分数除法教学设计与反思大全(17篇)

格式:DOC 上传日期:2023-11-17 06:39:08
分数除法教学设计与反思大全(17篇)
时间:2023-11-17 06:39:08     小编:QJ墨客

建筑是一种通过设计和构造建筑物来满足人们居住和工作需求的活动。写总结时要注重语言的简洁明了,让读者一目了然。总结是提高学习和工作效率的一种重要方法。总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。总结能够帮助我们更好地管理时间和资源。那么我们该如何写一篇较为完美的总结呢?以下是一些成功人士的总结经验,希望能给大家一些启示。

分数除法教学设计与反思篇一

分数除法(二)北师大版数学五年级下册第三单元的第三课时。它是分数除以整数的后继性学习,为分数除以分数及后面的分数混合运算提供认知和学习基础。

教材对本课时的教学方法是让学生通过多次观察,从中归纳出一个数除以分数的计算法则,我称这为倒数计算法。然而根据我多年的教学经验来看,学困生并不能正确运用倒数计算法,为了让大多数学生都能掌握并能正确计算一个数除以分数,教学中我引进了通分计算法。

为此,我把本课时的教学目标定为以下三条:

1、掌握一个数除以分数的方法,并能正确计算。

2、经历猜测、验证和归纳的过程,利用通分法计算的结果来推理出倒数法计算的过程。

3、利用数形结合的方式,体会“转化”的数学思维方法。

本课时的教学重点是运用计算方法正确进行计算,教学难点是理解一个数除以分数的计算方法。

本课时教师在教学中引导学生多看图观察,让学生经历猜测、验证和归纳的学习过程,使他们通过小组合作理解计算法则。

老师准备平均分成2份、3份和4份的圆纸片各4张,为学生准备一张练习纸,练习纸上画好三组没有平均分的圆纸片和书第27页上画一画的题目,把书中已画出的部分隐去,让学生亲自去画。

1、复习铺垫,提供猜测基础。

数学的学习离不开学生的经验基础和认知水平,为了让学生能正确理解本课时内容,我首先出示复习题1:“把1/2张饼平均分给4个小朋友,每个小朋友能分到几张饼?”学生根据前一课时所学方法分别用倒数法:1/2÷4=1/2×1/4=1/8(张)或者用通分法:1/2÷4=1×4/2×4÷4=1/8(张)通过列式计算。然后让学生说一说计算法则。

接着出示题2:有4张同样大的饼,每2张一份,可分成多少份?

在解答这两题的基础上,我提出问题:猜一猜4÷1/2等于几?由于受到上一课时的负迁移,部分学生仍然会用一个分数乘整数的倒数,算成:1/4×1/2=1/8,当然也可能会正确计算出结果。这时教师适时引导学生明白:判断一个猜想是否正确,需要通过科学地验证。

这样的设计既为学生提供了学习新知识的经验基础,又能激起学生学习新知识的兴趣。

2、验证猜想,理解计算过程。

学生在练习纸上画出平均分的过程,并通过小组合作形式理解计算的过程。反馈时,教师引导学生用自己的话说清计算的思路,大部分学生会认为1张饼里有2个1/2,可以分给2个小朋友吃,4张饼就能分别8个小朋友吃,列式为:4÷1/2=4×2=8(个)。但这个过程并不能使学生自然过渡到对倒数法解题的理解,也就是说,学生通过4÷1/2=4×2=8(个)并不能理解4÷1/2可以用4×1/2的倒数来计算。这时我引进了通分法来计算:让学生观察示意图,理解4÷1/2就是求4里面含有几个1/2。而4就是8/2,根据学生以前知识结构,学生易于知道里有8个,最后根据学生的回答板书计算方法,4÷1/2=8÷1/2=8;追问:8是怎样算出来的?学生再次从计算的角度去思考:当两个分数的分母相同时,只需要用被除数的分子除以除数的分子就能求出商。

由于通分法计算遵从了学生的认知水平,易于被学生尤其是学困生理解,而倒数法的意义很难被学生理解,但它简洁的计算过程又是今后学习不可或缺的。所以在教学中我把两种计算方法同时渗透,力求使让通分法成为理解倒数法的基石。

这个教学过程完成了教学目标中的“让学生经历猜测、验证和归纳的过程,利用数形结合的方式,体会“转化”的数学思维方法。”

3、大量练习,使用计算方法。

数学的归纳过程不是把一个单一的数学现象,而是把一系列有相同特点的数学现象抽象成具有代表意义的符号特征,这就是建模过程。

为了让学生能充分感知一个数除以分数的计算过程,我先出示了两道变式题:每个小朋友吃1/3张、1/4张饼,可分给几个小朋友吃?让学生模仿前面的例题进行实际操作,独立完成计算,教师巡视中加强学困生的辅导。

接着出示书中“画一画”的练习,以同桌合作的方式,再次让学生体会借用图形来理解计算的优势,认识数形结合对数学解题的帮助,从而完成这三个教学目标。

在大量计算的基础上,引导学生观察这些算式,然后用自己的话归纳出一个数除以分数的计算方法。

4、观察比较,选择计算方法。

让学生观察用通分法与倒数法的计算过程,体会倒数法在计算中简洁优美。但让学生体会:如果觉得通分法更适合,也可以使用通分法进行计算。

《数学课程标准》提倡让不同的人在数学上得到不同的发展,对于数学认知水平较低的学生,允许他选择并不优化的方法,等知识水平有了进步再来运用其他更有利的方法进行学习。

5、归纳总结,完善计算法则。

通过前面多次的叙述和大量的计算,计算法则已是呼之欲出了,但学生的语言不够简洁扼要。这时我提出:看谁说的计算方法与数学家说的方法最接近?并说出前一部分:“一个数除以分数等于——”。让学生接着完成后面的部分。最后出示书中的计算方法,并对学生的归纳总结提出鼓励性评价——太棒了,你们大多数都有数学家的天份。

板书内容较多,从学生的猜测到验证过程,一步步引导学生体会数学的学习方法,为学生选择自己喜欢的计算方法提供了直观可靠的依据。

分数除法教学设计与反思篇二

分数除法应用题,历来都是教学中的难点。要突破这个难点,让学生透彻理解这类型的应用题,就要抓住乘除法之间的内在联系,通过运用转化、对比,使学生了解这类分数应用题特征,再借助线段图,分析题中的数量关系,找出解题规律。我主要从以下几个方面入手:

