高三数学教案案例(模板18篇)

格式:DOC 上传日期:2023-11-17 08:23:11
高三数学教案案例(模板18篇)
时间:2023-11-17 08:23:11     小编:影墨

教案的编制需要紧密结合课程标准和教材内容,突出重点、难点和关键问题的教学设计。教案的编写需要细化教学目标和具体步骤,合理设计教学内容和任务,确保教学过程的连贯性和系统性。教案的编写不是一成不变的,应当根据学科发展和教学需要不断更新和改进。

高三数学教案案例篇一

数学教学是数学活动的教学,是师生交往、互动、共同发展的过程。有效的数学教学应当从学生的生活经验和已有的知识水平出发,向他们提供充分地从事数学活动的机会,在活动中激发学生的学习潜能,促使学生在自主探索与合作交流的过程中真正理解和掌握基本的数学知识、技能和思想方法。提高解决问题的能力,并进一步使学生在意志力、自信心、理性精神等情感、态度方面都得到良好的发展。

二.对教学内容的认识。

1.教材的地位和作用。

本节课是在学生学习过“一百万有多大”之后,继续研究日常生活中所存在的较小的数,进一步发展学生的数感,并在学完负整数指数幂的运算性质的基础上,尝试用科学记数法来表示百万分之一等较小的数。学生具备良好的数感,不仅对于其正确理解数据所要表达的信息具有重要意义,而且对于发展学生的统计观念也具有重要的价值。

2.教材处理。

基于设计理念,我在尊重教材的基础上,适时添加了“银河系的直径”这一问题,以向学生渗透辩证的研究问题的思想方法,帮助学生正确认识百万分之一。

通过本节课的教学,我力争达到以下教学目标:

3.教学目标。

(1)知识技能:

借助自身熟悉的事物,从不同角度来感受百万分之一,发展学生的数感。能运用科学记数法来表示百万分之一等较小的数。

(2)数学思考:

通过对较小的数的问题的学习,寻求科学的记数方法。

(3)解决问题:

能解决与科学记数有关的实际问题。

(4)情感、态度、价值观:

使学生体会科学记数法的科学性和辩证的研究问题的思想方法。培养学生的合作交流意识与探究精神。

4.教学重点与难点。

根据教学目标,我确定本节课的重点、难点如下:

重点:对较小数据的信息做合理的解释和推断,会用科学记数法来表示绝对值较小的数。

难点:感受较小的数,发展数感。

三.教法、学法与教学手段。

1.教法、学法:

本节课的教学对象是七年级的学生,这一年级的学生对于周围世界和社会环境中的实际问题具有越来越强烈的兴趣。他们对于日常生活中一些常见的数据都想尝试着来加以分析和说明,但又缺乏必要的感知较大数据或较小数据的方法及感知这些数据的活动经验。

因此根据本节课的教学目标、教学内容,及学生的认知特点,教学上以“问题情境——设疑诱导——引导发现——合作交流——形成结论和认识”为主线,采用“引导探究式”的教学方法。学生将主要采用“动手实践——自主探索——合作交流”的学习方法,使学生在直观情境的观察和自主的实践活动中获取知识,并通过合作交流来深化对知识的理解和认识。

2.教学手段:

1.采用现代化的教学手段——多媒体教学,能直观、生动地反映问题情境,充分调动学生学习的积极性。

2.以常见的生活物品为直观教具,丰富了学生感知认识对象的途径,使学生对百万分之一的认识更贴近生活。

四.教学过程。

(一).复习旧知,铺垫新知。

问题1:光的速度为300000km/s。

问题2:地球的半径约为6400km。

问题3:中国的人口约为1300000000人。

(十).教学设计说明。

本节课我以贴近学生生活的数据及问题背景为依托,使学生学会用数学的方法来认识百万分之一,丰富了学生对数学的认识,提高了学生应用数学的能力,并为培养学生的终身学习奠定了基础。在授课时相信会有一些预见不到的情况,我将在课堂上根据学生的实际情况做相应的处理。

高三数学教案案例篇二

【教学目标】:

(1)知识目标:

通过实例,了解简单的逻辑联结词“且”、“或”的含义;

(2)过程与方法目标:

(3)情感与能力目标:

在知识学习的基础上,培养学生简单推理的技能。

【教学重点】:

通过数学实例,了解逻辑联结词“或”、“且”的含义,使学生能正确地表述相关数学内容。

【教学难点】:

简洁、准确地表述“或”命题、“且”等命题,以及对新命题真假的判断。

【教学过程设计】:

教学环节教学活动设计意图。

情境引入问题:

下列三个命题间有什么关系?

