苏教版六年级数学教案及反思范文(17篇)

格式:DOC 上传日期:2023-11-17 07:25:15
苏教版六年级数学教案及反思范文(17篇)
时间:2023-11-17 07:25:15     小编:JQ文豪

教案是教师为了课堂教学而编制的一份详细的教学计划。教案的编写还应注重培养学生的实践能力和创新精神。这些教案范例不仅注重认知目标的达成,还注重学生能力和情感的培养。

苏教版六年级数学教案及反思篇一

1、从具体情境中体会学习圆锥体积公式的必要性并进行大胆猜想。

2、在操作、观察、思考、探究等学习活动中推导出圆锥的体积公式,并能有条理的说出推导过程。

3、根据圆锥体积公式,解决简单的实际问题。

教学重难点。

教学重点:圆锥体积计算公式。

教学难点:圆锥体积计算公式的推导过程。

教学工具。

ppt课件。

教学过程。

一、激趣引入:

师:同学们都很棒,为了帮助大头儿子解决这个问题,这节课我们就来学习“圆锥的体积”的计算好吗?(板书课题)。

二、自主探究,合作交流。

一、认识圆锥的体积。

1、出示圆锥,引导学生说出圆锥的体积的意义。

课件出示:圆锥所占空间的大小叫做圆锥的体积。

2、演示排水法求圆锥的体积。

引导学生回忆不规则物体的测量方法说出排水法。

3、冰激淋不能用排水法求体积,要怎样求呢?

(二)教学例2.(探究圆锥的体积公式)。

1、引导学生猜想。

师:出示长方体、正方体、圆柱体。

同学们猜一猜,圆锥的体积计算应该和哪一个立体图形有关?

师:同学们再大胆猜一猜,圆锥的体积计算应该和什么量有关?

2、认识等底等高的圆柱和圆锥。

师课件演示怎样是等底等高的圆柱和圆锥。

板书:学生猜想。

3、实验验证猜想。

(1)明确实验方法、理解实验表和实验要求。

(2)学生实验。

(3)交流实验结果。

学生小组汇报,老师课件演示。

(4)得出结论。

师:通过实验你发现了什么?

生1:等底等高的圆柱是圆锥体积的3倍。

生2:等底等高的圆锥是圆柱体积的三分之一。

师:那不等底等高的圆柱和圆锥两个容器的容积存在这个倍数关系吗?

生:不存在。

明确哪个学生的猜想是对的。

4、推导圆锥的体积。

引导学生推导圆锥的体积。

师:根据我们得出的结论,你能写出圆锥的体积计算公式吗?

根据学生回答板书:v圆锥=13v圆柱=13sh。

师:想一想,根据刚才的实验,你发现了什么?要求圆锥的体积必须知道什么?

生:圆锥的体积等于它等底等高圆柱体积的三分之一。

师:为什么有三分之一?

生:因为实验时,圆锥向和它等底等高的圆柱里倒了三次。

师:我们知道了怎样求圆锥的体积,那么假如圆柱形冰淇淋和圆锥形的冰淇淋是等底等高,你们说大头儿子买哪种合算呢?(这时同学们异口同声回答答案)。

师:所以,数学来源于生活,生活离不开数学,生活中有很多问题都可以用我们所学的数学知识来解决。

5、练一练(运用公式):

师:我们继续来解决生活中的数学问题。

课件出示34页做一做第1题,学生独立解决,全班交流。

(二)教学例3.(运用公式拓展)。

课件出示例3。

学生读题,分析题意。

学生独立解决,全班交流。

规范做题格式。

(三)思考;求圆锥的体积,还可能出现那些情况?

引导学生梳理:

已知底面半径求体积;。

已知底面直径求体积;。

已知底面周长求体积。

三、巩固练习。

1、填空(课件)。

2、判断(课件)。

3、34页做一做第2题,学生独立做,集体订正。

四、课堂小结。

同学们,这节课有什么收获?

苏教版六年级数学教案及反思篇二

9.分数的基本性质是什么?10.割据分数的基本性质可以做什么?

11.什么叫约分?12.什么叫通分?

13.怎样把小数化成分数?怎样把分数化成小数?

