倍数的认识说课稿(专业13篇)

格式:DOC 上传日期:2023-11-16 15:18:12
倍数的认识说课稿(专业13篇)
时间:2023-11-16 15:18:12     小编:JQ文豪

总结可以让我们更清晰地认识到自己的优点和不足,从而有所收获和进步。在总结中要注意突出重点,给读者以启发和思考。以下是权威机构发布的心理健康管理指南,对提高生活幸福度很有帮助。

倍数的认识说课稿篇一

今天我参加了麻州中心小学数学组的教研活动,郭雷明老师上的《最小公倍数》(五下)一课给我留下了较深的印象。合理清晰的'思路、简洁明亮的风格、灵活有效的调控,取得了较好的教学效果。

一、复习旧知道。

复习题目灵活多样,学生能积极主动参与。

二、谈话引入——自然贴切。

1.从辅砖话题引入信息。

2.讨论“全部辅满边长最小是多少”的意思。

3.出示问题:边长最小是多少?

这一情境的创设至少有三点好处:一是适应生活,让学生体会学习数学的乐趣;二是激起探究问题兴趣,让学生算算家里的地板怎么辅?;三是切题,引出了最小倍数。

二.建立概念——联系生活。

1.师生共同寻找:

2的倍数有:4、6、8、10、12、14。

3的倍数有:6、9、12、15、18、21。

30以内4和6的公倍数有:6、12.。

2.尝试用集合图来表示黑板上的内容。

2的倍数3的倍数。

这一环节之后是否要拓展?如果把“30以内”去掉,集合图里的数据该怎样修改?省略号表示什么?(两个数的公倍数是无限的)。

三.探究求法——重视技能。

努力引导学生主动参与两个数最小公倍数的探究过程,重视数学技能的形成。特别是倍数关系和互质关系的两个数的最小公倍数的求法,让学生经历了猜测——举例验证——归纳的学习过程,学生思维活跃。

四.巩固提高——突出重点。

探讨一个问题:练习的侧重点应该是一般关系还是特殊关系两个数最小公倍数的求法?

特殊关系两数的最小公倍数探究过程费时费力,但规律出来之后是容易掌握的,关键是在求之前先判断。一般关系在概念教学时就已完整呈现了方法,理解较方便,但从我们平时经验看,出错的往往是这一类。

另外,照应开头,回归生活,也有补一些应用性的解决问题。

我认为本节课郭老师在以下几个方面值得我借鉴:

1、真正体现了学生的主体地位,教师的引导作用。通过让学生找找2和3的倍数,然后教师通过这样的引导:“观察2和3的倍数,你发现了什么?”让学生仔细观察,自主探究,从而引出公倍数。在探讨公倍数的特性时,郭老师同样以开放的形式,让学生自、主学习,得出结论。整堂课张老师始终是一个引导者,与学生共同研究、学习。

2、鼓励学生独立思考、自主探索和合作交流。教师给学生较大的空间,让学生自己探索,与同桌合作交流。

3、本节课教学环节层次清楚,条理清晰,而且环环相扣。

本堂课张老师通过复习旧知引入新知,然后通过一系列的学习与练习,最后把知识应用到生活中,解决遇到的问题。这样的设计完全符合认知规律。

《求一个小数的近似数》评课稿今天,听了吴丽萍老师的《求一个小数的近似数》一节课,心里有些想法,现在把这些想法写出来。

先说说这节课的三个难点:

2、对于例题中“精确到十分位”这样的数学术语,学生还是第一次接触,不容易理解这句话的含义。即使学生读懂了题意,理解了精确到十分位就是保留一位小数,也必须熟练掌握“四舍五入”这一技术。弄清楚要看十分位下一位百分位上的数决定是舍还是入。学生会误以为精确到十分位就是将十分位上的数四舍或五入。不掌握技术要领,题目要求一有变化,学生会像无头的苍蝇,不知从何下手。

3、是遇到需要连续进位的。如:将0.996保留两位小数。这里有两次向前进“1”第一次是因为千分位上是6,比5大要向百分位进l;第二次是因为百分位上9加上进来的l,满十写0向十分位进1。两次进1,原因却各不相同。特别是第二次进1,由于小数加法的内容位于本单元之后学习,因此,这又是一个难点。有的学生不理解进位的原因,在后面练习中遇到题目中有数字9的,就会不管三七二十一,都往前进1。在学生面前,学生当然不容易学懂。