本来人体的机体构造对于小学生来说是一个很有趣的问题。教学一开始我把人体的彩图展现在学生面前,使学生感到数学就在自己的身边,在生活中学数学,让学生学习有价值的数学。使学生从中了解到更多有关人体构造的知识,增加了学生的知识面。

教学中,为让学生认识解答分数除法应用题的关键是什么,我故意用乘法应用题与例题作比较,让学生从中发现与乘法应用题的区别。学生通过交流对比,亲自感受它们的异同,找出它们的内在联系与区别,亲身感受应用题中数量之间的关系,然后想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数除法应用题的关键也是从题目的关键句找出数量之间的相等关系,再列出方程。

在解答应用题的.时候,我鼓励学生尽可能地找出多种方法,让学生从多角度去考虑,这样做可以拓展学生思维,引导学生懂得多角度分析问题,解决问题。充分让学生亲身体验,让学生在探究中加深对分数除法应用题数量关系及解法的理解,提高能力,为学生进入深层次的学习做好充分的准备。

德国教育家第斯多惠说过这样一段话:如果使学生习惯于简单地接受和被动地工作,任何方法都是坏的;如果能激发学生的主动性,任何方法都是好的。反思整个教学过程,我认为这节课教学的成功之处有以下几方面:

1、教学内容“生活化”

国家数学课程标准》指出:“数学教学应该是,从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”纵观整节课的教学,从引入、新课、巩固等环节的取材都是来自于学生的生活实际,使学生感到数学就在自己的身边。

2、解题方法“多样化”

数学课程标准》中,将“在解决问题的过程中发展探索与创新精神,体验解决问题策略的多样性”列为发展性领域目标。而这一目标的实现除了依靠学生自身的生理条件和原有的认知水平以外,还需要相应的外部环境。这节课上学生一共提出了5种解题方法,其中有3种是我们平时不常用的,第5种是我也没有想到的。我从学生的需要出发及时调整了教案,让每一个想发言的学生都能表达自己的想法,尽管他们有些数学语言的运用还不太准确,但我还是给与了肯定与鼓励。在这种宽松的氛围下,原本素不相识的师生在短短40分钟的时间里就产生了情感上的交融。学生有了运用知识解决简单问题的成功体验,增强了学好数学的信心,并产生进一步学好数学的愿望。虽然后面还有两个练习没有来得及做,但我认为对一个问题的深入研究比盲目地做十道题收获更大,这种收获不单单体现在知识上,更体现在情感、态度与价值观方面。

3、师生交流“情感化”

数学教学改革,决不仅仅是教材教法的改革,同时也包括师生关系的变革。在课堂教学当中,要努力实现师生关系的民主与平等,改变单纯的教师讲、学生听的“注入式”教学模式,教师应成为学生学习数学的引导者、组织者和合作者,学生成为学习的主人。纵观整个教学过程,教师所说的话并不多,除了“你是怎么想的?”“还有其他的方法吗?”“说说看”等激励和引导以外,教师没有任何过多的讲解,有学生讲不清楚,教师也是用商量的口吻说:“谁愿意帮他讲清楚?”当一次讲不明白,需要再讲一遍时,教师也只是用肢体语言(用手势指导学生看图)引导学生在自己观察与思考的基础上明白了算理。学生能思考的,教师决不暗示;学生能说出的,教师决不讲解;学生能解决的,教师决不插手。由于教师在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使他们真正成为科学知识的探索者与发现者,而不是简单的被动的接受知识的容器。

4、值得商榷的几个方面:

(1)形式能否再开放一些。

(2)优生“吃好”了,能否让差生也“吃饱”等思想方法,以及如何运用已有知识解决问题的方法,从而提高学生的数学素养。

分数除法教学设计与反思篇三

教学目标:

1、通过对比两个除法算式与一个乘法算式,比较已知数和得数,理解并概括出分数除法的意义。

2、掌握分数除以整数的计算方法。

3、通过教学,培养学生的知识迁移能力和抽象、概括能力。

4、使学生明确知识间是相互联系的。

教学重难点:

重点:

理解分数除法的意义,掌握分数除以整数的计算方法。

难点:

教学过程:

一、导入。

1、例1。

2、改编条件和问题,用除法计算。

二、教学实施。

学生试着列出算式。

(1)例1引导学生分析并用图表示数量关系。

师问:求每份是这张纸的几分之几,怎样列式?

(2)列式计算。

师问:从图上看,结果是多少?这个结果是怎样得到的?

学生折一折,算一算。

(3)理清思路。

思路一:把五分之四平均分成2份,就是把4个五分之一平均分成2份,每份是2个五分之一,也就是五分之二。

思路二:把五分之四平均分成2份,求每份是多少,就是求五分之四的二分之一是多少。

(4)总结分数除以整数的计算方法。分数除以整数等于分数乘这个数的倒数。

5、巩固练习。完成教材第30页“做一做”。

三、课堂作业设计。

1、填空。

(1)分数除法的意义与整数除法的意义(),都是已知()与(),求()的运算。

(2)分数除以整数(0除外),等于分数()这个整数的()。

2、计算并验算。

分数除法教学设计与反思篇四

应用题的教学是小学一至六年级数学教学的重要内容,也是学生学习中出现问题最多的内容。长期以来一直受到教师们的重视,特别是到了六年级要学习的分数乘除法应用题,更是重中之重,因为它是小学毕业考试的必考内容。一些老教师根据多年来的教学经验总结出一套分析解答分数应用题的方法,如“是、占、比、相当于后面是单位“1”;知“1”求几用乘法,知几求“1”用除法”等等。这些方法看似行之有效,在一定意义上也为那些学习有困难的学生提供了帮助。但长此以往,学生便走上了生搬硬套的'模式,许多同学在并不理解题意的情况下,也能做对应用题。然而在这种教学方法指导下获得的知识是僵化的,许多学生虽然会熟练的解答应用题,但却不会在实际生活中加以运用,原因在于他们生活中遇到的问题不是以标准形式的应用题出现,在这里找不到“是、占、比、相当于”,也就找不到标准量,学生因此无从下手。

