六年级数学比例教案(实用15篇)

格式:DOC 上传日期:2023-11-17 07:38:14
六年级数学比例教案(实用15篇)
时间:2023-11-17 07:38:14     小编:琉璃

教案还可以帮助教师分析学生的学习情况,及时调整教学策略,提高教学效果。教案的编写需要灵活运用教学资源,提高教学效益和资源利用率。教案的编写需要密切结合学科的特点和学生的实际情况。

六年级数学比例教案篇一

教学目标:

使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

教学重点:

使学生掌握解比例的方法,学会解比例。

教学难点:

引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。

教学过程:

一、导人新课。

上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?这节课我们还要继续学习有关比例的知识,这节课我们要学习解比例。

二、新课。

组织学生看书自学什么叫做解比例呢?(我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的.基本性质来解。)。

1.教学例2。

首先让学生根据数据分析哪两个比可以列成比例式,然后让学生指出这个比例的外项、内项,并说明知道哪三项,求哪一项。”

或者可以列成这样的式子。

问题:“根据比例的基本性质可以把它变成什么形式?

教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数x的值。提醒解比例也应写“解:”。

教师:从解比例的过程,我们可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。

2.教学例3。

解比例。

提问:“这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?”(能,根据比例的基本性质,把等号两端的分子和分母分别交叉相乘,就得出方程。)。

学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边。

问题:“这个方程你们会解吗?”

让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。

3.总结解比例的过程。学生自己归纳总结。

提问:“刚才我们学习了解比例,大家回忆一下,解比例要做什么?”

(1)根据比例的基本性质把比例变成方程。

(2)用解方程的方法求解。

问题:“从上面的过程可以看出,在解比例的过程中哪一步是新知识?”(根据比例的基本性质把比例变成方程。)。

4.完成“做一做”的内容。

学生独立解答,订正时,让学生说说是怎么做的。

三、巩固练习。

四、课堂小结。

说说这节课你学到了什么?怎样解比例。

教学反思:

解比例一课是在学习好比例的基本性质后学习的,教学解比例之前,先复习根据比例的意义和除法中各部分间的关系可以求比例里的未知项。然后告诉学生,还可以根据比例的基本性质来求比例里的未知项。教学前,我认为要求比例里的未知项,学生不但可以根据比例的意义、除法中各部分之间的关系来求,还可以根据分数的基本性质、比的基本性质来求出比例中的未知项,部分学生也能根据刚学的比例的基本性质来求。所以教学时,我设计了多条题目,让学生根据比例式的特点,选择不同的方法来填出比例中的未知项。学生完成的情况非常理想。都能根据题目特点选用不同的方法解决,其中包括依据比例的基本性质来求的。

六年级数学比例教案篇二

1.求比值。

8∶4=48∶12=16∶8=。

24∶18=40∶16=15∶5=。

准备题。

(1)找出下列分数中相等的分数,并说说你是根据什么找的?(略)。

学生找出后,教师作引导性提问:它们为什么相等?谁能完整地说出分数的基本性质?

(2)在()内填上适当的数。

3÷4=()4=()40=()÷12=0.75。

58=5:()。

6:7=()7=()7。

9:()=():16。

教师:由上面这两组题你想到了什么?

小结:根据分数与除法的关系,除法与比的关系,比的前项相当于分数的分子,比的后项相当于分数的分母,比值相当于分数值。

比也可以写成分数的形式,如5:8可以写成5/8。

六年级数学比例教案篇三

1、知识与技能:使学生理解比例尺的意义,学会求比例尺,图上距离和实际距离。

2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。

3、情感态度和价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。

理解比例尺的概念,根据比例尺的意义求比例尺、实际距离和图上距离。

从不同的角度理解比例尺的意义。

教具准备:小黑板、中国地图一张。

学具准备:学生各自准备一张地图、一张方格纸。

教法:对于意义理解部分主要采用尝试法。对于运用比例尺进行相关计算时,主要用引导发现法。

学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法进行学习,必要时进行合作交流。

师:同学们,你们见过这个成语吗?(板书:以――当――)。

生:以一当十。(指名回答)。

师:那这样的话以三当几?以七当几?你是怎么算的?