整节课下来,我认为比较成功的有以下几点:

1、借助旧知,探索新知。这节内容与前面所学求整数的近似数的知识有内在的联系,充分借助这一点,给学生创设自主探索空间,让学生根据已有经验对小数的近似数的方法进行大胆的猜想,激活新旧知识之间的联系,发挥知识的迁移作用。新课前的复习中,想办法唤醒学生对以前知识的记忆:如12953=()万986534=()万560890≈()万,填数等复习中,唤起学生“用四舍五人求整数近似数方法”的回忆,明确求“用万或亿作单位的近似数”时,要看万(或亿)后面一位干位(或千万位)上的数来决定“四舍”还是“五入”。在此基础上,引出本课学习内容“继续用四舍五入的方法求小数的近似数”。

在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。这个环节我充分让学生发表自己的想法,在交流中先引出保留整数就是精确到个位。之后,学生就顺势理解保留一位小数、两位小数的意义,较好地突破了本节课的重难点。

2、在比较中,使知识得到升华。

在求出近似数后,引导学生比较得到的近似数哪个更接近准备数,在比较中,学生顺势明白了保留的位数越多,精确度就越高(这点没有讲到)。

3、营造和谐的学习氛围,使学生乐于学。

整节课教师努力使自己成为学生中的一员,以一个组织者、合作者、引导者的身份与学生共同学习,使学生感到亲切、轻松,能主动的学习。

4、内容遁序渐进,一步步掌握知道,层次感、逻辑性强,例:先讲保留一位小数,再讲保留一位小数,最后讲保留整数。

巩固知识,完善“求近似数”的认知结构。设计了有针对性的课堂作业。

倍数的认识说课稿篇二

看了骆老师的短片首先感受到了他的恒心与毅力。就很想听他的课。在这节课李他创设了“尾巴重新接回”的游戏情境,引领学生探索位于正多边形上猴子的.身体和尾巴重新接回的奥秘。

首先老师出示了一组正六边形和一个正方形。正六边形里是一只猴子,正方形里画的是猴子的尾巴。

老师让学生猜测,如果正六边形不动,正方形按一个方向转动,转动几次才能让尾巴重新接回。学生猜测6次。老师就根据学生提供的数据进行演示。6次没有让尾巴重新接回,孩子又马上猜12次。通过老师演示,孩子们发现真的是12次让猴子的尾巴重新接回了。

这一环节,学生最初认为是6次,现在又发现是12次,有了这样的认知冲突,老师并没有解释为什么。

紧接着,孩子们又经历第二次猜想并验证。老师问:“如果再玩一次这个游戏,你们有没有信心把它猜对?”学生大声齐说:“有。”

老师出示一组新图形:一个正八边形和一个正五边形。正八边形里是一只公鸡,正五边形里是公鸡的尾巴。

第三次猜想,让孩子亲历猜想、验证、记录过程。两组图形,一个是正五边形里有一只老鼠,另一个正方形里是老鼠的尾巴。另一组图形是一个正八边形里画了一只金鱼,另一个正方形里画的是金鱼的尾巴。

情境巧妙、引人入胜,学生趣味盎然。“尾巴重新接回的奥秘到底是什么?”学生紧紧围绕这一问题展开了积极的思考、热烈的讨论,老师在学生独立思考的基础上巧妙引导他们进行汇报交流,学生热情高涨,“为什么重新接回的次数就正好是多边形边数的公倍数呢?”课终,学生与现场观众还沉浸在对“奥秘”的进一步思考中。

倍数的认识说课稿篇三

《倍数》的教学设计01月10日星期一08:00《倍数》的教学设计。

教学内容:冀教版数学四年级上册第七单元,教材第84---85页。

教学目标:

知识与能力。

1.结合具体情境,联系整数乘除法认识倍数。

2.探索找一个数的倍数的方法。

过程与方法。

结合整数除法的知识理解倍数的意义,并经历探索求一个倍数的方法的过程。

情感、态度与价值观。

让学生体验数学与生活的紧密联系,在学习数学的过程中体会学习的乐趣。

教学重点:初步理解倍数的含义,会利用乘除法找一个数的倍数。

教学难点:理解倍数的意义,

教学突破:通过对两组除法算式的比较,引出倍数的意义,并结合意义探索求一个数的倍数的方法,归纳一个数的倍数的特征。

教学过程:

一、小活动:

文字填空:我是(我是(我是(。

《我是(我)》此活动提起学生学习的兴趣,同时引导学生正确认识自己的优点和缺点,树立正确的学习观。

二、谈话提问导入。

1、谈话:自然数、分数、小数。

2、填空:(幻灯片)。

1.14的7倍是,84是12的()倍。

2.小白兔有21个萝卜,小灰兔有7个萝卜,小白兔的萝卜数是小灰兔的()倍。

说一说你是怎么算的`?

