以制定科学的、操作性强的、激励性的英语学习效果评价制度,坚持对学生的听课、作业、笔记等方面进行跟踪,及时了解学生的学习、复习状态与状况,以便在课堂教学过程中做出针对性的调整。

3、注重课堂教学效率的提高,要切实抓好备课这一环节,即备课要精,练习要精,作业要精。同时,我们要积极进行教学反思,由教师自己及时反省、思考、探索和解决教学过程中存在的问题,及时调整教学方法,优化教学过程。在课堂教学中强调基础知识的学习。教师要突破现行教材的局限性,在重点内容上有系统的强化训练。在句法上不能拘泥于传统的计算层面,要搜集材料,适当拓宽。

4、要强化分层次教学与辅导,通过分层次教学和辅导提升学生的成绩,从方法上,要抓住学生学习的薄弱点,区别不同情况,有针对性辅导。从策略上,加强学生实际问题的研究,做到缺什么、补什么,从对象上,要重点关注学科明显薄弱的学生,采用教师定学生、师生结对、辅导等有效形式使学生随时能得到教师的辅导和帮助,从而切实提高学生成绩。

一是抓住课本,有效复习。教材和教学大纲是考前复习和考试命题的依据。因此,在复习时,教师和学生都应认真学习并充分理解和准确把握教学大纲中对基础知识与能力的要求。

二是系统归纳,分清脉络。在总复习时,要突出一个“总”字。面对上千的题型,通过复习,要使学生对初中数学学习有个总体的、概括的印象。大到计算证明,小到具体的知识点,使学生脑子中有清晰的框架和内容充实的“网络图”。

三是专项练习,有的放矢。对于以往总复习暴露出来的问题,教师应有目的、有针对性地进行专题讲解与训练,搜集、积累学生平时在各方面出现的错误,逐题突破。

在复习中,教师应要求学生学会整理错题,把试卷和做过的练习题里的错题整理出来,专门抄写在一个本子上,及时订正反馈。教师要加以选择,并要求学生有选择性地做基础知识练习,让学生走出题海。关于阅读理解,现在出题内容越来越接近生活,因此,学生复习时应加强练习,广泛接触各种题型,拓展知识面,同时要有意识地积累各种题型的解题方法和技巧,从而可减少中考时的答题失误。

总之,中考数学复习阶段非常重要,复习可以查漏补缺,能使知识达到系统、全面。虽然我们已经逐认识到课堂教学的重要性和对学生指导的紧迫性,但是离相对满意的数学课堂的目标还存在一定的差距。因此,我们需要不断地更新理念,提高自身的理论水平和实践能力,为学生的数学发展和轻松面对中考作出更大的努力。

初二数学第一章教案篇十

(一)、知识与技能:

(1)使学生了解因式分解的意义,理解因式分解的概念。

(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。

(二)、过程与方法:

(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。

(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。

(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。

(三)、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。

二、教学重点和难点。

重点:因式分解的概念及提公因式法。

难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。

三、教学过程。

教学环节:

活动1:复习引入。

看谁算得快:用简便方法计算:

(1)7/9×13-7/9×6+7/9×2=;。

(2)-2.67×132+25×2.67+7×2.67=;。

(3)992–1=。

设计意图:

如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.

注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。

活动2:导入课题。

p165的探究(略);。

2.看谁想得快:993–99能被哪些数整除?你是怎么得出来的?

设计意图:

引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。

活动3:探究新知。

看谁算得准:

计算下列式子:

(1)3x(x-1)=;。

(2)(a+b+c)=;。

(3)(+4)(-4)=;。

(4)(-3)2=;。

(5)a(a+1)(a-1)=;。

根据上面的算式填空:

(1)a+b+c=;。

(2)3x2-3x=;。

(3)2-16=;。

(4)a3-a=;。

(5)2-6+9=。

在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。

活动4:归纳、得出新知。

比较以下两种运算的联系与区别:

a(a+1)(a-1)=a3-a。

a3-a=a(a+1)(a-1)。

在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?