而我教学时,所说的话并不多,除了“谁能说出这一题的数量关系式?”“谁会解答?”“还有其他的方法吗?”“说说看”“有没有不同的意见”等激励和引导以外,教师没有任何过多的讲解,当学生一次听不明白,需要再讲一遍时,我也只是用肢体语言(用手势指导学生看图)引导学生在自己观察与思考的基础上明白了算理。学生能思考的,我决不暗示;学生能说出的,我决不讲解;学生能解决的,我决不插手。由于我在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使他们真正成为科学知识的探索者与发现者,而不是简单的被动的接受知识的容器。这样的教学,可以更好的调动学生学习的主动性,鼓励学生自己提出问题,解决问题,从而提高学生解决实际问题的能力。

教学中我把分数除法应用题中的例题与“试一试”结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。我在教学中准确把握自己的地位。我真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显了学生的主体地位,体现了生本主义教育思想。

在巩固练习中,我通过鼓励学生根据条件把数量关系补充完整,看图列式、编题,对同一个问题根据算式补充条件等有效的练习,拓展了学生的思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新思维。

分数除法教学设计与反思篇五

北师大版小学五年级数学下册第55~56页。

1、体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

2、培养学生动手动脑能力,以及判断、推理能力。

3、培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

体验分数除以整数的计算方法,并能正确的计算。

分数除以整数计算法则的推导过程。

长方形纸片、彩笔。

一、创设情景,教学分数除法的意义。

1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!

(1)每人吃1/2块饼,4个人共吃多少块饼?

(2)把2块饼平均分给4个人,每人吃了多少块饼?

(3)有2块饼,分给每人1/2块,可分给几个人?

2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

师:讨论:分数除法的意义和整数除法的意义一样吗?

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

(1)引导参与,探究新知。

师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

出示问题1。

请大家拿出一张操作纸,涂色表示出这张纸的4/7。

师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2=。

请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。

师:对这种做法大家有什么疑问吗?

生:这儿是除法怎么变成了乘法?

师:老师也有这个疑问,你能讲讲吗?

师:谁能结合图来讲一讲呢?

师:很好!把除法转化成乘法,问题迎刃而解,你真棒!

(2)质疑问难,理解新知。

接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

通过计算你们有什么发现?

生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21。

能再讲讲这样做的道理吗?

师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。

请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?

展示学生的分法。

师(指着涂色部分):你所表示的这一部分是4/7的多少?

通过直观图理解4/7的1/3是4/21。

(3)比较归纳,发现规律。

师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!

小组活动,说算法。

师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。

出示:分数除以整数,等于分数乘这个整数的倒数。

还有需要注意的地方吗?

生:有,除数不能为0。

师:谁能把分数除以整数的计算法则用自己的话来说一说?

完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。

那象这样的分数除以整数的题目在计算时要注意些什么?

生:要约分!结果最简。除号要变成乘号!

三、巩固练习。

学生独立完成。

四、课堂小结。

1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)。

分数除法教学设计与反思篇六

教学目标:

1.帮助学生理解、掌握稍复杂的分数乘法应用题的数量关系,学会用两种方法解答求一个树比少几分之几的分数应用题。

3.经过小组合作,让学生发现和探讨问题,在合作和交流的过程中,获得良好的情感体验,激发学生学习的兴趣,体验到数学与生活的密切联系。

教学重点:理解分数应用题的数量关系,会用两种方法灵活解答。

教学过程:

一.巧设铺垫,激趣导入。

1.创设情景:同学们,今天我们班来了一位特殊的嘉兵,谁呢?(请出小记者)现在我们来做个现场采访:在前面所的知识中,你感觉哪部分知识比较难理解?(学生自由发言,与小记者产生共鸣,从而引出“应用题”)。

2.设疑:小记者请求大家来帮助他如何理解、掌握应用题?

3.小记者设问探讨:解答前面所学的分数应用题关键在哪?(学生自由探讨,发表意见,引出找关键句、找单位“1”及数量关系,也可画线段图理解关系)。

4.小记者示题:说出下面各题的单位“1”及数量关系。

(1)一些奖状,发了3/5。

(2)已经看了全书的1/8。

(3)男生占全班人数的3/7。

(学生自由口述,选择喜欢的题目解答)。

引出“刚刚的3句话,在应用题中是作为什么部分?(关键句)。

5.示问:除了刚刚的几句关键句,你能找出在生活中哪些地方也用过类似的话?又如何找出单位“1”及数量关系(学生自由探讨,根据学生回答选择适当的关键句写在黑板上,为后面服务)。

二.探索交流,建构新知。

(一)自由构建新知。

1.设疑:一道完整的应用题除了关键句,还需要什么部分?(学生交流,引出“条件、问题“)。

2.编题:那你能否选择自己喜欢的关键句,补充一道完整的应用题?并思考如何解决?我们分小组比赛,看哪小组合作的既快又有新意,可邀请我们的小记者和老师一并参与(分小组合作探讨、交流)。

[设计意图:富有挑战性的问题犹如一枚枚石子投入蓄势已入的湖里,激起了层层涟漪,让学生在足够自主的空间、足够活动的机会中自主探究、积极合作、足以让学生获得积极的、深层次的体验。行云流水般的分数应用题教学全无例行公事、思路闭所,空间狭小之嫌。正所谓“灵感总青睐有准备的头脑”。学生结合自己的生活经验,自由提问,可以培养学生的发散性思维,并培养学生的问题意识。往往提出一个问题可能比解决问题更为有意义。这一环节,把学习的主动权真正交给了学生,让学生通过小组合作的方式操作,通过动脑编题——动手写题——自主探索、合作交流解题,放手让学生去探索,并通过小组合作比赛,这样不仅充分激发了学生的学习积极性,而且使学生体会了发现、掌握新知的方法。

(二)探讨交流新知。

1.交流展示成果:选一些小组向全班交流。

根据小组的汇报,选出一些典型的题目(多媒体)适时展示,全班共同交流。

例如:一些奖状共15张,发了3/5,还剩几张?(发了几张?)(发了的的比剩下的少几张?发了的比剩下的少几分之几?)。

示问:对刚刚那小组的成果(题目),你们会帮忙解答吗?(全班尝试解答,请部分学生板演)。

2.交流:“还剩几张”你是怎么想的?