板书:倍数。

三、新课。

1、计算、观察算式结果,理解倍数的意义。(幻灯片)。

12÷3=211÷3=。

40÷8=43÷8=。

315÷15=637÷15=。

2、学习判断两个数是否有倍数关系的方法。

判断下面几组数有没有倍数关系,(幻灯片)。

901815639922735127。

课堂小结:一个数除以另一个数得数没有余数,我们就说这个数的另一个数的倍数。

3、学习找出一个数的倍数的方法。

说一说:请说出2、3、5的倍数。(幻灯片)。

课堂总结:

1、我们研究倍数的知识是在非零的自然数范围内的,不考虑分数和小数。

2、一个数的最小倍数是它本身,没有最大的倍数。

3、一个数的倍数的个数是无限的。

练一练:请学生说出1---100范围内7、8、9、10的倍数。(幻灯片)。

板书设计:倍数。

自然数分数小数。

倍数的认识说课稿篇四

教材分析:

1、学生情况分析:

孩子们刚刚和乘法交上了朋友,对乘法有了一些认识,今天要认识一个新的概念“倍”,这是学生认知上的一个飞跃。“倍”这一概念对于二年级学生来说是陌生的,对于低年级学生的理解能力而言,是一个比较抽象的知识;学生缺乏已有的知识基础和生活经验。因此,只有让学生通过实际操作,获得大量的感性认识,才能逐步形成“倍”的概念,从而引导孩子们主动运用“倍”的知识解决问题。

2、前期教学状况、问题、对策等研究说明:

第四层:选择孩子们喜欢的事物,研究它们之间的倍数关系,并运用倍的概念灵活解决实际问题。教学目标:

1、感受“一个数的几倍”的存在,知道“倍”是由两个数量比较得到的,能说出和摆出一个数量是另一个数量的几倍。

2、能运用“倍”的概念解决一些比较简单的实际问题。

教学难点:沟通几个几与“倍”之间的关系教学过程:

一、创设情景,引出概念。

2、老师也摆了一组。

看到老师摆得你又想说什么?老师摆的时候有一个规律,你看出来了吗?

二、建立“倍”的概念。

(一)初步认识“倍”

1、老师摆两个苹果,我把这两个苹果摆成一堆,请你摆这样的3堆,看谁摆得让老师一眼就看出来是3堆苹果。

4、说说你们是怎么摆的?你们摆的和老师摆的是什么关系?

5、老师摆两个苹果,如果你还是我的4倍,你应该怎样摆?

6、说说你根据什么这样摆?为什么同样是4倍,刚才是12个苹果现在却是8个苹果?

7、刚才老师和同学们一起摆苹果认识了“倍”,下面请同学自己试着摆圆片。(1)第一行摆两个白圆,使红圆的数量是白圆的5倍。

(2)自己确定白圆的数量,使红圆的数量是白圆的3倍。

(二)通过圈一圈进一步认识“倍”

1、出示:

请你试着圈一圈看看红圆的个数是白圆的几倍?说说你是怎么圈的,为什么3个红圆圈一份?(是根据白圆的个数圈的,白圆是几个,一份就是几个)。

2、出示:

现在试着圈一圈看看红圆的个数是白圆的几倍?(2倍)这回为什么6个红圆圈一份?

3、请同学试着圈出下面的红圆是白圆的几倍?(1)。

红圆是白圆的()倍(2)。

红圆是白圆的()倍(3)。

红圆是白圆的()倍(4)。

红圆是白圆的()倍。

你们能说一说为什么同样是12个红圆,为什么出现了1倍、2倍、3倍、4倍、6倍、12倍。

三、能运用“倍”的概念解决一些比较简单的实际问题。

1、刚才我们认识了倍,下面我们一起来解决一些问题好吗?出示:小狗:拔了三个萝卜。

小兔说:我拔的萝卜是小狗的2倍(用图片出示)(1)小兔拔的萝卜和谁有关系?(2)小兔说:“我拔的萝卜是小狗的2倍”这是什么意思?师:小兔拔的萝卜和小狗拔的萝卜数有关系,小兔说:“我拔的萝卜是小狗的2倍”就是说小兔拔的萝卜有2个小狗拔的那么多,小兔拔了2个3,就是3的2倍。