生:以三当三十,当七当七十。三乘十等于三十,七乘十等于七十。(指名回答)。

师:那反过来,以几当五十?以几当一百二十?你又是怎么算的呢?

生:以五当五十,以十二当一百二十。五十除以十等于五,一百二十除以十等于十二。

师:大家真聪明!今天我们就用数学的眼光来看一下在数学中如何以一当十,以一当百,以一当千,甚至以一当更多。

1、师:如果要给我们教室画一个平面图,它应该是什么形状的?

生:长方形。

师:我们以前测量过教室的长、宽各是多少?

(生:长大约8米,宽大约6米。)。

师:请大家在方格纸上画出我们教室的平面图。(生画师巡视)。

(以谈话的形式,从学生熟悉的教室入手,让学生先估计教室的长和宽,再尝试画出教室的平面图,这样既复习了上节课图形的放缩知识,又为下面的学习做好准备。)。

师:大家画的图是长8米,宽6米吗?(不是)谁来说说是怎么画的?(展示生的作品)。

(学生的答案可能有:长方形长8厘米,宽6厘米。或者是长4厘米,宽3厘米。)。

师:同样画的都是我们的教室,却不一样大,大家赞成谁的画法(故意)?为什么?

(观点一:都可以,因为这两个图的比都是4:3。

观点二:这两种画法一样,但画的大小不一样,一个面积是54平方厘米,一个是6平方厘米。)。

师:是啊,这两个平面图,别人一看会知道我们教室的大概形状,但我们的教室不可能是长8厘米、宽6厘米,也不可能是长4厘米、宽3厘米,你能想个办法,让别人也知道我们教室有多大吗?(生动脑想、动手写)。

引导学生汇报:

(1)直接写上“教室面积大约50平方米。”

(2)在图上标出“长8米、宽6米。”

(3)标上“1厘米=1米”。

(4)1厘米怎么能等于1米呢?我认为可以写“1厘米相当于1米。”

(激发了学生的探究欲,激活了学生的思维,促使学生去动脑、动手、动口,探索解决问题的办法,同时让学生体会了比例尺产生的必要性。)。

师:看来同学们很爱动脑筋,遇到问题会想办法。其实这个问题里面就藏着我们今天所要学习的新知识。(板书课题:比例尺)。

让生自学课本第30页什么是比例尺?

集体交流什么是比例尺,比例尺其实是一个比,注意谁是前项谁是后项。师根据生的回答板书:图上距离:实际距离=比例尺或分数形式。

(引导学生利用手中的素材,让学生自己寻找、发现和观察比例尺,从而对学生进行学习方法的指导。)。

让生说出自已画的两幅图的比例尺各是多少,是如何计算的。师根据生的回答板书相应比例尺。

2、让学生议一议可以怎样理解比例尺所代表的意义。

图上的1厘米表示实际的多少?(注意单位要统一)。

实际距离是图上距离的多少倍?把图上距离扩大多少倍就是实际距离?

图上距离是实际距离的多少分之一?把实际距离缩小多少倍就是图上距离?

图上距离相当于多少份?实际距离相当于多少份?

(一)基本运用(小黑板出示)。

1、把一块长20米,宽10米的长方形地画在图纸上,长画了5厘米,宽画了2.5厘米。

判断下列几句话中,哪些比是比例尺,哪些不是.

