最新八年级数学教案沪科版(模板15篇)

格式:DOC 上传日期:2023-11-17 09:01:18
最新八年级数学教案沪科版(模板15篇)
时间:2023-11-17 09:01:18     小编:文锋

教案要注重教学的灵活性和变通性,适应不同学生的学习需求和发展水平。要写一份较为完美的教案,首先需要对教材内容进行充分的研究和理解。以下是小编为大家收集的教案范例,供大家参考。

八年级数学教案沪科版篇一

教学目标:

1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。

2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。

3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。

重点与难点:

重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。

难点:分析典型图案的设计意图。

疑点:在设计的图案中清晰地表现自己的设计意图。

教具学具准备:

提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。

教学过程设计:

1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)。

明确在欣赏了图案后,简单地复习旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。

2、课本。

1欣赏课本75页图3—24的图案,并分析这个图案形成过程。

评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。

评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。

(二)课内练习。

(1)以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。

(2)利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。

(三)议一议。

生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。

(四)课时小结。

本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。

通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)。

进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。

八年级数学教案沪科版篇二

2、范例讲解。

(学生尝试练习后,教师讲评)。

例1:解方程例2:解方程例3:解方程讲评时强调:

1、怎样确定最简公分母?(先将各分母因式分解)。

2、解分式方程的步骤、

巩固练习:p1471t,2t、

课堂小结:解分式方程的一般步骤。

布置作业:见作业本。

八年级数学教案沪科版篇三

《正方形》这节课是九年义务教育人教版数学教材八年级下册第十九章第二节的内容。纵观整个初中教材,《正方形》是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察、操作等活动经验的基础上出现的。既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。

本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形、矩形、菱形之间的内在联系。根据大纲要求,本节课制定了知识、能力、情感三方面的目标。

(一)知识目标:

1、要求学生掌握正方形的概念及性质;

2、能正确运用正方形的性质进行简单的计算、推理、论证;

(二)能力目标:

1、通过本节课培养学生观察、动手、探究、分析、归纳、总结等能力;

2、发展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法;

(三)情感目标:

1、让学生树立科学、严谨、理论联系实际的良好学风;

2、培养学生互相帮助、团结协作、相互讨论的团队精神;

3、通过正方形图形的完美性,培养学生品格的完美性。

该段学生具有一定的独立思考和探究的能力,但语言表达能力方面稍有欠缺,所以在本节课的教学过程中,特意设计了让学生自己组织语言培养说理能力,让学生们能逐步提高。

针对本节课的特点,采用"实践--观察--总结归纳--运用"为主线的教学方法。

通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念。通过观察、讨论、归纳、总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过一道拔高题对定义、性质理解、巩固加以升华。

本节课重点是从培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手、观察、思考、分析、总结得出结论。在小组讨论中通过互相学习,让学生体验合作学习的乐趣。

第一环节:相关知识回顾。

以提问的形式复习平行四边形、矩形、菱形的定义及性质之后,引导学生发现矩形、菱形的实质是由平行四边形角度、边长的变化得到的。并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形?让学生们通过手上的学具演示以上两种变化,从而得出结论。

第二环节:新课讲解通过学生们的发现引出课题“正方形”

1、正方形的定义:引导学生说出自己变化出正方形的过程,并再次利用课件形象演示出由平行四边形的边、角的变化演变出正方形的过程。请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形。再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的另两个定义:一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形。此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质。

2、正方形的性质定理1:正方形的四个角都是直角,四条边都相等;

定理2:正方形的两条对角线相等,并且互相垂直、平分,每条对角线平分一组对角。

以上是对正方形定义和性质的学习,之后是进行例题讲解。

4、课堂练习:第一部分采用三道有关正方形的周长、面积、对角线、边长计算的填空题,目的是对正方形性质的进一步理解,并考察学生掌握的情况。

第二部分是选择题,通过体现生活中实际问题,来提升学生所学的知识,并加以综合练习,提高他们的综合素质,使他们充分认识到数学实质是来源于生活并要服务于生活。

5、课堂小结:此环节我是通过图框的形式小结正方形和前阶段所学特殊四边形之间的内在联系,通过对所学几种四边形内在联系体现正方形完美的本质,渲染学生们应追求象正方形一样方正的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美。

6、作业设计:作业是教材159页,第12、14两小道证明题,通过此作业让同学们进一步巩固有关正方形的知识。

八年级数学教案沪科版篇四

1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.