3、出示:4只小象。

小猪的只数是小象的5倍(用图片出示)。

(1)你能提一个问题让大家算算吗?(小猪有多少只?)小猪有多少只怎样算?4×5=20或5×4=20(2)走了一只小象,小猪的只数还是小象的5倍,现在小猪有多少只?3×5=15(3)小猪仍然是小象的5倍,这句话没变,为什么小猪的总只数变了?(因为和小猪有关系的小象变了,一份变了,小猪的只数也变了。)。

四、巩固练习,拓展学生对“倍”的认识。

1、出示:(1)3只小象6只小鹿。

小鹿是小象的()倍。(2)2只熊猫。

6只小鹿。

小鹿是熊猫的()倍。

(3)3只小象。

12只兔子。

兔子是小象的()倍。

2、出示:2个西瓜、3个梨、4个香蕉、9个桔子、12个草莓。你能选出有倍数关系的两种水果,用倍说一句话吗?4个人互相说一说。

3、(1)2个西瓜,香蕉的个数是西瓜的4倍,香蕉有多少个?

(2)2个西瓜,苹果的个数是西瓜的6倍,苹果有多少个?

(3)赛车模型一架5元,飞机模型的价钱是赛车的3倍,飞机模型多少元?

(4)我今年6岁,哥哥的年龄刚好是我的2倍,哥哥今年多少岁?

4、(1)给同学准备3张不同大小的纸,通过折一折、叠一叠、找出他们其中的倍数关系。(红色纸是黄色纸的2倍,红色纸是绿色纸的4倍)。

石景山二小。

赵燕。

倍数的认识说课稿篇五

(一)知识与技能。

理解因数和倍数的意义以及两者之间相互依存的关系,掌握找一个数的因数和倍数的方法,发现一个数的倍数、因数中最大的数、最小的数,及因数和倍数个数方面的特征。

(二)过程与方法。

通过整数的乘除运算认识因数和倍数的意义,自主探索和总结出求一个数的因数和倍数的方法。

(三)情感态度和价值观。

在探索的过程中体会数学知识之间的内在联系,在解决问题的过程中培养学生思维的有序性和条理性。

二、教学重难点。

教学重点:理解因数和倍数的含义。

教学难点:自主探索有序地找一个数的因数和倍数的方法。

三、教学准备。

教学课件。

四、教学过程。

(一)理解因数和倍数的意义。

教学例1:

1.观察算式的特点,进行分类。

(1)仔细观察算式的特点,你能把这些算式分类吗?

(2)交流学生的分类情况。(预设:学生会根据算式的计算结果分成两类)。

第一类是被除数、除数、商都是整数;第二类是被除数、除数都是整数,而商不是整数。

2.明确因数和倍数的意义。

(1)同学们,在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。例如,12÷2=6,我们就说12是2的倍数,2是12的因数。12÷6=2,我们就说12是6的倍数,6是12的因数。

(2)在第一类算式中找一个算式,说一说,谁是谁的因数?谁是谁的倍数?

(3)强调一点:为了方便,在研究倍数与因数的时候,我们所说的数指的是自然数(一般不包括0)。

倍数的认识说课稿篇六

《义务教育教科书数学》(人教版)五年级下册第70页例3。

二、教学目标。

1、学会用公倍数和最小公倍数的知识解决生活中的实际问题,体验数学与生活的密切联系。

2、能够将生活中的实际问题转化为数学问题,提高解决问题的能力。

三、教学重难点。

学会用公倍数和最小公倍数的知识解决生活中的实际问题。

四、活动设计。

接下来,让我们一起走进今天的数学课堂。在学习新知识前,我们先来复习上节课的内容。

1、回顾求两个数的公倍数和最小公倍数的方法。

请你找出下列每组数的最小公倍数。6和92和148和9。

第一组:找6和9的最小公倍数,可以先写出9的倍数,再从中圈出6的倍数,其中从小到大第一个圈出的就是它们的最小公倍数。

第二组:因为14是2的倍数,所以14是它们的最小公倍数。

第三组:因为8和9只有公因数1,所以两个数的积72是它们的最小公倍数。

2、教学例3。

这节课,我们一起利用求公倍数和最小公倍数的方法解决生活中的实际问题。王叔叔在装修房子时遇到了这样的问题,请你认真读一读,题目中有哪些重要的数学信息呢?(出示例3)。