学生介绍方法:

(1)根据数量关系,总共的—发了的=剩下的,总共的×3/5=运走的。

15—15×3/5。

=15—9。

=6(张)。

(2)画线段图帮助理解。

分析:结合线段图理解“把什么看作单位“!”,运走了几分之几,还剩几分之几,各是哪部分?怎么表示的?)。

15×(1—3/5)。

=15×2/5。

=6(张)。

整个方法介绍过程中,全班同学共同参与,群策群力,教师根据学生回答情况适时点拨。

3.小结:刚刚由于全班的共同努力,我们自己的问题自己想办法解决了,真是聪明!看来我们集体的智慧是无穷的。我们用了哪些方法来解答刚刚那一小组的题目的,说说你比较喜欢那种。(自由发言)。

那对于刚刚的方法还有什么困惑的吗?提出来大家共同解答。

(三)灵活运用新知。

2.学生解答剩余的题目,拓展、巩固对新知的理解。(自由发言、交流)。

4.小记者兴致昂然,想展示一下自己学到的本领,请其余同学出题来考他。(学生出题,视平台展示)。

4.创设情景:小记者解答有困难(数量关系出错,对应分率出错)请同学们帮助解答。

突出强调解答应用题的方法(理清数量关系,理清对应分率)。

[设计意图:结合学生表现颁发奖状,与我们的例题浑然一体,学生兴趣昂然激发了学生后面解决问题的积极性。同时设立小记者遇到困难,突出强调今天所学的知识的重点。这一活动,还是放手让学生自己去提问,再自己解决,充分相信学生,有助于扩展学生的思维空间,培养学生的创新意识和合作精神,增强了数学内容的趣味性、开放性。

三.巩固应用。

小记者出题:看同学们表现那么棒,考官做的那么溜,也想当会考官,你们敢不敢应战?(多媒体演示出题)。

[总体设想]:

1.从生活经验导入新课,使数学问题生活化。

课一开始,联系学生学习生活实际,说说学习方面比较困惑的知识话题导入新课,从“解答应用题关键所在”来切入主题。这样做使学生感到所学的内容不再是简单枯燥的数学,而是非常有趣、富有亲切感,他们被浓浓的生活气息所感动,兴致勃勃的投入到新课的学习之中。

2.让学生亲身体验知识的形成和发展。

小学生已经具有了一定的生活经验,因此教师设计了这样一个情节:小组自由选择喜欢的关键句编题并思考如何解答。学生通过合作探讨交流,得出解答的方法。从自己质疑——解疑问——汇报交流,整个教学过程环环相扣,双基训练扎实。教学中设置了许多开放性问题,拓宽了学生进行实践、创新学习的课程渠道,注重学生的情感体验和个性发展,增强数学内容的趣味性、开放性,强调学生数学学习的过程。

3.注重学习的开放性,学生的自主探究、合作交流。

整个学习过程,从问题导入,引出新知,到自由探讨新知,解决问题都是学生自主探究形成,真正主人教师只是参与其中,从而引导和辅助。学生是整节课引发的一环有一环,促使学生层层深入的思考,让学生自觉地、全身性的投入到学习活动中,用心发现、用心思考、真诚交流。

分数除法教学设计与反思篇七

分数除法教学反思分数除法简单应用题教学是整个小学阶段应用题教学的重、难点之一,如何激发学生主动积极地参与学习的全过程,引导学生正确理解分数除法应用题的数量关系。我作了以下的一些教学尝试:

数学来源于生活,教学要从学生的生活经验和已有的知识背景出发,给他们提供充分的从事数学活动和交流的机会。在本课教学的一开始,我就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,通过班级的人数引出题目:六年级男生人数是全班人数的二分之一,男生有27人,六年级有多少人?让学生简单计算。然后再让学生介绍本班的情况,自编类似的应用题,交给另一部分同学解答,引发学生参与教学的积极性,使学生感受到数学就在自已的身边。在生活中学习数学,其乐无穷!

教学中,为让学生认识解答分数除法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数除法应用题的关键是从题目的关键句找出数量之间的相等关系。我在教学中努力体现“自主、合作、探究”的`学习方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师在教学中存在偏差。教师往往喜欢重关键词语琐碎地分析,喜欢用严密的语言进行严谨的逻辑推理,虽分析得头头是道,但容易走两个极端;或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的部分,无为地做深入的、细碎的剖析,这样既浪费了宝贵的课堂时间,又起不到好的效果。教学中我把分数除法应用题与分数乘法应用题结合起来进行教学,让学生通过讨论、交流、对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。教师在教学中准确把握自己的地位。教师真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显了学生的主体地位,体现了生本主义的教育思想。

在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如“‘是、占、比、相当于’后面就是单位1”;“知1求几用乘法,知几求1用除法”等等的做法,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

教学中存在的不足之处在于,启发不够到位。教学过程中学生时有答非所问和不知怎样答的情况,如归纳本节课中的应用题特点时,由于没有引导学生分析数量。

分数除法教学设计与反思篇八

1、说出几个分数的倒数。

其中一道是6/93,

(当学生使用分子除以整数的方法时,教师无须强调一定要使用一般方法:即用分数乘整数的倒数。)。

问题:谁走得快些?该如何比较?

学生列出了算式1:22╱3(小红每小时走多少千米?)。

2、探究22╱3如何计算:教师在学生的回答过程中画出线段图并进行讲解。

(除数是分数的除法的算理是教学的难点,但教师比较轻易地就滑过去了,没有好好地把握让学生探究的机会,而更在于让学生掌握计算方法这一结果。这个环节完全可以基于学生原有的知识进行迁移,放手让学生自己探究,猜想-----是否也是乘以除数的倒数呢?验证----用自己的策略或画几何图形、或用线段图、或利用乘除法之间的关系去推理、归纳、证实----建立模型,得出一般的方法。一定要让学生理解过程,能熟练地阐述算理。否则,就如某些学生的迷茫:我不知道为什么会是这样。)。