14.怎样把分数化成百分数?怎样把百分数化成分数?

1.线段有什么特征?射线有什么特征?直线有什么特征?它们有什么共同的特征?

2.什么叫角?角的大小与什么有关,与什么无关?3.角按度数可分为哪几类?

4.什么叫锐角?什么叫直角?什么叫钝角?什么叫平角?

5.什么叫垂直?什么叫平行?6.什么叫三角形?

7.三角形按角分可分为哪几类?按边分可分为哪几类?8.什么叫轴对称图形?

9.什么是四边形?什么叫平行四边形?什么叫梯形?10.什么叫周长?

15.长方形、正方形、圆、半圆的周长各应怎样计算?

16.长方形、正方形、圆、平行四边形、三角形、梯形的面积各应怎样计算?

17.长方体、正方体、圆柱的表面积各应怎样计算?

18.长方体、正方体、圆柱、圆锥的体积各应怎样计算?

15.怎样把小数化成百分数?怎样把百分数化成小数?

16.什么样的分数可以化成有限小数?

苏教版六年级数学教案及反思篇三

使学生进一步加深对列方程解决实际问题的理解,促进相关技能的形成,发展数学思考和实践能力。

小黑板、课前请体育老师利用体育课组织学生测试百米跑步的时间。

今天,我们继续进行整理和练习。

1、根据下面的条件,说说数量间的相等关系。

(1)师傅每小时加工的零件比徒弟的3倍少18个。

(2)一堆黄沙运走了30车后还剩下16吨。

(3)一条围巾的价钱比一副手套价钱的2倍多25元。

2、在括号里填上含有字母的式子

(1)学校舞蹈队有x人,歌咏队的人数是舞蹈队的3倍,歌咏队有( )人;舞蹈队和歌咏队一共有( )人,歌咏队比舞蹈队多( )人。

(2)踢毽的和跳绳的每组都是x人,踢毽的有5组,跳绳的有8组。踢毽的有( )人,跳绳的有( )人;踢毽的比跳绳的少( )人,踢毽的和跳绳的一共有( )人。

1、求x的值

(1)三角形面积275cm。 (2)长方形周长9m。

第(1)小题 先让学生独立完成。交流时说说列方程的依据以及怎样解列出的方程。

第(2)小题

先让学生独立列出方程。交流时师随机板书不同的方程,并让学生说清列方程的依据。

学生列出的方程可能有以下几种情况:

2x+1.5×2=9 (x+1.5)×2=9 x+1.5=9÷2

问:这几个方程哪些你会解了?请你说说应怎样解?

(对于有困难的学生,教师要多加关注,注意个别辅导。)

交流完后,让学生解自己所列的方程,有困难的学生也可以选择自己理解的方程来解。

指名3位学生分别板演。再集体交流。

2、第6题、第7题、第9题、第10题

让学生独立完成。集体交流时,引导学生说说每道题是根据怎样的等量关系来列方程的。

3、第8题

先让学生算一算自己在体育课上测试百米跑步时的速度大约是每秒多少米?

再让学生解答问题,然后说说自己有什么感想。

学生读题后可引导学生画线段图来理解“取了若干次以后,红球正好取完,白球还有10个”这句话的意思其实就是说明“取出的红球比白球多10个”。

再让学生列方程解答。交流时说说是根据怎样的等量关系来列方程的。

通过今天的学习,你又有些什么收获呢?你还有什么要提醒大家的?

苏教版六年级数学教案及反思篇四

8.什么叫合数?9.什么叫质因数?10.什么叫分解质因数?

11.能被2、3、5整除的数各有什么特征?12.什么叫偶数?

13.什么叫奇数?14.什么叫倍数?15.什么叫约数?

16.怎样求两个数的最大公约数和最小公倍数?

17.什么叫加法?什么叫减法?什么叫乘法?什么叫除法?

18.加法各部分之间的关系有哪些?减法各部分之间的关系有哪些?

19.乘法各部分之间的关系有哪些?除法各部分之间的关系有哪些?

20.四则混合运算的运算顺序是怎样的?

21.什么是加法交换律?用字母怎样表示?什么是加法结合律?用字母怎样表示?