阅读与理解:王叔叔装修墙面用的墙砖是一个长3分米,宽2分米的长方形,要用许多块这样的长方形墙砖铺成一个正方形,而且墙砖必须用整块的,王叔叔想让我们帮着找一找,拼成的正方形的边长是多少分米?其中最小是多少分米呢?可以怎么拼呢,一起试一试。

分析与解答:横着铺两块,我们先铺一行,铺成的图形显然不是正方形,再铺一行,也不是正方形,那么铺三行呢?铺成的图形是正方形吗?我们一起算一算,横着铺两块,它的长就是2个3,6分米,铺了这样的三行,竖着看就有3个2,它的长度也是6分米,不错,我们铺成了一个边长是6分米的正方形。

那么横着铺3块可以吗?再一起试一试,横着铺3块,它的长是9分米,铺两行宽是4分米,铺三行是6分米,铺四行是8分米,如果铺五行就是10分米,因为墙砖必须是整块的,所以不能铺成9分米的长度,也就不能铺成一个正方形。

我们还可以这么拼,横着铺4块,铺一行、铺两行,显然都不是正方形,大家想一想,铺几行才能铺成一个正方形呢?有同学说可以铺6行,大家一起算一算,铺6行是不是正方形?横着铺4块,长就是4个3,12分米,铺这样的6行,就有6个2,也是12分米,真好,我们又铺成了一个边长是12分米的正方形。

我们一起看看,横着铺3块墙砖时的情况。横着铺3块,长9分米,是3的倍数,但不是2的倍数,所以另一条边不可能铺出9分米。因为9不是2和3的公倍数,所以不能铺成正方形。

看来只要铺成的正方形的边长是2和3的公倍数,也就是铺成的正方形的边长是长方形墙砖长与宽的公倍数的时候,就一定能铺成正方形。

2和3的公倍数有6、12、18……所以铺成的正方形的边长可以是6分米,12分米,18分米,还有很多不同边长的正方形,其中最小公倍数6分米,就是铺成的正方形的最小边长。

3、实际应用(练习十七5—12题、生活中的数学)。

【p71—6】请你认真读一读,题目中有哪些重要的数学信息呢?李阿姨要给花浇水,月季每4天浇一次,君子兰每6天浇一次。李阿姨5月1日给月季和君子兰同时浇了水,她想让大家帮忙算一算,下一次再给这两种花同时浇水应是5月几日?同学们一定想到了,4和6的公倍数是同时浇花的间隔天数,因为是求“下一次同时浇花”,所以要取最小的间隔天数,也就是4和6的最小公倍数。4和6的最小公倍数是12,所以下一次同时给两种花浇水应是5月13日。

【p71—7】请大家先读题,找出重要的数学信息。好,我们一起来看,这些学生可以分成6人一组,也可以分成9人一组,都正好分完。说明这些学生的总人数是6和9的公倍数。又已知总人数在40以内,所以是求40以内6和9的公倍数。40以内6和9的公倍数有18、36,所以这些学生的总人数可能是18人,可能是36人。

【p72—10】接着请大家把教材翻到72页看第10题,自己先尝试独立完成,看看大家能不能将这个生活中的实际问题转化成数学问题。相信大家一定做出来了。每隔几分钟发车即每过几分钟发车,3路车每过6分钟发一次车,5路车每过8分钟发一次车,在它们同时发车后,第二次同时发车过的分钟数就是6和8的最小公倍数。因为6和8的最小公倍数是24,所以两路公共汽车过24分钟第二次同时发车。

【p72—12】第12题是一道带*号的选做题,让我们一起挑战一下吧!36可能是哪两个数的最小公倍数?请你先试着找一找,看看你能找出几组。

我们知道当两数成倍数关系时,较大的数就是它们的最小公倍数。所以任意一个36的因数,除36以外,与36组合,两个数的最小公倍数都是36。我们先写出36的所有因数,即1、2、3、4、6、9、12、18、36。去掉36,其他因数与36组合,可以得到8组。此外,两个数不成倍数关系的还有4组,分别是4和9,4和18,9和12,12和18。