(1)12能被3整除;

(2)12能被4整除;

知识建构归纳总结:

一般地,用逻辑联结词“且”把命题p和命题q联结起来,就得到一个新命题,

记作,读作“p且q”。

引导学生通过通过一些数学实例分析,概括出一般特征。

1、引导学生阅读教科书上的例1中每组命题p,q,让学生尝试写出命题,判断真假,纠正可能出现的逻辑错误。学习使用逻辑联结词“且”联结两个命题,根据“且”的含义判断逻辑联结词“且”联结成的新命题的真假。

2、引导学生阅读教科书上的例2中每个命题,让学生尝试改写命题,判断真假,纠正可能出现的逻辑错误。

归纳总结:

当p,q都是真命题时,是真命题,当p,q两个命题中有一个是假命题时,是假命题,

学习使用逻辑联结词“且”改写一些命题,根据“且”的含义判断原先命题的真假。

引导学生通过通过一些数学实例分析命题p和命题q以及命题的真假性,概括出这三个命题的真假性之间的一般规律。

高三数学教案案例篇三

(3)掌握复数的模的定义及其几何意义;。

(4)通过学习,培养学生的数形结合的数学思想;。

(5)通过本节内容的学习,培养学生的观察能力、分析能力,帮助学生逐步形成科学的思维习惯和方法.

教学建议。

一、知识结构。

本节内容首先从物理中所遇到的一些矢量出发引出向量的概念,介绍了向量及其表示法、向量的模、向量的相等、零向量的概念,接着介绍了复数集与复平面内以原点为起点的向量集合之间的一一对应关系,指出了复数的模的定义及其计算公式.

二、重点、难点分析。

本节的重点是复数与复平面的向量的一一对应关系的理解;难点是复数模的概念.复数可以用向量表示,二者的对应关系为什么只能说复数集与以原点为起点的向量的集合一一对应关系,而不能说与复平面内的向量一一对应,对这一点的理解要加以重视.在复数向量的表示中,从复数集与复平面内的点以及以原点为起点的向量之间的一一对应关系是本节教学的难点.复数模的概念是一个难点,首先要理解复数的绝对值与实数绝对值定义的一致性质,其次要理解它的几何意义是表示向量的长度,也就是复平面上的点到原点的距离.

三、教学建议。

1.在学习新课之前一定要复习旧知识,包括实数的绝对值及几何意义,复数的有关概念、现行高中物理课本中的有关矢量知识等,特别是对于基础较差的学生,这一环节不可忽视.

如图所示,建立复平面以后,复数与复平面内的点形成—一对应关系,而点又与复平面的向量构成—一对应关系.因此,复数集与复平面的以为起点,以为终点的向量集形成—一对应关系.因此,我们常把复数说成点z或说成向量.点、向量是复数的另外两种表示形式,它们都是复数的几何表示.

相等的向量对应的是同一个复数,复平面内与向量相等的向量有无穷多个,所以复数集不能与复平面上所有的向量相成—一对应关系.复数集只能与复平面上以原点为起点的向量集合构成—一对应关系.

2.

这种对应关系的建立,为我们用解析几何方法解决复数问题,或用复数方法解决几何问题创造了条件.

3.向量的模,又叫向量的绝对值,也就是其有向线段的长度.它的计算公式是,当实部为零时,根据上面复数的模的公式与以前关于实数绝对值及算术平方根的规定一致.这些内容必须使学生在理解的基础上牢固地掌握.