3、解决小红的速度问题,列式、计算。学生列出算式后进行计算。5╱65╱12。

(能不能让学生述说过程是怎样的呢?为什么可以乘以除数的倒数?)。

4、学生观察,并归纳计算方法。

5、对比,归一。比较分数除以整数和分数除以分数的方法,归纳为:除以一个不等于0的数,等于乘这个数的倒数。

(没有回应到要解决的问题。在新课程中解决问题都是与计算结合在一起的,要更多地关注学生思维的培养和解决问题的完整性。其实,解决这一个问题也不只是一种思路,教师没有意识到这一例题的资源的丰富性和开放性,对教材解读不到位。既可以通过单位时间的路程来比较,也可以通过单位路程所需要的时间来比较。作为比速度,当然是数值越大越快;作为比时间则数值越小越快。如果教师能意识到这一资源,能抓住这一出发点启发学生思考,那将是很有价值的。)。

(学生可能还有疑惑,可以让学生相互质疑,让学生看书质疑。尤其不要将课本仅仅看成是练习册,要发挥课本的指引作用,利用课本培养学生阅读课本的习惯。)。

1、书中的做一做。

(要真正做到心中有学生,心中有学困生,心中有学生容易错误的类型,并及时采取干预措施,补救失误或漏洞。)。

2、计算。

3、解方程。

(在学生群体练习的时候,要俯下身来看看学生整体掌握知识、运用技能的情况,看看学困生存在怎样的问题,在课堂上就寻求解决问题,变课后辅导为课内辅导。解方程这一练习形式大可不必。对于除数是分数的除法,学生很容易出现错误,教师应该基于自己的教学经验教训或者是他人的经验教训,对于学生出现的错误类型心中有数并就此设计一些辨析题让学生判断正误,及时提醒。或者就地取材,针对学生的错误即时提取错误资源并板书,让学生来判断。在练习过程中,发现学生对解方程本身就有问题,学生在两种技能都没有巩固的情况下进行综合练习,欲速不达。另外,可以增加一道解决问题的题目让学生完成。)。

分数除法教学设计与反思篇九

在分数除法这一单元中,主要展示的是分数除以整数、整数除以分数、分数除以分数这三种类型的计算方法,其中,在分数除以整数的教学过程中,学生接受得比较快,学习效果也很好,但是在教学整数除以分数后,通过学生的练习反馈,发现学生在计算中出错比较多,主要表现在一下几方面:

1.在除号与除数的同步变化中,学生忘记将除号变成乘号。

2.在除数变成其倒数的时候,学生误将被除数也变成了倒数。

3.计算时约分的没有及时约分,导致答案不准确。

为什么会形成这些错误现象,通过对比分析,可能有一下原因:

1.教学方法上:例题讲解分量不够;教学语速较快;学困生板演机会不够多;讲得多、板书方面写得少。

2.学生学法上:受分数除以整数的教学影响,形成了思维定势,以为每次都是分数要变成倒数,整数不变,从而导致同步变化出现错误;其次,学生听课过程中不善于抓重点,在分数除法中,被除数是不能变的,同步变化指的是除号和除数的变化;最后,学生的学习态度和学习习惯也直接影响了本科的教学效果。

1.增加学生板演的机会,

2.课堂上,对于关键性的词语,要求学生齐读,用以加深印象。

3.辅差工作要求学生以同位为单位,进行个别辅导。

分数除法教学设计与反思篇十

分数除法是在学生学习了整数乘除法以及解简易方程,并且学习了分数乘法知识的基础上,学习分数除法和比的初步知识。这些知识为学生学习分数除法打下了基础,学习分数除法的知识对加深学生对计算方法的理解和提高学生的计算能力有很好的作用。内容包括:分数除法、解决问题、比和比例的应用。这些知识都是学生进一步学习的重要基础,通过这些知识的学习,学生一方面基本完成任务了分数加、减、除的学习任务,比较系统地掌握了分数四则运算;另一方面又开始了比的初步知识的学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。

就学习分数除法而言,首先要明确分数除法的运算意义,在此基础上探究并掌握它的计算方法,然后学习分数混合运算。关于分数除法中的解决问题,主要有两种情况,一种是问题情境的数量关系与整数除法的实际问题相同,区别只是数据由整数变成了分数。另一种是问题情境的数量关系具有一定的特殊性,表现为已知一个数的几分之几是多少,要求这个数。这样的实际问题,与求一个数的几分之几是多少的实际问题具有紧密的内在联系,即数量关系相同,而区别在于已知数与未知数交换了位置。

教学目标。

知识和技能:

1、使学生理解倒数的意义,会求一个数的倒数。

2、使学生理解分数除法的意义,掌握分数除法的计算法则,能熟练地进行计算。

3、使学生能够用方程或算术方法解答“已知一个数的几分之几是多少,求这个数”的应用题,进一步提高学生解答应用题的能力。

过程与方法:

动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

情感、态度和价值观:

使学生进一步受到事物是相互联系的辩证唯物主义观点的启蒙教育。教学重点、难点:

一个数除以分数的意义以及计算方法,并会分数除法解决相关的问题。掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。

我们来看这样一道乘法应用题,妈妈在超市买了3盒糖果,每盒是100克,3盒糖果共重多少克?我们可以列式:100×3=300(克)。

如果把这道乘法应用题改编成两道除法应用题,一起来看一下:a、3盒水果糖重300克,每盒有多重?300÷3=100(克)b、300克水果糖,每盒100克,可以装几盒?300÷100=3(盒)(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。1/10×3=3/10(千克)3/10÷3=1/10(千克)3/10÷1/10=3(盒)。

通过与前三道题我们可以得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。

分数应用题是小学数学应用题的重要组成部分,分数应用题的数量关系比较复杂,学生分析起来比较困难。下面介绍几种解答分数应用题的常用方法:

一、对应法。

通过审题正确判断单位“1”的量后,把具体数量与分率对应起来,这是解答分数应用题的关键。

如“某筑路队筑一段路,第一天筑了全长的1/5多10米,第二天筑了全长的2/7,还剩62米未筑,这段路全长多少米?”

题目中总长度是单位“1”的量,(62+10)米与(1—1/5—2/7)相对应,因此,总长度为:(62+10)÷(1—1/5—2/7)=140(米)。

二、变率法。

题目中几个分率的单位“1”不相同,可先统一单位“1”的量,然后变换分率,寻找已知数量的对应分率,最终解决问题。

该题中的“1/4”是把余下的本数看作单位“1”,而余下本数又是总本数的(1—2/5),因此,我们可以把中年级分得的本数理解为总本数的(1—2/5)×1/4,这样可求出总本数:180÷[1—2/5—(1—2/5)×1/4]=400(本)。

三、常量法。

题目中几个数量前后都发生了变化,而有的数量不变,这就是常量,解题时可把常量看作单位“1”。

如“小华读一本书,已读页数占未读页数的1/5,如果再读30页,已读页数就占未读页数的3/5,这本书共有多少页?”