【生活中的数学】我们一起看“生活中的数学”,用洗衣液手洗衣物时,一盆5升30摄氏度左右的温水,可以加入《最小公倍数例3》教学设计瓶盖20毫升的洗衣液调匀。相机可以用《最小公倍数例3》教学设计秒的快门速度曝光,美国科学家研制出了粗细只有头发丝的《最小公倍数例3》教学设计的太阳能电池。数学家华罗庚曾经说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。这是对数学与生活的精彩描述,课后,同学们可以继续寻找生活中与分数有关的例子,还可以寻找生活中公倍数、最小公倍数的实际应用。

4、课后作业:71页第5题、第8题,72页第9题。

这节课就上到这里,同学们,再见!

倍数的认识说课稿篇七

知识目标:经历具体的操作活动,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数,在探究中体会数形结合的数学思想。

能力目标:在探索寻找公倍数和最小公倍数的过程中,经历观察、归纳等数学活动,进一步发展初步的推理能力。

情感目标:会运用公倍数,最大公倍数的知识解决简单的实际问题,体验数学与生活的联系,增强数学意识。

教学重点:理解公倍数和最小公倍数的意义。

教学难点:利用公倍数、最小公倍数解决简单的实际问题。

教学准备:多媒体课件。

学具:若干张长3cm,宽2cm的长方形纸以及边长为5cm,6cm,……,15cm,16cm的正方形纸各一张。

学情分析:这部分内容是在学生掌握了倍数概念的基础上进行教学的。主要是为学习通分做准备。按照《标准》的要求,教材中要注重揭示数学与实际生活的联系。

教学过程:

一、激趣引入,探究已知。

师:课前我们来做个报数游戏,看谁的反应最快。

师:请报到3的倍数的同学起立。再来一轮,报到4的倍数的同学起立。你们发现了什么?(有的同学要起立两次,因为他们报到的号数既是3的倍数又是4的倍数)是吗?咱们一起来验证一下。请起立两次的同学报数。(12、24)。

生:一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。

这节课我们就来进一步研究倍数。

二、创设情景,动手操作。

1.出示主题图:

师:孔老师家的墙面出现了问题,谁愿意来帮工人师傅解决问题?

师:同学们,你们认为解决这个问题要注意什么?

课件出示红色字体:用的墙砖都是整块,用长方形铺一个正方形。

2.合作交流,动手操作。

我们根据上面的要求,请小组同学用一些长3厘米、宽2厘米的长方形,来代替瓷砖在正方形纸上,合作摆一摆,也可以画一画,或者算一算,探究正方形的边长可以是多少分米?最小是多少分米?看谁的方法多。一会我们进行展示。

(设计意图:这个材料的选择经过多次的筛选,最终还是用书上的例题,最主要是基于以下两点考虑:一是“铺地砖”这一生活情境学生有一定的生活经验,也具有一定的挑战性,能有效激发起学生的学习兴趣;二是可借助于实物模型,让学生在实践操作活动中加强思考与探索,经历知识的发生与形成过程,完成数学建模)。

师:哪个小组愿意展示?

(教师根据学生实物投影展示,出示相关方法的课件)。

预设:(1)我用的是计算法,长方形的长为3,宽为2,那么选用的边长得既能除开2,也能除开3。也就是既是2的倍数也是3的倍数。所以我们选用了边长为6厘米和12厘米的正方形,果然成功了,这是我们拼摆的图形。(师引导,像这样的数还有哪些?)。

(2)我选用的是摆一摆的方法。我摆的是边长为5厘米、6厘米和8厘米的正方形。其中,边长为5厘米、8厘米的正方形都失败了。只有边长是6厘米的成功了。

3.归纳总结。

通过同学们的展示,你得出什么结论?

边长是6分米、12分米、是6的倍数的正方形都可以进行铺设。只有既是2的倍数又是3的倍数才可以满足要求。

师:那么这这些答案和长3、宽2有着怎样的关系呢?请用集合图来表示。

填完同学,结合预习的知识。自己说说每一部分表示什么?小组再交流一下。

预设:2的倍数有2,4,6,8,10,12,14…;

3的倍数有3,6,9,12,15,18,…。

公倍数有6,12,18,24…。

4.回顾生活。

如果以后再考虑“可以选择边长是几分米的正方形?”我们可以直接?(找公倍数)。

那如果解决“边长最小是几分米”呢?(找最小公倍数)。

三、拓展提升、实际应用。

1.基础题。

2.综合题。

3.发展题。

4.生活中的应用。

四、课题回顾,布置作业。

师:同学们,这节课我们学习了什么,你有什么收获?