初二数学第一章教案篇十一

教学目标:

一、知识与技能:

1、能列举自然界和生活中不同状态的物质,理解气态、液态和固态是物质存在的三种状态。

2、知道在一定条件下,物质存在的状态可以发生变化。

3、能举例说明三种物态的基本特征。

4、了解三种物态具有不同特征的原因。

二、过程与方法:

1、通过对大量不同状态物质按照固、液、气三种不同状态分类体会对物质分类的方法。

2、通过观察水的物态变化实验感受物质发生物态变化的条件。

3、通过用物质结构的微观模型解释三种物态的特征,了解一种研究问题的方法。

三、情感、态度和价值观:

1、通过冰化成水的实验反映出的事物在一定条件下可以相互转化的事实,感受用辩证唯物主义观点看待问题。

2、通过参与数学活动,产生对物理学习的兴趣和对科学的求知欲望,乐于探索自然现象和日常生活中的物理道理。

教学重点:

1.理解气态、液态和固态是物质存在的三种状态。

2.通过观察水的物态变化实验感受物质发生物态变化的条件。

教学难点:用物质结构的微观模型解释三种物态的特征。

教学过程:

教学过程简述。

本节课我设计用三个环节来完成。

1.物质存在的状态。

2.物态变化。

3.用微观模型解释物态特征及物态变化的原因。

最后,练习巩固。

§1-1物态。

一、物质存在的状态。

情景1:观看影片。

对冰加热,熔化成水,再汽化成水蒸气。

问题:冰去哪了?水又去哪了?气从哪来?

引出:同一种物质可以以三种不同的状态存在。

进一步引出:物质三种状态的名称(固态、液态、气态)。

过渡:物理是研究物质的一门科学。我们学习物理就从区分物质的状态开始。情景2:物体分类(学生活动)。

出示物体的图片,让学生分别回答其状态。

观察分好类的三堆物体,思考其共同点与不同点。

引出:固、液、气的不同特征。并填写“固、液、气特征表”。

固、液、气特征表。

状态。

固态。

液态。

气态形状体积一定体积一定形状没有固定形状一定体积没有固定形状没有一定体积。

二、物态变化。

情景3:再次观看影片《水的变化》。

问题1:物质存在的状态总保持不变吗?

问题2:在什么条件下,水发生了状态的改变?

引出:在一定条件下,物质状态可以发生变化。“温度变化”就是一种很常见的条件。

三、用微观模型解释物态特征及物态变化的原因。

设问:为什么同种物质会有不同的状态呢?

情景4:观看图片“物质的微观模型”。

四、练习。

布置作业:

p41~2。

练习册本节练习。

初二数学第一章教案篇十二

教学内容和地位:

众数、中位数是描述一组数据的集中趋势的两个统计特征量,是帮助学生学会用数据说话的基本概念。本节课的教学内容和现实生活密切相关,是培养学生应用数学意识和创新能力的最好素材。

教学重点和难点:

本节课的重点是众数和中位数两概念的形成过程及两概念的运用。本节课的难点是对统计数据从多角度进行全面地分析。因为利用数据进行分析,对刚刚接触统计的学生来说,他们原有的认知结构中缺乏这方面的知识经验,所以,我们可以借助生活中的事例,利用丰富多彩的多媒体辅助,帮助学生突破这一知识难点。

教学目标分析:

认知目标:

(1)使学生认知众数、中位数的意义;。

(2)会求一组数据的众数、中位数。

能力目标:

(1)让学生接触并解决一些社会生活中的问题,为学生创新学数学、用数学的情境,培养学生的数学应用意识和创新意识。

(2)在问题解决的过程中,培养学生的自主学习能力;。

(3)在问题分析的过程中,培养学生的团结协作精神。

情感目标:

(2)在合作学习中,学会交流,相互评价,提高学生的合作意识与能力。

教学辅助:网络教室、多媒体辅助网络教学课件、bbs电子公告栏、学习资源库。

教法与学法:

根据本节课的教学内容,主要采用了讨论发现法。即课堂上,教师(或学生)提出适当的问题,通过学生与学生(或教师)之间相互交流,相互学习,相互讨论,在问题解决的过程中发现概念的产生过程,体现“数学教学是数学思维活动的过程的教学”。在教学活动中,通过学生的自主学习来体现他们的主体地位,而教师是通过对学生参与学习的启发、调整、激励来体现自己的主导作用。另外,在学生合作学习的同时,始终坚持对学生进行“学疑结合”、“学思结合”、“学用结合”的学法指导,这对学生的主体意识的培养和创新能力的培养都有积极的意义。

初二数学第一章教案篇十三

分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程。

在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根。

把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的`值为零的未知数的值可能是原方程的增根。

列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序。

初二数学第一章教案篇十四

1、通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性。

2、能判断给出的数是否为有理数;并能说出现由。

过程与方法。

情感与价值观。

1、激励学生积极参与教学活动,提高大家学习数学的热情、

2、引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神。

3、了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神。

教学重点。

1、让学生经历无理数发现的过程、感知生活中确实存在着不同于有理数的数、

2、会判断一个数是否为有理数、

教学难点。

1、把两个边长为1的正方形拼成一个大正方形的动手操作过程、

教学方法。

教师引导,主要由学生分组讨论得出结果、

教学过程。

一、创设问题情境,引入新课。

[师]同学们,我们学过不计其数的`数,概括起来我们都学过哪些数呢?

[生]在小学我们学过自然数、小数、分数。

[生]在初一我们还学过负数、

二、讲授新课。

1、问题的提出。

[生]好、(学生非常高兴地投入活动中)。

[师]经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下。

同学们非常踊跃地呈现自己的作品给老师。

[师]现在我们一齐把大家的做法总结一下。

2、下列说法中正确的是()。

a、不循环小数是无理数。

c、有理数都是有限小数。

d、3、1415926是有理数。

3、下列语句正确的是()。

a、3、78788788878888是无理数。

b、无理数分正无理数、零、负无理数。

c、无限小数不能化成分数。

d、无限不循环小数是无理数。

1、在棱长为4cm的正方体箱子中,想放入一根细长的玻璃棒,则这根玻璃棒的最大长度可能是多少?(结果保留3位有效数字)。

2、下图是由16个边长为1的小正方形拼成的,任意连接这些小正方形的若干个顶点,可得到一些线段,试分别画出一条长度是有理数的线段和一条长度是无理数的线段、(要求:所作线段不得与图中已有的线重合)。

初二数学第一章教案篇十五

教学目标:

1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。

2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。

3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。

4、能利和计算器求一组数据的算术平均数。

教学重点:

体会平均数、中位数、众数在具体情境中的意义和应用。

教学难点:

对于平均数、中位数、众数在不同情境中的应用。

教学过程:

一、知识回顾与思考。

1、平均数、中位数、众数的概念及举例。

一般地对于n个数x1……xn把(x1+x2+…xn)叫做这n个数的.算术平均数,简称平均数。

如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的权。

中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。

众数就是一组数据中出现次数最多的那个数据。

如3,2,3,5,3,4中3是众数。

2、平均数、中位数和众数的特征:

(1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。

(2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。

(3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。

(4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。

3、算术平均数和加权平均数有什么区别和联系:

算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。

4、利用计算器求一组数据的平均数。

利用科学计算器求平均数的方法计算平均数。

二、例题讲解:

三、课堂练习:

复习题a组。

四、小结:

1、掌握平均数、中位数与众数的概念及计算。

2、理解算术平均数与加权平均数的联系与区别。

五、作业:

复习题b组、c组(选做)。

【本文地址:http://www.xuefen.com.cn/zuowen/12695795.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档