4.讲解教材第182页上例2的第(1)小题建议.在讲解教材第182页上例2的第(1)小题时.如果结合提问的图形,可以帮助学生正确理解教材中的“圆”是指曲线而不是指圆面(曲线所包围的平面部分).对于倒2的第(2)小题的图形,画图时周界(两个同心圆)都应画成虚线.

5.讲解复数的模.讲复数的模的定义和计算公式时,要注意与向量的有关知识联系,结合复数与复平面内以原点为起点,以复数所对应的点为终点的向量之间的一一对应关系,使学生在理解的基础上记忆。向量的模,又叫做向量的绝对值,也就是有向线段oz的长度.它也叫做复数的模或绝对值.

高三数学教案案例篇四

一年级学生是一个特殊的群体,他们刚刚从受保护的幼儿园环境中脱离,正走向自我管理的小学生活中。他们面对全新的环境,老师,同学,心里总有局促不安。熟悉环境,心理调适显的尤为重要。因此老师要向学生介绍小学生活的基本习惯,减少学生对小学生活的陌生感。教学环节:

1.教师自我介绍,建立良好的师生关系。

首先,我在黑板上写一个“银”字,我让他们数出“银”有几画,我顺势告诉他们数数是数学常用的一种数学方法,数数要有顺序的数。每位学生从姓名,年龄,学前班所在地3个方面做自我介绍。目的是让大家大胆介绍自己,使大家尽快的熟悉。

2.向学生介绍听说读写走坐的基本学习习惯。

听:引导学生学会倾听。

说:清楚,完整的表达自己的想法。

坐:头正,身直,足平。走:上下楼梯和在走廊要靠右走。在引导学生在靠右走时,学生不知道该怎么走。在举起右手提示他们时,有的同学说:“个位手”,有的同学说:“十位手”。最后同学说出了右手。我对他们说:“个位和十位、认识左右就是我们要学习的内容。

3.介绍排队的基本要求。

让学生自觉从矮到高的顺序排队。我问几个同学你为什么站在他的后面,学生都回答我比他高。我顺势说出比较也是一种数学思想。

高三数学教案案例篇五

教学重点:理解等比数列的概念,认识等比数列是反映自然规律的重要数列模型之一,探索并掌握等比数列的通项公式。

教学难点:遇到具体问题时,抽象出数列的模型和数列的等比关系,并能用有关知识解决相应问题。

教学过程:

一.复习准备。

1.等差数列的通项公式。

2.等差数列的前n项和公式。

3.等差数列的性质。

二.讲授新课。

引入:1“一尺之棰,日取其半,万世不竭。”

2细胞分裂模型。

3计算机病毒的传播。

由学生通过类比,归纳,猜想,发现等比数列的特点。

进而让学生通过用递推公式描述等比数列。

让学生回忆用不完全归纳法得到等差数列的通项公式的过程然后类比等比数列的通项公式。

注意:1公比q是任意一个常数,不仅可以是正数也可以是负数。

2当首项等于0时,数列都是0。当公比为0时,数列也都是0。

所以首项和公比都不可以是0。

3当公比q=1时,数列是怎么样的,当公比q大于1,公比q小于1时数列是怎么样的?

4以及等比数列和指数函数的关系。

5是后一项比前一项。

列:1,2,(略)。

小结:等比数列的通项公式。

三.巩固练习:

1.教材p59练习1,2,3,题。

2.作业:p60习题1,4。

第二课时5.2.4等比数列(二)。

教学重点:等比数列的性质。

教学难点:等比数列的通项公式的应用。

一.复习准备:

提问:等差数列的通项公式。

等比数列的通项公式。

等差数列的性质。

二.讲授新课:

1.讨论:如果是等差列的三项满足。

那么如果是等比数列又会有什么性质呢?

由学生给出如果是等比数列满足。

2练习:如果等比数列=4,=16,=?(学生口答)。

如果等比数列=4,=16,=?(学生口答)。

3等比中项:如果等比数列.那么,

则叫做等比数列的等比中项(教师给出)。

4思考:是否成立呢?成立吗?

成立吗?

又学生找到其间的规律,并对比记忆如果等差列,

5思考:如果是两个等比数列,那么是等比数列吗?