预设:这节课我们主要认识了公倍数和最小公倍数,掌握了求两个数的公倍数和最小公倍数的方法。

这一知识在实际生活中应用非常广泛,求解最小公倍数的方法也很多。回家搜集整理,下节课展示讲解。

倍数的认识说课稿篇八

《因数和倍数》是小学人教版课程标准实验教材五年级下册第二单元的内容,也是小学阶段“数与代数”部分最重要的知识之一。《因数和倍数》的学习,是在初步认识自然数的基础上,探究其性质。其中涉及到的内容属于初等数论的基本内容,相当抽象。在这一内容的编排上与以往教材不同,没有数学化的语言给“整除”下定义,而是在本课时通过乘法算式借助整除的模式na=b直接给出因数与位数的概念。这节课是因数与倍数的概念的引入,为本单元最后的内容,以及第四单元的最大公因数,最小公倍数提供了必须且重要的铺垫。

根据教材所处的地位和前后关系,确定了以下目标:

知识技能目标:

掌握因数倍数的概念,理解因数与倍数的意义,掌握找一个数因数与倍数的方法。

情感,价值目标:

培养学生合作、观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心和求知欲。

教学重点和难点:

理解倍数和因数的意义,掌握找出一个数因数和倍数的方法。

学生在平时学习中缺少主动性,一部分学生怕困难,缺乏独立思考的习惯,同时考虑问题也不够全面。在本堂课的教学中,主要调动学生学习的积极性,提高学生课堂学习的参与性,体验成功的乐趣,通过学生的亲自探索和合作交流,来达到学习知识,掌握所学知识的目的。同时感受数学中的奥妙。

当今社会,人类的语言离不开素质教育,而实施素质教育必须“以学生为本”课堂教学要围绕培养学生的探索精神、创新精神出发,为全面提高学生的综合素质打下一定的基础。本节课根据学生的认知能力与心理特征来进行教学策略和方法的设计。

1、遵循学生主体,老师主导,自主探究,合作交流为主线的理念,利用学生对乘法的运算理解概念。

2、小组合作讨论法。以学生讨论,交流,互相评价,促成学生对找一个数的因数和倍数的方法进行优化处理,提升。巩固学生方法表达的完整性,有效性,避免学生只掌握方法的理解,而不能全面的正确的表达。

1、揭示主题

老师直接揭示主题,大胆创新,打破了传统的为了导入而导入的教学模式。为学生的自主合作学习提供了开放的空间。

2、合作交流,理解因数,倍数的概念及其意义。

教师出示前置性作业,小组内交流,汇报学习成果,教师适时点拨,真正把课堂还给学生,也充分体现了教师的主导作用和学生的主体地位。使学生在交流中培养了合作学习的意识,对因数和倍数的概念有了初步的认识,对它们之间的联系也有了更好的理解。

3、学习求一个数的因数和倍数的方法

一个数的因数和倍数是本节课中技能目标中很重要的一部分。使学生在已有的经验基础上,独立的列举一个数的因数,在小组合作交流中得出。找一个数的因数和倍数的方法。真正地把主动权交给学生,教师通过引导,使学生加深理解,化解难点。

4、引导学生分析,比较归纳寻找共性,找出不同,得出一个数的因数,使学生学会有序思考,从而形成基本技能与方法,做到即关注了过程,又关注了结果。教师的教学水到渠成,学生的学习则是山重水复疑无路,柳暗花明又一村。

5、引导学生置疑,集体交流,化解疑问便于学生对本课所学知识更好的消化理解。

练习题设计形式多样,有梯度。既注重基础,又有所提高,从而真正实现了课堂教学的有效性。

倍数的认识说课稿篇九

大家上午好!我是面试小学数学教师的8号考生,今天我说课题目是《倍数与因数》,下面我将从说教材、学情、教法学法、教学过程、板书设计这几个方面进行,下面开始我的说课。

《倍数与因数》是北师大版小学数学五年级上册第3章第1课的内容,主要是讲述倍数与因数的含义以及相互依存的关系。该教学内容是在学生熟练掌握乘除法计算的基础上进行教学的。这将为今后进一步学习2、3、5倍数的特征以及质数合数的问题奠定了基础,因此具有承上启下的作用。