22.什么是乘法交换律?用字母怎样表示?什么是乘法结合律?用字母怎样表示?

23.什么是乘法分配律?用字母怎样表示?

24.四则混合运算中,第一级运算有哪些?第二级运算有哪些?

苏教版六年级数学教案及反思篇五

把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

2.分数的分类。

真分数:分子比分母小的分数叫做真分数。真分数小于1。

把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(四)百分数。

1.表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用“%”来表示。百分号是表示百分数的符号。

根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项。求比例中的未知项,叫做解比例。

将本文的word文档下载到电脑,方便收藏和打印。

苏教版六年级数学教案及反思篇六

把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

2.分数的分类。

真分数:分子比分母小的分数叫做真分数。真分数小于1。

把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(四)百分数。

1.表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用“%”来表示。百分号是表示百分数的符号。

根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项。求比例中的未知项,叫做解比例。

苏教版六年级数学教案及反思篇七

()()=()()。

(3)45=210。

4:()=():()。

5.做一做。

完成课本中的做一做。

6.课堂小结。

(1)说一说比例的基本性质。

(2)你可以用什么方法来判断两个比能否组成比例(引导学生总结说出两种方法,重点让学生理解掌握比例的基本性质,到此,学生要学会用两种方法判断两个比能否组成比例;比值是否相等;内项之积是否等于内项之积。)。

三、巩固练习。

完成课文练习六第4~6题。

补充习题。

一题多变化,动脑解决它。

(1)在比例里,两个内项的积是18,

其中一个外项是2,另一个外项是()。

(2)如果5a=3b,那么,=,

(3)a︰8=9︰b,那么,ab=()。

教学反思:

比例的各部分名称通过学生自学,老师提问,完成的较好。让学生通过计算内项之积和外项之积发现比例的基本性质。然后大量的练习巩固新知。

将本文的word文档下载到电脑,方便收藏和打印。

苏教版六年级数学教案及反思篇八

1、分数乘法算式的意义:

注:【求一个数的几分之几用乘法解答】。

2、分数与整数相乘:

用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。或者先将整数与分数的分母进行约分,再应用前面计算法则。

注:【任何整数都可以看作为分母是1的分数】。

3、分数与分数相乘:

用分子相乘的积作为分子,用分母相乘的。

积作为分母,最后约分成最简分数。

4、分数连乘:

通过几个分数的分子与分母直接约分再进行计算。

苏教版六年级数学教案及反思篇九

1.知识技能:学生经历用切割拼合的方法推导出圆柱体积公式。

的过程,理解圆柱体积公式的推导过程,掌握圆柱体积的计算方法。

2.数学思考与问题解决:在自主探究的过程中,运用圆柱体的体积解决简单的实际问题,培养学生独立思考及解决问题的能力。

3.情感态度:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重难点。

学生经历并理解圆柱体积公式的推导过程。

教学难点:圆柱体积的计算公式的推导过程及其应用。

教学过程。

一.情景导入,激起兴趣。

同学们,我们的图形世界十分丰富多彩,让我们一起来欣赏吧。这些图形都有什么特点?如何计算出它们的体积呢?你觉得圆柱的体积和什么有关?这节课我们一起来探究圆柱的体积。(板书:圆柱的体积)。

二.巧妙转化,探究新知。

1.呈现长方体、正方体和圆柱的直观图,它们都是直柱体,我们回忆一下长方体的体积公式。

长方体的体积=长×宽×高,长方体和正方体的体积的体积统一公式“底面积×高”,用字母怎样表示?(板书)。

2.出示圆柱体,它的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?回忆一下圆面积计算公式的推导过程。

学生:把一个圆,平均分成若干个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径)根据学生的叙述,教师课件演示。(演示课件:圆转化成长方形,推导圆面积公式的过程。)。

3.现在老师给这个圆柱体变个魔术,仔细观察看看发生了什么变化?(动画演示)。

4.学生小组讨论、交流。

教师:同学们自己先在小组里讨论一下。

(1)圆柱体转化成什么立体图形?

(2)它是怎样转化成这个长方体的?