如果是为什么?是等比数列吗?引导学生证明。

6思考:在等比数列里,如果成立吗?

如果是为什么?由学生给出证明过程。

三.巩固练习:

列3:一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项。

解(略)。

列4:略:

练习:1在等比数列,已知那么。

2p61a组8。

高三数学教案案例篇六

教学目标:

结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

教学重点:

掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

教学过程。

一、复习。

二、引入新课。

1.假言推理。

假言推理是以假言判断为前提的演绎推理。假言推理分为充分条件假言推理和必要条件假言推理两种。

(1)充分条件假言推理的基本原则是:小前提肯定大前提的前件,结论就肯定大前提的后件;小前提否定大前提的后件,结论就否定大前提的前件。

(2)必要条件假言推理的基本原则是:小前提肯定大前提的后件,结论就要肯定大前提的前件;小前提否定大前提的前件,结论就要否定大前提的后件。

2.三段论。

三段论是指由两个简单判断作前提和一个简单判断作结论组成的演绎推理。三段论中三个简单判断只包含三个不同的概念,每个概念都重复出现一次。这三个概念都有专门名称:结论中的宾词叫“大词”,结论中的主词叫“小词”,结论不出现的那个概念叫“中词”,在两个前提中,包含大词的叫“大前提”,包含小词的叫“小前提”。

3.关系推理指前提中至少有一个是关系判断的推理,它是根据关系的逻辑性质进行推演的。可分为纯关系推理和混合关系推理。纯关系推理就是前提和结论都是关系判断的推理,包括对称性关系推理、反对称性关系推理、传递性关系推理和反传递性关系推理。

(1)对称性关系推理是根据关系的对称性进行的推理。

(2)反对称性关系推理是根据关系的反对称性进行的推理。

(3)传递性关系推理是根据关系的传递性进行的推理。

(4)反传递性关系推理是根据关系的反传递性进行的推理。

4.完全归纳推理是这样一种归纳推理:根据对某类事物的全部个别对象的考察,已知它们都具有某种性质,由此得出结论说:该类事物都具有某种性质。

完全归纳推理的基本特点在于:前提中所考察的个别对象,必须是该类事物的全部个别对象。否则,只要其中有一个个别对象没有考察,这样的归纳推理就不能称做完全归纳推理。完全归纳推理的结论所断定的范围,并未超出前提所断定的范围。所以,结论是由前提必然得出的。应用完全归纳推理,只要遵循以下两点,那末结论就必然是真实的:(1)对于个别对象的断定都是真实的;(2)被断定的个别对象是该类的全部个别对象。

高三数学教案案例篇七

复习:

1、(课本p28a13)填空:

(1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是;

(2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是;

(3)5名工人要在3天中各自选择1天休息,不同方法的种数是;

探究新知(复习教材p14~p25,找出疑惑之处)。

问题1:判断下列问题哪个是排列问题,哪个是组合问题:

(1)从4个风景点中选出2个安排游览,有多少种不同的方法?

(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?

应用示例。

例2、7位同学站成一排,分别求出符合下列要求的不同排法的种数、

(1)甲站在中间;

(2)甲、乙必须相邻;

(3)甲在乙的左边(但不一定相邻);

(4)甲、乙必须相邻,且丙不能站在排头和排尾;

(5)甲、乙、丙相邻;

(6)甲、乙不相邻;

(7)甲、乙、丙两两不相邻。

反馈练习。

当堂检测。

1、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目、如果将这两个节目插入原节目单中,那么不同插法的种数为()。

a、42b、30c、20d、12。

课后作业。

高三数学教案案例篇八

1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。

2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。

3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。

二、识技能目标。

1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。

2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。

三、情感目标。

1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣。

2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。

教学重点难点:

1对数函数的定义、图象和性质。

2对数函数性质的初步应用。

教学工具:多媒体。

【学前准备】对照指数函数试研究对数函数的定义、图象和性质。

高三数学教案案例篇九

一、概述。

九年制义务教育九年级数学(北师大版)下册第三章第五节“直线和圆的位置关系”。本节是探索直线与圆的位置关系,课本通过操作、观察直线与圆的相对运动,提示直线与圆的三种位置关系,探索直线与的位置关系,和圆心到直线的距离与半径之间的大小关系的联系,并突出研究了圆的切线的性质和判定。在本节的设计中,充分体现了学生已有经验的作用,用运动的观点研究直线与圆的位置关系,使学生明确图形在运动变化中的特点和规律。