(1)图上宽与图上长的比是1∶2()。

(2)图上宽与实际宽的比1/400是()。

(3)图上面积与实际面积的比是1∶160000()。

(4)实际长与图上长的比是400∶1()。

(5)图上长与实际宽的比是1∶200()。

通过比较判断说理使学生更加明确比例尺概念的外延,加深对比例尺意义的理解。

2、在一幅比例尺是1:6000000的中国地图,深圳到上海的图上距离是20.3厘米,深圳到上海的实际距离是多少千米呢?在学生计算之前先引导学生从倍数的角度回忆比的意义。提醒学生计算结果的单位名称,然后总结方法。

3、深圳到上海的距离是1218千米,在一幅比例尺是1:9000000的中国地图上,深圳到上海的图上距离会是多少呢?提醒注意单位统一。

在这个基本运用的过程中,鼓励学生用多种方法解。

4、生先独立完成课本第30页1至5题,然后集体订正。

(二)拓展延伸。

1、笑笑家买了一个长5米的家具,请同学们算一下在客厅中能放得下吗?

2、拿出自己准备好的中国地图,测算你的家乡到北京的实际距离。

比例尺。

以一当十。

学生的图1:100或分数图上距离:实际距离=比例尺。

(贴)1:200或分数前项一般为1。

(强调比例尺的前项一般为1)。

3、师出示准备的地图上不同比例尺,介绍比例尺的不同形式,并说出它们的意义。然后让学生拿出课前准备的地图,找一找地图上的比例尺并说一说自己找到的比例尺的意义,为后面图上距离和实际距离做铺垫。

六年级数学比例教案篇四

担任了几年毕业班的数学教学,到六年级的下学期,将有一半以上的课程是在复习和整理,保守的复习课让习题一道道出现,让同学仅仅停滞在"会"的目标上,这复习课究竟应该如何去上好,应该如何让同学感受学习的快乐和数学的魅力一直是我们思索的问题。在一次班会课上,同学自身组织了班会活动,他们采用了电视上娱乐节目的形式,玩得非常高兴,一瞬间,我就想,这样的形式是否可以植入我的数学课堂?这样是不是数学课上的我也可以和班会课一样成为同学的组织者,引导者和合作者,而不是课堂上的"权威"?本着"体现新理念,用活教材,练活习题,激活课堂"的思想,针对本节课的教学目标,我采用让同学分组竞赛的方法,把复习活动贯穿到课前、课中、课后,让同学在合作与竞争中理解本课重点,疏通知识脉络,建构知识网络,掌握复习方法。

六年级数学比例教案篇五

1、口答正比例的意义。

2、怎样判断两种量成正比例?

3、写出下面各题的数量关系,并判断在什么条件下,其中哪两种量成正比例?

(1)已知每小时加工零件数和加工时间,求加工零件总数。

(2)已知每本书的价钱和购买的本数,求应付的钱。

(3)已知每公亩产量和公亩数,求总产量。

六年级数学比例教案篇六

教科书第52页例1,第55页课堂活动第1题及练习十二1,2,3题。

1.使学生通过具体问题情境认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系,能找到生活中成正比例的实例,并进行交流。

2.通过探索正比例意义的教学活动,使学生感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。

3.通过观察、交流、归纳、推断等教学活动,感受数学思维过程的合理性,培养学生的观察能力、推理能力、归纳能力和灵活应用知识的能力。

认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系。

理解正比例的意义,感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。

教具:多媒体课件。

学具:作业本,数学书。

(1)下面是居委会张阿姨负责的小区水费收缴情况,用这个表中的数能写成多少个有意义的比?哪些比能组成比例?把能组成的比例都写出来。

(2)揭示课题。

教师:这些数量之间藏着不少的知识,今天这节课我们就来研究这些数量间的一些规律和特征。

用课件在刚才准备题的表格中增加几列数据,变成表。

教师:请同学们观察这张表,先独立思考后再讨论、交流:从这张表中你发现了什么规律?并根据这种规律帮助张阿姨把表格填写完整。

教师根据学生的回答将表格完善,并作必要的板书。

教师:同学们发现表格中的水费随着用水量的增加也在不断增加,像这样水费随着用水量的变化而变化,我们就说水费和用水量是相互关联的。

板书:相关联

教师:你们还发现哪些规律?