该题中再读30页后,已读页数与未读页数都在变化,唯独总页数没有变,把总页数看作单位“1”,则总页数为:30÷(3/3+5-1/1+5)=144(页)。

四、联系法。

某些题目中几个数量都与一个数量有联系,把这个数量作为桥梁,解题思路就顺畅了。如“某小学四、五、六年级学生共种树576棵,五年级种树棵数是六年级种树棵数的4/5,四年级种树棵数是五年级种树棵数的3/4,五年级种数多少棵?”

题目中五年级种树棵数与六年级种树棵数有关,又与四年级种树棵数有关,所以,五年级种树棵数是个桥梁,把它看作单位“1”,把“五年级种树棵数是六年级种树棵数的4/5”改变为“六年级种树棵数是五年级种树棵数的5/4倍”,所以,五年级种树棵数为:576÷(1+3/4+5/4)=192(棵)。

五、转化法。

将复杂问题中的某些条件进行转化,结合改变成简单的问题,从而化繁为简。

把“第一车间人数是其余两个车间人数的1/2”转化为“第一车间人数占三个车间总人数的1/1+2”,“第二车间人数占其余两个车间人数的1/3”转化为“第二车间人数占三个车间总人数的1/1+3”,这样,就能求出三个车间的总人数:500÷(1-1/1+2-1/1+3)=1200(人)。

六、假设法。

对题目的某些数量作出假设,导致运算结果与题目不相符合,然后找出产生差异的原因,最终解决所求问题。

如“一项工程,甲、乙两队合做12天完成,现在先由甲队独做18天,余下的再由乙队接着做了8天正好完成,如果全工程由甲队独做,要多少天才能完成?”

假设甲、乙两队都做8天,则共做1/12×8=2/3,比工作总量“1”少1/3,这1/3就是甲队(18-8)天所做的工作量,所以甲队独做的时间为:1÷[1/3÷(18-8)]=30(天)。

七、倒推法。

题目中几个分率的单位“1”不相同,而且单位“1”难以统一,可以先求部分量,再一步一步地逆推出总数。如“一捆电线,第一次用去全长的1/6多2米,第二次用去余下的3/4少4米,还剩16米,这捆电线有多少米?”

这题中两个分率的单位“1”均为未知量,我们可以从较小的单位“1”求起:(16-4)÷(1-3/4)=48(米),(48+2)÷(1-1/6)=60(米)。

八、方程法。

一些复杂的分数应用题用算术方法难以解答,不便于理解,如用方程可顺向求解,容易掌握。如“一项工程,甲、乙两人合做8小时完成,甲独做14小时完成。现在甲做若干小时后,剩下的由乙接着做,前后共用18小时完成。求甲、乙各做多少小时?设甲x小时,则乙做(18-x)小时,根据两个人的工作量之和为1,可列方程:1/14x+(1/8—1/14)×(18-x)=1,解得×=2,18-2=16(小时)。

分数除法教学设计与反思篇十一

“数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”。分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。从以上的角度分析,彭老师的这节课具有以下两大优点:

新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的学习方式,指导建立具有“主动参与,乐于探究、交流合作”特征的多样化的学习方式,从而促进学生知识、技能、情感、态度和价值观的整体发展。因此,数学学习活动应该是一个生动活泼的、主动的、富有个性的过程,数学的教与学的方式,应该是一个充满生命活动力的过程。在教学中我引导学生用3张圆形纸片动手分一分,并学生思考把3块饼平均分给4个小朋友可以有几种分法,让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的,3块饼的,通过这一过程,学生充分理解了3÷4=的算理。

探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现数学的“再创造”,在这其中教师的指导作用是潜在和深远的。本课中,我让学生充分动手分圆片,让他们在自己的尝试、探究、猜想、思考中,不断产生问题、解决问题、再生成新的问题,给学生留与了操作的空间,因此学生对分数与除法的关系理解得比较透彻。

总之,在整节课中我注重让学生主动参与学习过程,学生的主体地位得到了充分体现,在学习活动中,发展了个性,培养了能力。

1、在总结了分数与除法的关系后,最好让学生说清楚分数与除法是否完全相同,然后利用表格说清楚它们之间的相同与不同的地方。从而让学生体会分子、分母、分数线只相当于被除数、除数、除号,不是等于。

2、为了语言表达清楚,学生听得明白,建议把3块饼的“块”改为“个”,平均分成的每一份就说“块”。这样听起来比较清晰。

分数除法教学设计与反思篇十二

本节课是在学生学习了分数除法(一)的内容,即除数是整数的除法的基础上进行教学的。这节课的教学重点是使学生理解一个数除以分数的意义及计算方法,教学难点是使学生理解一个数除以分数的意义和基本算理。

教学中,首先设计了“分一分”活动,从整数除以整数到整数除以分数,借助除法的意义和图形语言,使学生初步体会“除以一个分数”与“乘这个分数的倒数”之间的关系;接下来的`“画一画”活动,指导学生利用图示分析数量关系,进一步体会分数除法的意义和算法,体现数形结合的思想;最后的“填一填,想一想”中,通过对前面问题思考过程的整理,使学生进一步理解分数除法的意义,让学生在观察、比较、分析中发现问题中蕴含的规律。课中采用让学生通过观察、比较与思考,发现知识间的内在联系,主要是教会学生一种学习方法,即分数除法的意义可联系整数除法的意义进行学习。

生没参与进来,或参与不够。那么在今后教学中无论课中、还是课余都应多加强对这部分学生的关注。

分数除法教学设计与反思篇十三

教学目标:

1.体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

2..培养学生动手动脑能力,以及判断、推理能力。

3.培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

教学重点:体验分数除以整数的计算方法,并能正确的计算。

教学难点:分数除以整数计算法则的推导过程。

教学准备:长方形纸片、彩笔。

教学过程:

一、创设情景,教学分数除法的意义。

1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!