2、会求一组数据的极差.

1、重点:会求一组数据的极差.

2、难点:本节课内容较容易接受,不存在难点、

从表中你能得到哪些信息?

比较两段时间气温的高低,求平均气温是一种常用的方法、

这是不是说,两个时段的气温情况没有什么差异呢?

根据两段时间的气温情况可绘成的折线图、

观察一下,它们有区别吗?说说你观察得到的结果、

本节课在教材中没有相应的例题,教材p152习题分析。

问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大、问题2涉及前一个学期统计知识首先应回忆复习已学知识、问题3答案并不唯一,合理即可。

八年级数学教案沪科版篇五

调查中,所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。

例如,某班10名女生的考试成绩是总体,每一名女生的考试成绩是个体。

从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。

例如,要调查全县农村中学生学生平均每周每人的零花钱数,由于人数较多(一般涉及几万人),我们从中抽取500名学生进行调查,就是抽样调查,这500名学生平均每周每人的零花钱数,就是总体的一个样本。

将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数。

一组数据中出现次数最多的数据就是这组数据的众数。

例如:求一组数据3,2,3,5,3,1的众数。

解:这组数据中3出现3次,2,5,1均出现1次。所以3是这组数据的众数。

又如:求一组数据2,3,5,2,3,6的众数。

解:这组数据中2出现2次,3出现2次,5,6各出现1次。

所以这组数据的众数是2和3。

【规律方法小结】。

(1)平均数、中位数、众数都是描述一组数据集中趋势的量。

(2)平均数反映一组数据的平均水平,与这组数据中的每个数据都有关,是最为重要的量。

(3)中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用它来描述集中趋势。

(4)众数只与数据出现的频数有关,不受个别数据影响,有时是我们最为关心的统计数据。

探究交流。

1、一组数据的中位数一定是这组数据中的一个,这句话对吗?为什么?

解析:不对,一组数据的中位数不一定是这组数据中的一个,当这组数据有偶数个时,中位数由中间两个数的平均数决定,若中间两数相等,则这组数据的中位数在这组数据之中,反之,中位数不在这组数据之中。

总结:

(1)中位数在一组数据中是唯一的,可能是这组数据中的一个,也可能不是这组数据中的数据。

(2)求中位数时,先将数据按由小到大的顺序排列(或按由大到小的顺序排列)。若这组数据是奇数个,则最中间的数据是中位数;若这组数据是偶数个,则最中间的两个数据的平均数是中位数。

(3)中位数的单位与数据的单位相同。

(4)中位数与数据排序有关。当一组数据中的个别数据变动较大时,可用中位数来描述这组数据的集中趋势。

课堂检测。

基本概念题。

1、填空题。

(1)数据15,23,17,18,22的平均数是;

(4)为了考察某公园一年中每天进园的人数,在其中的30天里,对进园的人数进行了统计,这个问题中的总体是________,样本是________,个体是________。

基础知识应用题。

2、某公交线路总站设在一居民小区附近,为了了解高峰时段从总站乘车出行的人数,随机抽查了10个班次的乘车人数,结果如下:20,23,26,25,29,28,30,25,21,23。

(1)计算这10个班次乘车人数的平均数;

(2)如果在高峰时段从总站共发车60个班次,根据前面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少。

八年级数学教案沪科版篇六

1、掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用。

2、使学生理解判定定理与性质定理的区别与联系。

3、会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理。

1、通过“探索式试明法”开拓学生思路,发展学生思维能力。

2、通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力。

通过一题多解激发学生的学习兴趣。

通过学习,体会几何证明的方法美。

构造逆命题,分析探索证明,启发讲解。

1、教学重点:平行四边形的判定定理1、2、3的应用。

2、教学难点:综合应用判定定理和性质定理。

(强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理)。

八年级数学教案沪科版篇七

本节内容的重点是线段垂直平分线定理及其逆定理.定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.