学生在这里主要体会水费除以用水量得到的每吨水单价始终是不变的,教师可根据学生的回答板书出来,便于其他学生观察:

教师:水费除以用水量得到的单价相等也可以说是水费与用水量的比值相等,也就是一个固定的数。

板书:

教师:我们再来研究一个问题。

课件出示第52页下面的试一试。

学生先独立完成。

教师:你能用刚才我们研究例1的方法,自己分析这个表格中的`数据吗?

教师根据学生的回答归纳如下:

表中的路程和时间是相关联的量,路程随着时间的变化而变化。

时间扩大若干倍,路程也扩大相同的倍数;时间缩小若干倍,路程缩小相同的倍数。

路程与时间的比值是一定的,速度是每时80 km,它们之间的关系可以写成路程时间=速度(一定)

教师:我们研究了上面生活中的两个问题,谁能发现它们之间的共同点呢?

引导学生归纳出这两个问题中都有相关联的量,一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数,所以它们的比值始终是一定的。

教师:像上面这样的两种量,叫做成正比例的量,它们的关系叫做成正比例关系。

教师:请大家说一说生活中还有哪些是成正比例的量。

(1)完成练习十二的第1题。

教师:请同学们用所学知识判断一下,下面表中的两种量成正比例关系吗?为什么?

学生独立思考,先小组内交流再集体交流。

(2)完成练习十二的第2题。

教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?

六年级数学比例教案篇七

1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。

2.能根据正比例的意义,判断两个相关联的量是不是成正比例。

3.结合丰富的事例,认识正比例。

1、结合丰富的事例,认识正比例。

2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

能根据正比例的意义,判断两个相关联的量是不是成正比例。

一、课前预习。

预习书19~21页内容。

1、填好书中所有的表格。

2、理解粉色框中话的意义,体会正比例的两个量有怎样的关系?

3、把不理解的内容用笔作重点记号,待课上质疑解答。

二、展示与交流。

活动一:在情境中感受两种相关联的量之间的变化规律。

(一)情境一:

1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

说说从数据中发现了什么?

3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。

说说你发现的规律。

(二)情境二:

1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

2、请把下表填写完整。

3、从表中你发现了什么规律?

说说你发现的规律:路程与时间的比值(速度)相同。

(三)情境三:

1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

2、把表填写完整。

3、从表中发现了什么规律?

应付的钱数与质量的比值(也就是单价)相同。

4、说说以上两个例子有什么共同的特点。

小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

5、正比例关系:

(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

(2)购买苹果应付的钱数与质量有什么关系?

6、观察思考成正比例的量有什么特征?

一个量随另一个量的变化而变化,在变化过程中这两个量的`比值相同。

(四)想一想:

1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

师小结:

(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

请你也试着说一说。

(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

请生用自己的语言说一说。

2、小明和爸爸的年龄变化情况如下:

小明的年龄/岁67891011。

爸爸的年龄/岁3233。

(1)把表填写完整。

(2)父子的年龄成正比例吗?为什么?

(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

与同桌交流,再集体汇报。

六年级数学比例教案篇八

1、完成第63页的“练一练”。

先让学生独立思考并作出判断,再要求说明判断理由。你是怎样判断的?

2、做练习十三第1~3题。

第1题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。

第2题先让学生独立进行判断,再指名说判断的理由。

第3题要先让学生说说题目要求我们把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再让学生在图上画一画。