(1)每人吃1/2块饼,4个人共吃多少块饼?

(2)把2块饼平均分给4个人,每人吃了多少块饼?

(3)有2块饼,分给每人1/2块,可分给几个人?

2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

师:讨论:分数除法的意义和整数除法的意义一样吗?

总结:分数除法的`意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

(1)引导参与,探究新知。

师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

出示问题1。

请大家拿出一张操作纸,涂色表示出这张纸的4/7。

师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2。

请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。

师:对这种做法大家有什么疑问吗?

生:这儿是除法怎么变成了乘法?

师:老师也有这个疑问,你能讲讲吗?

师:谁能结合图来讲一讲呢?

师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……。

(2)质疑问难,理解新知。

接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

通过计算你们有什么发现?

生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21。

能再讲讲这样做的道理吗?

师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。

请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?

展示学生的分法。

师(指着涂色部分):你所表示的这一部分是4/7的多少?

通过直观图理解4/7的1/3是4/21。

(3)比较归纳,发现规律。

师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!

小组活动,说算法。

师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。

出示:分数除以整数,等于分数乘这个整数的倒数。

还有需要注意的地方吗?

生:有,除数不能为0。

师:谁能把分数除以整数的计算法则用自己的话来说一说?

完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。

那象这样的分数除以整数的题目在计算时要注意些什么?

生:要约分!结果最简。除号要变成乘号!

三、巩固练习。

学生独立完成。

四、课堂小结。

1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)。

分数除法教学设计与反思篇十四

训练学生分析分数应用题的数量关系,明确分数乘除法应用题的相同点和不同点.。

准确判断单位1,正确地解答分数应用题.。

(二)判断单位1.。

1.鹅的只数是鸭的.。

2.甲的是乙.。

3.乙是甲的.。

4.男生人数的相当于女生.。

5.小齿轮的齿数占大齿轮的.。

(三)列式计算.。

1.4是12的几分之几?

2.12的是多少?

3.一个数的是4,求这个数.。

(一)教学例3第(1)题。

池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

1.读题并找出已知条件和问题。

2.提问:应把谁看作单位1?是根据题中哪句话判断的?

3.画图.。

4.列式解答。

答:鹅的只数是鸭的.。

(二)教学例3第(2)、(3)题.。

池塘里有12只鸭,鹅的只数是鸭的.池塘里有多少只鹅?

池塘里有4只鹅,正好是鸭的只数的,池塘里有多少只鸭?

1.画图理解题意。

2.列式解答。

3.集体订正。

(三)小结。

这三道题有什么相同点和不同点?解题关键是什么?

1.结构上。

相同点:都有3个数量,即鸭的只数,鹅的只数,鹅是鸭的几分之几;

不同点:已知和未知不一样.。

2.解题思路上。

相同点:都要首先弄清谁作标准,把谁看作单位1;

不同点:根据已知、未知的变化,确定不同的解答方法.。

解题关键是:正确分析题中的数量关系,明确谁作单位1.。

教师:分数乘除法应用题,在结构、解题思路及方法上,既有联系又有区别.我们在解。

(一)商店运来红毛衣25包,蓝毛衣15包,蓝毛衣的包数是红毛衣的几分之几?

(二)商店运来红毛衣25包,运来蓝毛衣的包数是红毛衣的.商店运来蓝毛衣多少包?

(三)商店运来蓝毛衣15包,正好是运来红毛衣包数的.商店运来红毛衣多少包?

(一)校园里栽了杨树144棵,栽的松树的棵数是杨树的,校园里栽了松树多少棵?

(二)学校买了蓝墨水30瓶,红墨水24瓶.蓝墨水是红墨水的几倍?

(三)农场有小牛40头,是大牛头数的.农场有大牛多少头?

1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

412=。

答:鹅的只数是鸭的.。

2.池塘里有12只鸭,鹅的只数是鸭的.池塘里有多少只鹅?

12=4(只)。

答:池塘里有4只鹅.。

3.池塘里有4只鹅,正好是鸭的只数的.池塘里有多少只鸭?

4=12(只)。

答:池塘里有12只鸭.。

分数除法教学设计与反思篇十五

《分数除法三》是北师大版小学数学第十册第三单元的内容。分数应用题的教学是小学数学教学中的一个重点,也是一个难点。本节课我制定了三维目标:能力目标:培养学生动手动脑能力,以及解决实际问题的能力。知识目标:在计算过程中,提高分数除法的计算速度和正确率,并能正确的计算,解决实际问题。情感目标:培养学生交流合作的意识和技能,让学生感受数学来源于生活,并体验成功的欢乐。传统的教学中,一般都用总结规律的方法来解这类题目:单位“1”已知,用乘法计算;单位“1”未知,用除法或方程解答。这种重结果轻过程的做法,束缚了学生思维的发展。我在教学中进行了一些的尝试,采用了开放式教学。

教材中提供了一个主题图,这个主题图为学生提供了丰富的数学信息,创设了问题情境,让学生对分数除法问题的解决提供了学习的方法与帮助。首先我从关键句“跳绳的人数是参加活动总人数的2/9。”入手,问学生当你看到这句话,你想到什么?这个问题比较开放,没有固定的结论。问这个问题我有两个目的:一是让学生能够根据老师的数学材料,通过分析、思考,提出各自不同的见解,并得到老师及同学的认可,他们内心深处会产生一种发现的快乐,一种成功的自我体验。第二个目的主要是让学生以分数乘法应用题的知识进行新旧知的学习迁移,得出数量关系式及表示分数意义的线段图,为后面的方程法及代数方法解题打好基础。

新《课程标准》提出:“加强估算,鼓励解决问题策略的多样化。”在完整的出示题目后,我让学生进行估计,培养学生的估算意识,学生要估算,必须要有依据,我想,大多数学生会根据线段图进行估计,又为解决问题策略的多样化埋下伏笔。根据教材的编写意图,是要让学生有多种解决问题的策略,但在解决分数乘除混合问题时,学生往往难以判断是用乘法还是用除法解答的,为了突破这个难点,我鼓励学生用方程解决除法的问题。反馈时,学生出现多种解决问题的策略,我鼓励学生用方程解决此类问题,但也有学生选择用除法或乘法进行计算,我借助线段图的功能理清解题思路,并强调把这些方法做为验证结果的方法,从而达到教材上以方程解法为主的目的。其它方法要不要作为重点分析,在黑板上要不要呈现?试教时,我呈现了学生所有的解题方法,虽然方法多样化了,但学生并没有真正掌握其中的方法。后来在周老师的建议下,我只呈现了方程一种方法,并强调把它作为一个主要解题方法。