二、设计理念。

鼓励学生从事观察、测量、折叠、平移、旋转、推理证明等活动,帮助学生有意识地积累活动经验,获得成功的体验。教学中应鼓励学生动手、动口、动脑和交流,充分展示“观察、操作——猜想、探索——说理(有条理地表达)”的过程,使学生能在直观的基础上学习说理,体现合情推理和演绎推理的融合,促进学生形成科学地、能动地认识世界的良好品质。

(1)激发学生亲自探索直线和圆的位置关系。

(2)通过实践让学生理解直线与圆的三种位置关系——相交、相切、相离的含义。

(3)探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。

四、教学重点。

直线与圆的三种位置关系——相交、相切、相离。

从设置情景提出问题,到动手操作、交流,直至归纳得出结论,整个过程学生不仅得到了直线与圆的位置关系,更重要的是经历了知识过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学、应用数学。

五、教学难点。

探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。

高三数学教案案例篇十

教学目标:

1、知识与技能:

1)了解导数概念的实际背景;

2)理解导数的概念、掌握简单函数导数符号表示和基本导数求解方法;

3)理解导数的几何意义;

4)能进行简单的导数四则运算。

2、过程与方法:

先理解导数概念背景,培养观察问题的能力;再掌握定义和几何意义,培养转化问题的能力;最后求切线方程及运算,培养解决问题的能力。

3、情态及价值观;

让学生感受数学与生活之间的联系,体会数学的美,激发学生学习兴趣与主动性。

教学重点:

1、导数的求解方法和过程;

2、导数公式及运算法则的熟练运用。

教学难点:

1、导数概念及其几何意义的理解;

2、数形结合思想的灵活运用。

教学课型:复习课(高三一轮)。

教学课时:约1课时。

高三数学教案案例篇十一

引出数形结合思想方法,强调其含义和重要性,告诉学生,本节课将利用数形结合方法来研究,会使学习变得轻松有趣。

采用这样的引入方法,目的是打消学生对函数学习的畏难情绪,引起学生注意,也激起学生好奇和兴趣。

(二)新知探索主要环节,分为两个部分。

教学过程如下:

第一部分————师生共同研究得出正弦函数的性质。

1.定义域、值域2.周期性。

3.单调性(重难点内容)。

为了突出重点、克服难点,采用以下手段和方法:

(1)利用多媒体动态演示函数性质,充分体现数形结合的重要作用;。

(2)以层层深入,环环相扣的课堂提问,启发学生思维,反馈课堂信息,使问题成为探索新知的线索和动力,随着问题的解决,学生的积极性将被调动起来。

(3)单调区间的探索过程是:

先在靠近原点的一个单调周期内找出正弦函数的一个增区间,由此表示出所有的增区间,体现从特殊到一般的知识认识过程。

**教师结合图象帮助学生理解并强调“距离”(“长度”)是周期的多少倍。

为什么要这样强调呢?

因为这是对知识的一种意义建构,有助于以后理解记忆正弦型函数的相关性质。

4.对称性。

设计意图:

(1)因为奇偶性是特殊的对称性,掌握了对称性,容易得出奇偶性,所以着重讲清对称性。体现了从一般到特殊的知识再现过程。

(2)从正弦函数的对称性看到了数学的对称之美、和谐之美,体现了数学的审美功能。

5.最值点和零值点。

有了对称性的理解,容易得出此性质。

第二部分————学习任务转移给学生。

设计意图:

(3)通过课堂教学结构的改革,提高课堂教学效率,最终使学生成为独立的学习者,这也符合建构主义的教学原则。

(三)巩固练习。

补充和选作题体现了课堂要求的差异性。

(四)结课。

高三数学教案案例篇十二

(一)教法说明教法的确定基于如下考虑:

(1)心理学的研究表明:只有内化的东西才能充分外显,只有学生自己获取的知识,他才能灵活应用,所以要注重学生的自主探索。

(2)本节目的是让学生学会如何探索、理解正、余弦函数的性质。教师始终要注意的是引导学生探索,而不是自己探索、学生观看,所以教师要引导,而且只能引导不能代办,否则不但没有教给学习方法,而且会让学生产生依赖和倦怠。

(3)本节内容属于本源性知识,一般采用观察、实验、归纳、总结为主的方法,以培养学生自学能力。

所以,根据以人为本,以学定教的原则,我采取以问题为解决为中心、启发为主的教学方法,形成教师点拨引导、学生积极参与、师生共同探讨的课堂结构形式,营造一种民主和谐的课堂氛围。

(二)教学手段说明:

为完成本节课的教学目标,突出重点、克服难点,我采取了以下三个教学手段:

(1)精心设计课堂提问,整个课堂以问题为线索,带着问题探索新知,因为没有问题就没有发现。

(3)为节省课堂时间,制作幻灯片演示正、余弦函数图象和性质,也可以使教学更生动形象和连贯。

高三数学教案案例篇十三

我发现,许多学生的学习方法是:直接记住函数性质,在解题中套用结论,对结论的来源不理解,知其然不知其所以然,应用中不能变通和迁移。

本节的学习方法对后续内容的学习具有指导意义。为了培养学法,充分关注学生的可持续发展,教师要转换角色,站在初学者的位置上,和学生共同探索新知,共同体验数形结合的研究方法,体验周期函数的研究思路;帮助学生实现知识的意义建构,帮助学生发现和总结学习方法,使教师成为学生学习的高级合作伙伴。

教师要做到:

授之以渔,与之合作而渔,使学生享受渔之乐趣。因此。

1.本节要教给学生看图象、找规律、思考提问、交流协作、探索归纳的学习方法。

2.通过本课的探索过程,培养学生观察、分析、交流、合作、类比、归纳的学习能力及数形结合(看图说话)的意识和能力。

高三数学教案案例篇十四

函数是中学数学的重要内容,中学数学对函数的研究大致分成了三个阶段。

三角函数是最具代表性的一种基本初等函数。4.8节是第二章《函数》学习的延伸,也是第四章《三角函数》的核心内容,是在前面已经学习过正、余弦函数的图象、三角函数的有关概念和公式基础上进行的,其知识和方法将为后续内容的学习打下基础,有承上启下的作用。

本节课是数形结合思想方法的良好素材。数形结合是数学研究中的重要思想方法和解题方法。

本节通过对数形结合的进一步认识,可以改进学习方法,增强学习数学的自信心和兴趣。另外,三角函数的曲线性质也体现了数学的对称之美、和谐之美。

因此,本节课在教材中的知识作用和思想地位是相当重要的。

(二)课时安排。

4.8节教材安排为4课时,我计划用5课时。

(三)目标和重、难点。

1.教学目标。

教学目标的确定,考虑了以下几点:

(2)本班学生对数学科特别是函数内容的学习有畏难情绪,所以在内容上要降低深难度。

(3)学会方法比获得知识更重要,本节课着眼于新知识的探索过程与方法,巩固应用主要放在后面的三节课进行。

由此,我确定了以下三个层面的教学目标:

(3)情感层面:通过运用数形结合思想方法,让学生体会(数学)问题从抽象到形象的转化过程,体会数学之美,从而激发学习数学的信心和兴趣。

2.重、难点。

由以上教学目标可知,本节重点是师生共同探索,正、余函数的性质,在探索中体会数形结合思想方法。

难点是:函数周期定义、正弦函数的单调区间和对称性的理解。

为什么这样确定呢?

因为周期概念是学生第一次接触,理解上易错;单调区间从图上容易看出,但用一个区间形式表示出来,学生感到困难。

如何克服难点呢?