本节内容的难点是定理及逆定理的关系.垂直平分线定理和其逆定理,题设与结论正好相反.学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.

本节课教学模式主要采用“学生主体性学习”的教学模式.提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳.教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人.具体说明如下:

学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点p,它到线段两端的距离有何关系?学生会很容易得出“相等”.然后学生完成证明,找一名学生的证明过程,进行投影总结.最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理.这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.

线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.

八年级数学教案沪科版篇八

1、了解方差的定义和计算公式。

2、理解方差概念产生和形成过程。

3、会用方差计算公式比较两组数据波动大小。

重点:掌握方差产生的必要性和应用方差公式解决实际问题。

难点:理解方差公式。

(一)知识详解:

方差:设有n个数据,各数据与它们的平均数的差的平方分别为。

用它们的平均数表示这组数据的方差,即。

给力小贴士:方差越小说明这组数据越稳定,波动性越低。

(二)自主检测小练习:

1、已知一组数据为2.0、-1.3、-4,则这组数据的方差为。

2、甲、乙两组数据如下:

甲组:1091181213107;

乙组:7891011121112。

分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小。

引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下(单位:cm):

甲:9.10.10.13.7.13.10.8.11.8;

乙:8.13.12.11.10.12.7.7.10.10;

问:(1)哪种农作物的苗长较高(可以计算它们的平均数:=)?

(2)哪种农作物的苗长较整齐?(可以计算它们的极差,你可以发现)。

归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别为。

用它们的平均数表示这组数据的方差,即用来表示。

(一)例题讲解:

金志强1013161412。

提示:先求平均数,然后使用公式计算方差。

(二)小试身手。

1、甲、乙两名学生在相同条件下各射击靶10次,命中的环数如下:

甲:7.8.6.8.6.5.9.10.7.4。

乙:9.5.7.8.7.6.8.6.7.7。

经过计算,两人射击环数的平均数是,但s=,s=,则ss,所以确定去参加比赛。

1、求下列数据的众数:

(1)3.2.5.3.1.2.3(2)5.2.1.5.3.5.2.2。

方差公式:

提示:方差越小,说明这组数据越集中。波动性越小。

每课一首诗:求方差,有公式;先平均,再求差;求平方,再平均;所得数,是方差。

1、小爽和小兵在10次百米跑步练习中的成绩如下表所示:(单位:秒)。

如果根据这些成绩选拔一人参加比赛,你会选谁呢?

必做题:教材141页练习1.2;选做题:练习册对应部分习题。

写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!

八年级数学教案沪科版篇九

1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

算术平方根的概念。

根据算术平方根的概念正确求出非负数的算术平方根。

这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.

1、提出问题:(书p68页的问题)

你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

这个问题相当于在等式扩=25中求出正数x的值.

一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作根号a,a叫做被开方数.规定:0的算术平方根是0.

也就是,在等式=a (x0)中,规定x = .

2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来.

3、想一想:下列式子表示什么意思?你能求出它们的值吗?

建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如表示25的算术平方根。

4、例1求下列各数的算术平方根:

(1)100;(2)1;(3) ;(4)0.0001

p69练习1、2

怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

方法1:课本中的方法,略;

方法2:

可还有其他方法,鼓励学生探究。

问题:这个大正方形的边长应该是多少呢?

大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

建议学生观察图形感受的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.

1、这节课学习了什么呢?

2、算术平方根的具体意义是怎么样的?

3、怎样求一个正数的算术平方根

p75习题13.1活动第1、2、3题

八年级数学教案沪科版篇十

2、使学生掌握用平方差公式分解因式。

重点:掌握运用平方差公式分解因式。

难点:将单项式化为平方形式,再用平方差公式分解因式。

学习方法:归纳、概括、总结。

创设问题情境,引入新课。

在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。

如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的`一种因式分解的方法——公式法。

1、请看乘法公式。

利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。

a2—b2=(a+b)(a—b)。

2、公式讲解。

如x2—16。

=(x)2—42。

=(x+4)(x—4)。

9m2—4n2。

=(3m)2—(2n)2。

=(3m+2n)(3m—2n)。

例1、把下列各式分解因式:

(1)25—16x2;(2)9a2—b2。

例2、把下列各式分解因式:

(1)9(m+n)2—(m—n)2;(2)2x3—8x。

补充例题:判断下列分解因式是否正确。

(1)(a+b)2—c2=a2+2ab+b2—c2。

(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

教科书练习。

1、教科书习题。

2、分解因式:x4—16x3—4x4x2—(y—z)2。

3、若x2—y2=30,x—y=—5求x+y。

八年级数学教案沪科版篇十一

正比例函数的概念。

2、内容解析。

一次函数是最基本的初等函数,是初中函数学习的重要内容,正比例函数是特殊的一次函数,也是初中学生接触到的第一种函数,要通过对正比例函数内容的学习,为后续类比学习一般一次函数打好基础,了解研究函数的基本套路和方法,积累研究一般一次函数乃至其他各种函数的基本经验。

对正比例函数概念的学习,既要借助具体的函数进一步加深对函数概念的理解,即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应,这是理解正比例函数的核心;也要加强对正比例函数基本特征的认识,即根据实际问题构建的函数模型中,函数和自变量每一对对应值的比值是一定的,等于比例系数,反映在函数解析式上,这些函数都是常数与自变量的积的形式,这是正比例函数的基本特征。

本节课主要是通过对生活中大量实际问题的分析,写出变量间的函数关系式,观察比较概括出这些函数关系式具有的共同特征,根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念,再用正比例函数的概念对具体函数进行辨析,对实际事例进行分析,根据已知条件写出正比例函数的解析式。

基于以上分析,确定本节课的教学重点:正比例函数的概念。

1、目标。

(1)经历正比例函数概念的形成过程,理解正比例函数的概念;

(2)能根据已知条件确定正比例函数的解析式,体会函数建模思想。

2、目标解析。

达成目标(1)的标志是:通过对实际问题的分析,知道自变量和对应函数成正比例的特征,能概括抽象出正比例函数的概念。

达成目标(2)的标志是:能根据实际问题中的已知条件确定变量间的正比例函数关系式,将实际问题抽象为函数模型,体会函数建模思想。

正比例函数是是初中学生接触到的第一种初等函数,由于函数概念比较抽象,学生对函数基本概念理解未必深刻,在对实际问题进行分析过程中,需进一步强化对函数概念的理解:即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的`每一个确定的值,另一个变量都有唯一确定的值与之对应;对正比例函数概念的理解关键是对正比例函数基本特征的认识,要通过大量实例分析,写出变量间的函数关系式,观察比较发现这些函数具有的共同特征,即函数与自变量的每一对对应值的比值一定,都等于自变量前的常数,这些函数都是常数与自变量的积的形式,再根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念。对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程学生有一定难度。

因此本节课的教学难点是:对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程。

八年级数学教案沪科版篇十二

1、通过色散实验,知道白光是由红、橙、黄、绿、蓝、靛、紫七种色光组成的。用实验让学生体验色光的混合和颜料混合是不同的。

2、能用色光的混合和颜料的混合知识简单解释五光十色的世界,使学生对探索自然充满兴趣。

1、重点。

(1)光的色散及色光的复合。

(2)引导学生观察自然现象,并使学生了解通过实验探究自然现象的基本方法。

2、难点。

光的色散及色光的复合实验。

实验法、观察法、科学探究法。

演示实验:水槽、平面镜、光碟、两个相同的三棱镜、投影仪、铁架台、光屏。

学生实验:三只聚光灯、红、绿、蓝三种颜色的透明胶片、光屏、放大镜、颜料盒、调色板。

一、课题引入。

师:欣赏一幅美术作品,用什么灯光照明最合适?

生甲:用柔合的灯光最合适。

生乙:用柔合的白色灯光最合适。

师:对,用柔合的白光最合适。你知道吗?一朵红色的月季花在阳光下十分鲜艳可爱,可是当它受到蓝光照射时就失去了光彩。所以欣赏一幅美术作品,用柔和的白光最合适,这节课我们就来研究白光的色散现象。

二、新课教学。

导入。

生:看到了白色的太阳光变成彩色的了。

师:将光碟放在阳光或日光灯下,你们又看到了什么现象?