苏教版六年级数学教案及反思篇十

1、分数除法计算法则:甲数除以乙数(不为0)等于甲数乘乙数的倒数。

3、除数大于1,商小于被除数;除数小于1,商大于被除数;除数等于1,商等于被除数。

4、分数除法的意义:已知一个数的几分之几是多少,求这个数?可以用列方程的方法来解,也可以直接用除法。注:在单位换算中,要弄清需要换算的单位之间的进率是多少。

苏教版六年级数学教案及反思篇十一

教学目的:

1、使学生理解倒数的意义。掌握求一个数的倒数的方法。

2、渗透事物都是普遍联系观点的启蒙教育。

教学重点:理解倒数的意义和怎样求倒数。

教学难点:求倒数方法的叙述。

教学过程:

一、引新:开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。

二、自学新课:

自学书本p19。并思考以下问题:

1、什么叫倒数?

2、怎么求一个数的倒数?

3、是不是任何数都有倒数?小数有吗?带分数有吗?

三、讨论辨析:

1、什么叫倒数?

2、看下面四道题,你能说一些什么有关“倒数”的话。

3、存在倒数有那些条件。

(1)两个数。

(2)这两个数的乘积是1。

4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?

5、概括:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。

6、总结求一个数的倒数的方法。

四、思考:0.2的倒数是多少?

五、小结:请学生说一说这节课学习了哪些内容。

六、作业:练习五3—8。

将本文的word文档下载到电脑,方便收藏和打印。

苏教版六年级数学教案及反思篇十二

这部分内容是在学生认识了圆周长的概念和圆的基本特征的基础上,引导学生从已有的生活经验出发,以小组合作的方式,通过实验探究圆的周长与直径的关系,自学自知圆周率,从而总结探究出求圆的周长的公式。另一方面提高学生运用公式解决实际问题的能力,体会数学与现实生活的密切联系。

苏教版六年级数学教案及反思篇十三

教学内容:学习课本第一页的例1、完成“试一试”和“练一练”,练习一的第1至3题。

教学目标:

1.在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。

2.在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。

教学重、难点:

理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。

教学准备:

教学光盘及多媒体设备。

教学过程:

一、复习导入。

(出示下列题目,请学生解答。)。

东山村去年原计划造林16公顷,实际造林24公顷。实际造林是原计划的百分之几?

2.学生独立列式计算后进行交流,重点说说数量关系。

3.揭示课题:今天这节课我们继续学习有关百分数的知识。

二、教学例1。

1.出示例1中的两个已知条件,要求学生各自画线段图表示这两个数量之间的关系。

提出要求:根据这两个已知条件,你能求出哪些问题?

引导学生分别从差比和倍比的角度提出如“实际造林比计划多多少公顷”“原计划造林比实际少多少公顷”“实际造林面积相当于原计划的百分之几”“原计划造林面积相当于实际的百分之几”等问题。

在学生充分交流的基础上提出例1中的问题:实际造林比原计划多百分之几?

2.引导思考:

小结:要求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数相当于原计划的百分之几。

启发:根据上面的讨论,你打算怎样列式解答这个问题?

学生列式计算后追问:这里得到的125%与刚才得到的25%这两个百分数有什么关系?

联系学生的讨论明确:从125%中去掉与单位“1”相同的部分,就是实际造林比原计划多的百分数。

提出要求:根据上面的讨论,要求“实际造林比原计划多百分之几”,还可以怎样列式?

三、教学“试一试”

1.出示问题:原计划造林比实际少百分之几?

启发:根据例题中问题的答案猜一猜,这个问题的答案是什么?

学生作出猜想后,暂不作评价。

2.学生列式计算后讨论:这个答案与你此前的猜想一样吗?为什么不一样?

小结:“试一试”与例题中的问题都是把实际造林面积与原计划造林面积进行比较,但由于比较时单位1的数量不同,所以得到的百分数也就不同。

四、指导完成“练一练”

1.要求学生自由读题。

学生讨论后,要求他们各自列式解答。

3.根据学生在解答过程中的表现,相机提问:计算中有没有遇到什么新的问题?