其一,抓住周期函数定义中的关键字眼,举反例说明;。

高三数学教案案例篇十五

1.针对本班学生情况对课本进行了适当改编、细化,有利于难点克服和学生主体性的调动。

2.根据课堂上师生的双边活动,作出适时调整、补充(反馈评价);根据学生课后作业、提问等情况,反复修改并指导下节课的设计(反复评价)。

3.本节课充分体现了面向全体学生、以问题解决为中心、注重知识的建构过程与方法、重视学生思想与情感的'设计理念,积极地探索和实践我校的科研课题——努力推进课堂教学结构改革。

通过这样的探索过程,相信学生能从中有所体会,对后续内容的学习和学生的可持续发展会有一定的帮助。希望很久以后留在学生记忆中的不是知识本身,而是方法与思想,是学习的习惯和热情,这正是我们教育工作者追求的结果。

高三数学教案案例篇十六

(一)引入:。

(1)情景1。

2元/千克,而送到县城每千克大豆可获利1.2元,每千克红薯可获利0.6元,王老汉决定明天就带上家中仅有的1000元现金,踏着可载重350千克的三轮车开始自己的发财大计,可明天应该收购多少大豆与红薯呢?王老汉决定与家人合计.回家一讨论,问题来了.孙女说:“收购大豆每千克获利多故应收购大豆”,孙子说:“收购红薯每元成本获利多故应收购红薯”,王老汉一听,好像都对,可谁说得更有理呢?精明的王老汉心中更糊涂了。

(2)问题与探究。

师:同学们,你们能用具体的数字体现出王老汉的两个孙子的收购方案吗?

生,讨论并很快给出答案.(师,记录数据)。

师:请你们各自为王老汉设计一种收购方案.

生,独立思考,并写出自己的方案.(师,查看学生各人的设计方案并有针对性的请几个同学说出自己的方案并记录,注意:要特意选出2个不合理的方案)。

师:这些同学的方案都是对的吗?

生,讨论并找出其中不合理的方案.

师:为什么这些方案就不行呢?

生,讨论后并回答。

师:满足什么条件的方案才是合理的呢?

生,讨论思考.(师,引导学生设出未知量,列出起约束作用的不等式组)。

师,让几个学生上黑板列出不等式组,并对之分析指正。

(教师用多媒体展示所列不等式组,并介绍二元一次不等式,二元一次不等式组的概念.)。

生,讨论并回答(教师记录几组,并引导学生表示成有序实数对形式.)。

生,讨论并回答(教师对于学生的回答指正并有选择性的记录几组比较简单的数据,对于这些数据要事先设计好并在课件的坐标系中标出备用)。

(教师对引例中给出的不等式组介绍,并指出上面的正确的设计方案都是不等式组的解.进而介绍二元一次不等式(组)解与解集的概念)。

生,讨论并在下面作图(师巡视检查并对个别同学的错误进行指正)。

师,利用多媒体课件展示平面直角坐标系及不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解所对应的一些点,让学生观察并思考讨论:不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解在平面直角坐标系中的位置有什么特点?(由于点太少,我们的学生可能得不出结论)。

生,提出猜想:直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计分得的左下半平面.

师:这个结论正确吗?你能说出理由来吗?

生,分组讨论,并利用自己的数学知识去探究.(由于没有给出一个固定的方向,所以各人用的方法不一,有的可能用特殊点再去检验,有的可能会试着用坐标轴的正方向去说明,也有的可能会用直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计下方的点与对应直线上的点对照比较的方法进行说明)。

师,在巡视的基础上请运用不同方法的同学阐述自己的理由,并对于正确的作法给予表扬,然后用多媒体展示出利用与直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计横坐标相同而纵坐标不同的点对应分析的方法进行证明.

生:表示为二元一次不等式(组)与简单的线性规划问题的模块单元教学设计,(很快回答)。

师:从中你能得出什么结论?

生,讨论并得到一般性结论(教师总结纠正)。

(教师总结并用多媒体展示,二元一次不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计表示直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的某侧所有点组成的平面区域,因不包含边界故直线画成虚线;二元一次不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计表示的平面区域因包含边界故直线画成实线.)。

生,作图分析,讨论并回答(师,对学生的回答进行分析)。

师:结合上面问题请同学们归纳出作不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计对应的平面区域的过程.