生甲:从第一个三棱镜射出的光不是白光,是七种颜色的光,分别叫红、橙、黄、绿、蓝、靛、紫。

生乙:七色光从第二个三棱镜射出后又变成一束白光。

师:白光分解成七种颜色光的现象叫光的色散,七种颜色的光汇合后变成一条白色光带,叫色光的复合。

板书:第四节光的色散。

1、光的色散。

生:夏天雨后的天空中看到过彩虹。

是红色。如图4、4—24所示。

2、色光的混合。

学生探究实验:4个人一组在聚光灯前蒙一块有颜色(红色、黄色或蓝色)的透明胶片,再将其发出的光投射出白色屏幕上,形成有部分光交汇。如课本p6l图4—35。让学生观察。

师:你们观察到什么现象?

生甲:透明物体的颜色与透过的光的颜色相同。

生乙:不同颜色的光能混合成另一种颜色的光。

生丙:红、绿、蓝三种颜色的光混合在一起,可以得到白光。

生:看到了彩色扇面。

师:可能有的同学课前没有做以上两个实验,请课后留下来补做。

演示实验:取两个三棱镜,一个带狭缝的挡光板和一个白色光屏,按图4—32,4—33所示操作。

绕自身的轴线微微转动,就可以在光屏上得到彩色的光谱带。光屏与棱镜的.距离调节在0、5m左右为宜,这样得到的彩色光谱带清晰。

做七色光的混合实验时,两块棱镜的相对的边要平行。光屏距棱镜的距离约1m,这样才能观察到混合后的白光。

实验光源也可以是日光灯、功率较大的白炽灯等。

也可利用投影仪来做以上实验。

如图4、4—2所示,用一块开有窄缝的硬纸板放在投影仪面板上,调节投影仪的镜头,从平面镜中反射的光束与水平面夹角约60度左右为宜,在竖直屏幕上得到一条清晰的狭窄的白光带。把三棱镜固定在铁架台上,使三棱镜可绕轴转动。

实验时,开启投影仪,调节三棱镜高度并转动三棱镜,可观察到屏幕上白色光带被分解成红、橙、黄、绿、蓝、靛、紫的七色光带现象。

将另一个三棱镜也安装到铁架台上,位置如图4、4—3所示,适当调节后,可观察到七色光带又汇合成一条狭窄的白色光带。

师:实验研究表明,自然界中红、绿、蓝三种颜色的光是无法用其他颜色的光混合而成的,而其他颜色的光则都可以通过红、绿、蓝的适当混合而得到的,因此,红、绿、蓝三种颜色被称为光的“三基色”。

彩色电视机的荧光屏和计算机显示器的屏幕上艳丽的画面是由红、绿、蓝:三色光合成的。

板书:2、光的三基色。

生:探究、交流。

师:各种颜色的颜料的混合能否调出红、黄、蓝?

生:调不出。

师:红、黄、蓝被称为颜料的“三原色”

板书:3、颜料三原色。

师:你们将这三种颜色调在一起,试试会调出什么颜色?

生:黑色。

师:光的三基色是红、绿、蓝混合在一起,会产生白光,颜料的三原色调在一起会变成黑色。

生:看到暖色我会联想到太阳、火等,看到冷色我会联想到草地、水等。

师:冷暖色的对比与协调,能产生美妙、生动的色感。

三、归纳与学习过程评估。

师:本节课我们学到了什么?

生:讨论、交流后得出,通过本节课的学习,我们知道了白光可以分解为红、橙、黄、绿、蓝、靛、紫七种颜色,这叫光的色散。自然界中的彩虹就是光的色散现象。七种颜色的光混合在一起,又会变为白色,这叫光的复合,光的三基色是红、绿、蓝颜料的三原色是红、黄、蓝。

师:每位同学都对自己在本节课的学习情况进行评估。

教师简要地对本节课全班同学学习情况进行评估。

四、课后练习。

1、课本p63,作业1、2。

2、选用课时作业设计。

五、板书设计。

第四节光的色散。

1、光的色散:太阳光(白光)可分解成红、橙、黄、绿、蓝、靛、紫七种颜色的光。

2、光的三基点:红、绿、蓝。

3、颜料的三原色:红、黄、蓝。

六、课后反思。

八年级数学教案沪科版篇十三

教学目标:

1、知道一次函数与正比例函数的意义.