1、在对教材内容准确把握的基础上,注重以“人的发展为本”,灵活使用教材,积极为学生创设主动学习的情境,使学生自我感受数学、体验数学、实践数学,从而激发学习和探究教学的热情。

2、在教学中,给学生充分提供表现、操作、研究、创造的空间,相信所有的学生都能学习,都会学习,学生的潜能就会像空气一样,放在多大的空间里,它就会有多大,使每个学生的潜能发挥出来,使他们能充分享受学习成功的乐趣。

3、在教学中,注重学生自己的思维过程,而不能仅仅提供前人的思维结果。创设开放的教学情景,营造积极的思维状态和宽松的思维气氛,肯定学生的“标新立异”、“异想天开”,努力保护学生的好奇心、求知欲和想象力,进而激发学生的创新热情,形成学生的创新意识,培养学生的创新精神,训练学生的思维能力。

4、要让学生经历自主探究的过程。探究是感悟的基础。没有探究就没有深刻的感悟。教学中,先让学生独立思考,探究解题方法,在独立探究的基础上,再让学生小组合作讨论,探究不同的解题方法。使学生经历独立探究、小组探究的过程,使学生对“分数除法问题”的算法有初步的感悟。

1、本节课学习方式有些单一,师生一问一答式较多,学生之间的合作学习、讨论还有所缺失。

2、巩固练习不够趣味性,缺少层次性。在巩固练习的教学过程中,为了增加练习的趣味性,应多安排一些数学游戏,以此来调动学生学习的积极性,使得学生在娱乐中巩固和深化所学知识,达到了寓教于乐的目的。

3、本节课缺少一些变式训练,评价不够到位,缺少激励性。

4、没有很好的调动学生的学习热情,老师牵着学生的鼻子走。

分数除法教学设计与反思篇十六

《分数除法》第一课时包含了两方面的内容:分数除法的意义和分数除以整数。本课时是在学习了倒数的基础上开展教学,所以学生已经理解了倒数的意义。实验教材与老教材比较,对于分数除法的意义教学有所弱化,不再要求学生讲清楚每道分数除法的意义,而是改为利用除法算式改写出乘法算式,相对来说,降低了本节课的难度,更加贴合学生实际情况。根据以上情况,本节课把重点定在理解分数除以整数的算理和计算方法上,其中,理解算理是本节课的难点。

教学本节课时,我首先出示4/52,直奔主题。利用例题,让学生进行探究学习。让他们先说说解题设想,包括折一折、画一画、算一算等方式。出乎我意料的是学生经过思考后,争先恐后地说出了多种解答方法。虽然有些方法都是不恰当的,但是学生积极主动的思考,使我感到最高兴的事。有些学生的每种算法把算理都解释得非常清楚。然后引导然后学生说说3份或其他几份怎么算。计算:4/53。最后引导归纳出:把一个数平均分成几份,求其中一份,就是求这个数的几分之一。

《新课标》指出:学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。在教学中只有确立了学生的主体地位,优化学习过程,才能促使学生的自主学习过程。在以往的教学中,教师往往是代替学生发言,代替学生思维,代替学生说出结论,这根本不能体现学生的主体性。久而久之会慢慢抹煞孩子的创新意识。在教学中教师要培养学生的创新意识,发挥学生的主体性,不代替学生去思维。

在计算教学中,一些教师怕学生思考,会出现思维分散,偏离重点,尤其是一些公开课,更不敢放手让学生去思考。这实际上是教师缺乏对学生的正确引导,导致不敢放手让学生去思考,最后只能自己替学生思考、归纳、总结。计算教学要体现学生思维的开放性。鼓励学生解决问题策略的多样化,就要让学生成为学习的主人,把思考的空间留给学生。在本课中,我注重学生思维的开放性,充分让学生自己去利用已有知识和经验,去寻找解决的计算方法,学生通过长期的训练,已能通过各种思维去寻找解决的办法。每种方法都可以看作是一种创新意识的体现。我认为这样的思维活动体现了以学生为主体的学习活动,对学生理解数学是非常重要的。学生的学习不是被动地吸收课本上现成的结论,而是一个亲自参与的充满丰富思维活动的实践和创新的过程。

同时在数学课堂教学中我注重对学生的评价,力争做到评价及时、准确。促使每个学生自主地发展,逐步达到培养学生自主学习、自主创新的能力,全面提高素质。

分数除法教学设计与反思篇十七

今天的教学与分数意义的学习在孩子们头脑中产生了强烈的矛盾冲突。前几天的分数都表示谁占谁的几分之几(即分率),可今天求的却是具体数量。特别是例2,虽然运用学具让所有学生参与到知识的探索过程中,但仍旧感觉推进艰难。学生困惑点主要在以下两方面:。

1、为什么把3块月饼看作单位“1”,平均分成4份,取其中1份不是1/4?

针对上述两个问题,我在教学中主要采取了以下一些策略:。

1、复习环节巧铺垫。

在复习导入中增加一道用分数表示阴影部分的练习。其中一幅图是圆的3/4,另一幅图是圆的3/12。这样,当学生困惑于例题3/4块和3/12块结果时,就能通过直观图,前后呼应,使学生豁然开朗。

2、审题过程藏玄机。

在教学例2请学生读题后,首先请学生思考“3块月饼4人平均分,每人能得到一整块月饼吗?”然后用语言暗示“每人分不到一块月饼,那到底能分得一块月饼的几分之几呢?请同学们用圆形纸片代替月饼,实际动手分一分,看看分得多少块?”有了每人分不到一块月饼的提示,又有了“到底能分得一块月饼的几分之几”的暗示,学生探索的落脚点定位到了以一块月饼为单位“1”,且初步理解了问题是求数量“块”而非部分与整体之间的关系。

通过上述改进措施,学生理解3/4相对容易一些。

【本文地址:http://www.xuefen.com.cn/zuowen/12635984.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档