生,讨论并回答(师,对于学生的答案给以分析,并肯定其中正确的结论)。

生,讨论并回答(教师总结并用多媒体展示:直线定界,特殊点定域)。

生,讨论,思考(教师巡视,并观察学生的解答过程,最后引导学生得出:一个是不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解,一个是不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解)。

生.讨论分析,最后得到不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计并求解.

师:若把上面问题改为点在同侧呢?请同学们课后完成.

(二)实例展示:。

例1、画出不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计表示的平面区域.

例2、用平面区域表示不等式组二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解集.

(三)练习:。

学生练习p86第1-3题.

【及时巩固所学,进一步体会画出不等式(组)表示的平面区域的基本流程】。

(四)课后延伸:。

(五)小结与作业:。

二元一次不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计表示直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计某侧所有点组成的平面区域,画出不等式(组)表示的平面区域的基本流程:直线定界,特殊点定域(一般找原点)。

作业:第93页a组习题1、2,

高三数学教案案例篇十七

本节课的主要内容是比例的意义和性质。在教学比例意义时,在课前的预设下,学生很容易就发现了:表示两个比相等的式子叫比例。比例的意义解决了,接下来比例的性质也应该没有什么问题。通过例题的学习学生又知道了比例的外项和内项,接下来就是引导学生看比例中的外项和内项,有什么发现?学生的回答出现了与课前预设不相符的一幕,课前我是这样设计的:

2.我是想学生讲:一3×40=120二5×20=100三8×6=48。

5×24=1204×25=1003×16=48。

3.然后教师板书:

外项积:3×40=1205×20=1008×6=48。

内项积:5×24=1204×25=1003×16=48。

4.师:刚才同学们的发现其实就是比例的基本性质,那什么是比例的基本性质呢?(然后师出示:在比例里,两个外项的积等于两个内项的积。)。

2.(过了一会儿)生说:我知道,比例的基本性质是:在比例里,两个外项的积等于两个内项的积。

3.我还带开玩笑的口气说:我没有教你,你怎么就会了?

生:我自己预习了。

师:预习是我们学习中一个很好的习惯。(心里想:他怎么没有按照我的设计来,就一下子就把性质讲出来了。怎么办?这时我灵机一动。)。

师:好,在比例里,两个外项的积是不是等于两个内项的积呢?我们来验证一下。(学生分别讲出三组比例的外项积和内项积)。

4.师板书:

外项积:3×40=1205×20=1008×6=48。

内项积:5×24=1204×25=1003×16=48。

这个时候水到渠成的学生就知道了什么叫比例的基本性质。

设计一,我是想学生按照之前的设计意图,一环套一环教学下去。而不愿意让学生有自主的,创造性的分析和思考,甚至害怕学生“思维出轨”。这是一种机械的模式化的教学,这种教学方法从掌握知识的角度进行分析,确实简单高效,但它的弊端也是显而易见的,那就是造成学生思维的僵化,学生不会独立分析、思考。

设计二,更多关注的是学生获取知识的过程,引导学生借助三个比例式来验证,设计二可以说是一种生动的充分发挥学生自主学习的过程。在这种教学过程中,学生有独立思考的时间,有自主探索的机会,有展示自己创造性思维成果的舞台。

通过两种教学片断的比较,我深深得体会到,向课堂要效率不仅仅要着眼于课堂上的教学用时和学生在课堂上是否学会了解题,而更注重学生思维能力的发展,让学生真正成为学习的主人。《数学课程标准》中指出:数学教学要“让学生亲身经历竟实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获取对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展”。

通过上述案例分析只有动态生成的课堂才能很好地培养学生的思维能力和解决实际问题能力,提高学生的数学素质。

高三数学教案案例篇十八

(2)使学生初步了解“属于”关系的意义。

(3)使学生初步了解有限集、无限集、空集的意义。

【重点难点】。

教学重点:集合的基本概念及表示方法。

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合。

授课类型:新授课。

课时安排:1课时。

教具:多媒体、实物投影仪。

【内容分析】。

【本文地址:http://www.xuefen.com.cn/zuowen/12668465.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档