填好表格后,组织学生讨论,明确:只有当两种相关联的量的比值一定时,它们才能成正比例。

六年级数学比例教案篇九

2.使学生能正确判断正、反比例.。

教学重点。

正、反比例的联系和区别.。

教学难点。

能正确判断正、反比例.。

教学过程。

一、复习准备。

判断下面每题中两种量成正比例还是成反比例.。

1.单价一定,数量和总价.。

2.路程一定,速度和时间.。

3.正方形的边长和它的面积.。

4.时间一定,工效和工作总量.。

二、新授教学。

(一)出示课题。

六年级数学比例教案篇十

1、知道与正比例函数的意义。

2、能写出实际问题中正比例关系与关系的解析式。

3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。

4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。

六年级数学比例教案篇十一

在上面的数量部系式中,如果加工零件总数一定,每小时加工零件和加工时间是什么关系?如果应付的总钱数一定,每本书的价钱和本数是什么关系?如果总产量一定,每公亩产量和公亩数是什么关系?这就是今天我们学习的内容:反比例的意义(板书)。

六年级数学比例教案篇十二

3、感知生活中的数学知识。

1、通过具体问题认识反比例的量。

2、掌握成反比例的量的变化规律及其特征。

认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

预习24---26页内容。

1、什么是成反比例的量?你是怎么理解的?

2、情境一中的两个表中量变化关系相同吗?

3、三个情境中的两个量哪些是成反比例的量?为什么?

利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。

情境(一)。

认识加法表中和是12的直线及乘法表中积是12的曲线。

引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

情境(二)。

让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每。

两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考。

同桌交流,用自己的语言表达。

写出关系式:速度×时间=路程(一定)。

观察思考并用自己的语言描述变化关系乘积(路程)一定。

情境(三)。

写出关系式:每杯果汁量×杯数=果汗总量(一定)。

5、以上两个情境中有什么共同点?

引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的`两个数的乘积是一定的。这两种量之间是反比例关系。

活动四:想一想。

1、判断下面每题是否成反比例。

(1)出油率一定,香油的质量与芝麻的质量。

(2)三角形的面积一定,它的底与高。

(3)一个数和它的倒数。

(4)一捆100米电线,用去长度与剩下长度。

(5)圆柱体的体积一定,底面积和高。

(6)小林做10道数学题,已做的题和没有做的题。

(7)长方形的长一定,面积和宽。

(8)平行四边形面积一定,底和高。

2、教材“练一练”p33第1题。

3、教材“练一练”p33第2题。

4、找一找生活中成反比例的例子,并与同伴交流。

两个相关联的量,乘积一定,成反比例。

关系式:x×y=k(一定)。

本课时教学设计特点:一是情景设置和几个表格的设计,都注重从现实题材出发,让学生感受到反比例在现实生活中的广泛应用。二是通过让学生自己去分类整理、自主探究、合作交流得出反比例的意义,有利于发展学生的数学思维。

六年级数学比例教案篇十三

教材复习第4~l0题。

1、使学生加深认识正比例关系和反比例关系的意义,进一步掌握判断两种相关联的量是否成正比例或反比例的方法,提高分析、判断的能力。

2、使学生进一步掌握正、反比例应用题的解题思路和解题方法,提高解答正、反比例应用题的能力。

加深认识正比例关系和反比例关系的意义。

提高解答正、反比例应用题的能力。

一、揭示课题。

在“比例”这一单元里,除了认识了比例的意义和性质外,还学习了成正、反比例量的有关知识。这节课,我们复习正、反比例。(板书课题)通过复习,一要加深对成正比例关系和成反比例关系量的认识,提高两种相关联量成正比例还是反比例关系的判断能力;二要进一步认识正、反比例的应用题,加深理解正、反比例应用题的解题思路和方法,提高用比例知识解答应用题的能力。

二、复习正、反比例的意义。

1、做复习第4题。

让学生看第4题,思考各成什么比例。指名学生口答,说明理由。

2、整理正、反比例的意义。

3、做复习第5题。

小黑板出示,指名学生口答,并说明理由。说明:根据实际问题里相关联量所成的.正比例或反比例关系,可以用比例知识解答相应的应用题。

三、复习正、反比例应用题。

1、整理解题思路。

(1)做复习第6题。

让学生读题,思考各成什么比例的应用题。指名学生说明各是什么应用题,为什么。指名两人板演,其余学生做在练习本上。集体订正,让学生说明根据什么列式的。

(2)提问:解答正、反比例应用题要怎样想?在解题方法上有什么不同的地方?