学生提出问题后,引导他们自主阅读本页教材的底注,并组织适当的交流。

五、巩固练习。

1.指导完成练习一第1~3题。

做练习一第1题。

可以鼓励学生独立完成填空。如果有学生感到困难,可启发他们先画出相应的线段图,再根据线段图进行思考。

做练习一第2题。

先让学生说说对问题的理解,再让学生列式解答。可提醒学生把计算的商保留三位小数。

做练习一第3题。

先鼓励学生独立解答,再通过交流让学生说清楚思考的过程。

2.对比练习。

学生读题后先独立思考并列式计算,然后指名分析每题的解题思路。同桌间互相查看解答情况。

3.拓展题。

(1)爸爸买的股票“中国石化”上周五收盘价是20元,本周五收盘价是24元。“中国石化”本周上涨了百分之几?(用两种方法解答)。

六、全课小结。

七、布置作业。

1.课内作业:补充习题第1页。

求一个数比另一个数多(少)百分之几的实际问题。

例题1(线段图略)。

4÷16=0.25=25%125%-100%=25%。

苏教版六年级数学教案及反思篇十四

1、明确清凉岛的位置。

(1)题目中告诉我们清凉岛在哪里?

(2)你能在图上指一指清凉岛的大致位置吗?

自己在图上指出来,并和同学交流一下。

2、探究操作。

(1)怎么在图上画出清凉岛的位置呢?

在小组中讨论后全班交流。

使学生认识到要先画出表示方向的射线,再确定灯塔到清凉岛的图上距离。

(2)怎么画出北偏东40°的射线?

各自用量角器在图上画一画,边画边思考:应该怎么摆放量角器,怎么看量角器上的度数?

指名上黑板画,注意引导学生正确摆放量角器。

让学生说说画表示方向的射线时要注意什么?

(3)怎么确定灯塔到清凉岛的距离?

图中告诉我们这幅图的比例尺是多少?表示什么意思?

各自计算后指名汇报:20÷5=4(厘米)。

追问:为什么用20÷5就是图上距离了?

引导学生在图上标出清凉岛的位置,并与同学交流。

3、试一试。

(2)各自独立完成。

(3)组织全班交流,重点交流画南偏西30°方向的射线的方法和所确定的位置。

苏教版六年级数学教案及反思篇十五

一、导入。

呈现例1图片在黑板上。

提问:把放大前后的两幅画相比,你能发现什么?

根据学生回答的情况,谈话导入:像刚才把一幅长方形画放大后,长方形的长和宽与原来相比,其中变化有什么规律?这就是我们今天要学习的内容。

板书课题:图形的放大和缩小。

二、教学例1。

1、认识图形的放大。

出示例1中两幅图片长和宽的数据。

提问:两幅图的长有什么关系?宽呢?

组织学生先讨论,启发学生用不同的方法比较出两幅图的长和宽的关系:第二幅图的长是第一幅的2倍,宽也是第一幅的2倍;第一幅图和第二幅图长的比是2:1,宽的比也是2:1,等等。

指出:把图形的每条边放大到原来的2倍,就是把图形按2:1的比放大。

提问:刚才我们在电脑上操作时,把原来的一幅长方形按怎样的比放大了?

2、认识图形的缩小。

各是多少厘米?

先在小组里说一说,再组织全班交流。

三、教学例21、出示例2,让学生读题。

(1)提问:按3:1放大是什么意思?放大后的长、宽各是原来的几倍?各应画几格?

(2)学生画图,再展示、交流。

(3)让学生尝试在方格纸上画出缩小后的长方形,再展示各自画的图形,并交流思考的方法。

重点指导学生说说缩小后的长方形的长和宽应是原来的几分之几,各应画多少格。

2、讨论:把放大和缩小后的图形与原来的图形相比,你有什么发现?

让学生明确:放大和缩小后的图形与原来的图形相比,大小变了,但形状没变。(放大和缩小后的图形长与宽的比与原来图形的长和宽的比是完全一样的。)。

3、教学试一试。

先独立画出按2:1的比放大后的三角形,再让学生说一说自己是怎么画的?

提问:量一量,斜边的长也是原来的2倍吗?你发现什么?