2、能写出实际问题中正比例关系与一次函数关系的解析式.

3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.

4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力.

教学重点:对于一次函数与正比例函数概念的理解.

教学难点:根据具体条件求一次函数与正比例函数的解析式.

教学方法:结构教学法、以学生“再创造”为主的教学方法。

教学过程:

1、复习旧课。

前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三。

2、引入新课。

就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是一次函数.顾名思义,谁能根据一次函数这个名字,类比一元一次方程、一元一次不等式的概念能举出一些一次函数的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了.教师将学生的正确的例子写在黑板上)。

这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果.)不难看出函数都是用自变量的一次式表示的,可以写成()的形式.一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的一次函数.特别地,当b=0时,一次函数就成为(是常数,)。

3、例题讲解。

例1、某油管因地震破裂,导致每分钟漏出原油30公升。

(1)如果x分钟共漏出y公升,写出y与x之间的函数关系式。

(2)破裂3.5小時后,共漏出原油多少公升。

分析:y与x成正比例。

解:(1)(2)(升)。

例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的cd随身听(价值1680元)。

(1)列出小丸子的银行存款(不计利息)y与月数x的函数关系式;。

(2)多长时间以后,小丸子的银行存款才能买随身听?

分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱。

例3、已知函数是正比例函数,求的值。

分析:本题考察的是正比例函数的概念。

解:

4、小结。

由学生对本节课知识进行总结,教师板书即可.

5、布置作业。

书面作业:1、书后习题2、自己写出一个实际中的一次函数的例子并进行讨论。

八年级数学教案沪科版篇十四

在推理判断中得出同底数幂乘法的运算法则,并掌握“法则”的应用.2.过程与方法。

在小组合作交流中,培养协作精神、探究精神,增强学习信心.重、难点与关键。

1.重点:同底数幂乘法运算性质的推导和应用.2.难点:同底数幂的乘法的法则的应用.

一、创设情境,故事引入【情境导入】。

力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.

八年级数学教案沪科版篇十五

了解眼睛的构造,知道眼睛是怎样看见物体的。

了解眼镜是怎样矫正视力的。

2、情感、态度、价值观。

使学生具有眼保健意识。

有将科学技术应用于日常生活的意识。

重、难点:眼镜怎样矫正视力。

教学器材:近视眼镜、远视眼镜。

教学课时:1课时。

教学过程:

一、前提测评:

1、完成光路图:

空气。

ff。

二、导学达标:

引入课题:眼睛是如何看见物体的?为什么有的人会近视?

进行新课:

1、眼睛:

(1)、眼睛的结构:图3.4-1示。

各部分的作用……晶状体:

睫状体:

视网膜:

(2)、眼睛如何看到物体:课本p63示。

总结:眼睛实际上是一个可以改变透镜焦距(厚度)的高档照相机。

2、近视眼与远视眼的产生原因:

(1)、近视眼:晶状体太厚,折光能力太强。

眼球前后方向太长光线会聚在视网膜的前面。

(2)、远视眼:晶状体太薄,折光能力差。

眼球前后方向太短光线会聚在视网膜的后面。

探究:如何调整?

3、眼镜:(1)、近视眼镜:让光线发散……凹透镜。

(2)、远视眼镜:让光线会聚……凸透镜。

4、眼镜的度数:度数越大,折光能力越强。

远视眼镜(凸透镜)……正数。

近视眼镜(凹透镜)……负数。

达标练习:完成物理套餐中的本节内容。

小结:根据板书,总结本节内容,明确重、难点。

课后活动:完成课本练习。

教学后记:实物眼睛……凸透镜比较。

总结规律:眼睛是可调的凸透镜。

可以播放动画说明近视眼、远视眼及调整方法。

【本文地址:http://www.xuefen.com.cn/zuowen/12682324.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档