2、综合练习。

(1)、做复习第8题。

让学生读题。提问:“药粉和水的比是1:500”你是怎样想的?(引导学生看出药粉和水的份数以及1:500表示比值一定等)这两道题成什么比例,为什么?让学生做在练习本上。指名学生口答等式,老师板书。再让学生说说怎样想的,根据什么列式的。追问:这道题还可以怎样做?(让学生思考按比的意义,应用分数知识或归一方法,口答算式)。

(2)、做复习第l0题。

要求学生思考有哪些方法解答第一个问题、指名一人板演,其余学生做在练习本上。要求列出不同解法的式子。集体订正,说说各是怎样想的。

四、课堂小结。

这节课复习了哪些内容?谁来说一说这节课你掌握了哪些知识或方法?

五、课堂作业。

复习第7.9题,第10题第二个问题。

六年级数学比例教案篇十四

1.知识与技能:认识比例,知道比例的的内项和外项,理解和掌握比例的基本性质,会判断两个比能否组成比例。

2.过程与方法:通过自主探究、合作交流、观察、比较,培养学生分析、比较、抽象和概括的能力,经历认识比例和比例的基本性质的过程。

3.情感态度与价值观:体会国旗中隐含的数学规律,丰富关于国旗的知识,培养学生爱国旗、爱祖国的情感。

六年级数学比例教案篇十五

学生思考回答(挖掘学生生活经验)。

同学们知道的真多,说明同学们平时认真观察,是个有心人。

二、引导探究,自主建构。

活动一:探究比例的意义。

1.你了解到哪些关于国旗大小的知识?

学生交流,给学生充分的交流机会。

(1)猜测。

预设:生1、长和宽的比值相等;生2、宽和长的比值相等,

(2)小组验证。

每个小组任选两种规格国旗,验证一下每种国旗长和宽之间存在的规律。

(3)展示交流小组验证结果,学生到黑板前板书得出结论。

预设:每种国旗的长和宽的比都是3:2,他们的比值相等。

每种国旗的宽和长的比是2:3,他们的比值相等。

怎么判断两个比是不是成比例?

试一试,判断下面哪组中的两个比可以组成比例。

2:3和6:94:2和28:405:2和10:420:5和1:4。

活动二:探究比例的基本性质。

2.小组内验证猜测结果。

3.展示验证猜测情况。得出结论,

预设:

“在比例里,两个外项相乘的积就等于两个内项相乘的得数”。

“在比例里,把两个外项乘起来,再把两个内项乘起来,它们的得数是一样的”。

教师归纳总结。

同学们说得对,在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

板书:比例的基本性质。

谁能用分数形式表示以上比例?怎样求两个内项和两个外项的积呢?(分子和分母交叉相乘)。

三、强化训练、应用拓展。

同学们学习了比例的意义与性质,那么能利用它们解决实际问题吗?

1.判断下面哪组中的两个比可以组成比例?

(1)6:9和9:12。

(2)1/2:1/5和5/8:1/4。

(3)1.4:2和7:10。

(4)0.5:0.2和10:4。

2.判断。

(1)表示两个比相等的式子叫做比例()。

(2)0.6:1.6与3:4能组成比例()。

(3)如果4a=5b,那么a:b=4:5()。

3.填空。

5:2=80:()。

2:7=():5。

1.2:2.5=():4。

在一个比例里,两个外项互为倒数,其中一个内项是6,另一个内项是()。

在一个比例里,两个内项的积是12,其中一个外项是2.4,另一个外项是()。

4.写出比值是5的两个比,并组成比例。

5.根据3a=5b把能组成的比例写出来。

四、自主反思、深入体验。

通过这节课的学习你有什么收获?

【本文地址:http://www.xuefen.com.cn/zuowen/12655230.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档