小结:把三角形按2:1的比放大后,各条边的长都是原来的2倍。

四、巩固练习。

1、做练一练。

2、做练习六第1、2题。

第1题要引导学生具体分析相关图形边的长度,并完成填空,再组织交流。

五、全课小结。

苏教版六年级数学教案及反思篇十六

1、讨论“练一练”

(1)看图说一说:图上熊猫馆在猴山的什么方向,距离是猴山多少米?孔雀园呢?

自己先算一算实际距离,然后与同座位的同学说一说。

汇报交流:熊猫馆在猴山的什么方向?距离猴山多少米?怎么算出来的?连起来怎么说?

孔雀园呢?

引导学生说出:熊猫馆在猴山北偏西60°方向120米处。孔雀园在猴山南偏东35°方向90米处。

(2)蛇馆在猴山南偏西45°方向150米处。怎么在图上表示出它的位置。

各自在图上画出表示南偏西45°方向的射线,再算出图上距离,最后标出蛇馆的位置。

练习后交流思考的方法和具体的画法。

2、讨论练习十二第3题。

(1)出示题目,理解题目所包含的信息。

(2)飞机a在机场的什么位置?

各自在图上表示出来,然后汇报交流。

苏教版六年级数学教案及反思篇十七

教学目标:

1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。

2、发展学生思维,侧重培养学生分析问题的能力。

教学重点:理解数量关系。

教学难点:根据多几分之几或少几分之几找出所求量是多少。

教具准备:多媒体课件。

教学过程:

一、旧知铺垫(课件出示)。

1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?

(1)一块布做衣服用去。(2)用去一部分钱后,还剩下。

(3)一条路,已修了。(4)水结成冰,体积膨胀。

(5)甲数比乙数少。

2、口头列式:

(1)32的是多少?(2)120页的是多少?

3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?

4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应用题”。

二、新知探究。

(一)教学例2。

1、课件出示自学提纲:

1)画出线段图,分析题意,寻找解题方法。

2)小组间说出图中各部分表示什么?哪些是已知的,哪些是要求的,哪一个是表示单位“1”的量?让后把线段图表示完整。

3)四人小组讨论,根据线段图提出不同解决办法,并列式计算。

2、学生汇报:

解法二:80×(1-)=80×=70(分贝)。

3、学生讨论两种解法的不同:两种方法都是从整体与部分的关系入手。第一种思路是从。

总量里减去一个部分量;第二种方法是求出部分量与总量的比较关系,再运用求一个数的。

几份之几是多少的方法求出这个部分量。

4、巩固练习:p20“做一做”

(二)教学例3。

1、读题理解题意后,提出“婴儿每分钟心跳的次数比青少年多”表示什么意思?(组织学生讨论,说说自己的理解)。

2、引导学生将句子转化为“婴儿每分钟比青少年多跳的次数是青少年每分钟心跳次数的”。着重让学生说说谁与谁比,把谁看作单位“1”。

3、出示线段图,学生讨论交流,结合例2的解题方法,学生独立列式计算后全班交流两种解题方法。

解法一:75+75×=75+60=135(次)。

解法二:75×(1+)=75×=135(次)。

4、巩固练习:p21“做一做”(列式后让学生说说算式各部分表示什么)。

三、当堂测评。

练习五第2、3、4、5题。

1、学生依据例题引导的解题方法,引导学生抓住题目中关键句子分析,找到谁与谁比,

谁是表示单位“1”的量。独立完成。教师巡回指点,照顾差生。

2、小组间解决疑难,全班汇报,教师讲评。

四、谈收获、找疑难。

这节课你有什么收获?还有什么不懂的吗?

设计意图:

例2和例3都是在理解和掌握了求一个数的几分之几是多少的问题的思路和方法的基础上,学习解决稍复杂的求一个数的几分之几是多少的问题。

教学中,我依然依据教学例1时教给学生的解答步骤进行分析解答,找出单位“1”,并画出线段图帮助理解。教学中,我引导学生紧扣线段图,直观地理解题意,并引导学生从数量和分率两方面入手,培养学生思维的多样性。但本堂课,老师讲解的部分似乎多了一些,留给学生讨论、练习的时间稍为稀薄。

【本文地址:http://www.xuefen.com.cn/zuowen/12650538.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档