通过对教材的分析,根据新课标的要求,我确立了如下的三维目标:

1、知识与技能目标:学生会判断谁是谁的因数、谁是谁的倍数,了解倍数与因数是相互依存的关系。

2、过程与方法目标:学生经历动手操作、合作探究等学习过程,培养合作能力以及创新意识。

3、情感态度及价值观目标:在探究倍数与因数关系过程中,感受相互依存的关系,培养学生乐于探索与交流的情感品质。

通过对教材和教学目标的分析,本课的教学重点我认为是理解并掌握理解和掌握倍数与因数的含义。教学难点是理解倍数和因数是相互依存的关系、会找7的倍数。

奥苏伯尔认为:影响学习的最重要因素,就是学习者已经知道了什么,要探明这一点,并据此进行教学。”因此,在教学之始,关注学生的基本情况很重要。五年级的学生他们的思维已经开始由具体形象思维过渡到抽象思维,但推理能力还有待提高,因此我会紧扣学生已有的知识经验,创设有助于学生自主学习,合作交流的情境。

基于对教学内容、学情的分析和新课改的要求,本课我主要采取以讲授法为主,辅助以启发式教学法,讨论交流法,练习法等来展开教学,从而达到培养能力,养成良好习惯的目的。科学的学习方法十分重要,它是打开知识宝库的“金钥匙”,是通向成功的“桥梁”。本节课我对学生采用自主探索,小组讨论的方式,培养他们合作交流,自主归纳数学规律的能力。

教学过程是本次说课的核心环节,所以我将着重介绍一下教学过程。

环节一、谈话导入,激发求知欲

在上课之初,我会播放国庆xx周年阅兵的视频,让学生们一起再次为祖国妈妈庆生,感受祖国的强大,同时祝福祖国妈妈繁荣昌盛。接着屏幕放大阅兵的两个方阵,请学生们算一算各有多少人?学生不难给出算式为94=36(人),57=35(人),顺势询问算式中数字之间的关系,进而引出新课。

通过视频导入,一方面增加学生们参与课堂的积极性,另一方面激发学生强烈的求知欲,更好的完成本课的教学。

环节二、诱导启发,发现新知

在这一环节中,我设计了以下2个学习活动

活动一:辨析倍数与因数的关系

首先,通过导入的问题,让学生们观察算式94=36,讲解这里的36是9和4的倍数,9和4是36的因数。然后让学生们根据57=35,思考“哪个数是哪个数的倍数,哪个数是哪个数的因数”。学生们会有35是倍数,5和7是因数的错误回答。部分学生会质疑这样的表述到底35是谁的倍数,5和7是谁的因数。进而师生共同探究发现正确表述:35是5和7的倍数,5和7是35的因数。顺势强调不能单独说谁是倍数,谁是因数,同时指明我们只在自然数(0除外)范围内研究倍数和因数。在整个过程中肯定学生们的发现,并给与正面的评价。

其次引导学生根据大屏幕中的算式253=75,205=100,再来说一说哪个数是哪个数的倍数,哪个数是哪个数的因数。学生们会准确的回答出75是25和3的倍数,25和3是75的因数。100是20和5的倍数,20和5是100的因数。师生共同总结我们在表述倍数与因数关系时一定要注意,由于因数与倍数是相互依存的,所以应该说谁是谁的倍数,谁是谁的因数。对于学生们积极参与课堂,认真思考问题,向学生们投入更多的赞美语言。

活动二:找寻7的倍数

首先,在学生们可以根据给出算式顺利表示出倍数与因数关系后,让学生们思考“屏幕上哪些数是7的倍数”,独立思考后四人为一小组进行讨论。小组汇报的结果会有:7=71,14=72,77=711,所以7、14、77是7的倍数,表明这是利用本节课的倍数与因数关系去解决问题。还有14÷7=2,14是7的2倍,17÷7=2......3,17不是7的倍数等答案。指出这是利用除法去解决的,可以整除的都是7的倍数。顺势带领学生总结其实在倍数与因数的关系中,如果商是整数且没余数的情况下,我们也可以说被除数是除数和商的倍数,除数和商是被除数的因数。

在这些活动中,把学生置于学习的主体地位,鼓励,引导学生培养他们的独立学习的能力,合作探究的精神和创新意识。

环节三、实践练习,巩固新知

我设计了课后试一试的练习巩固所学知识,旨在培养学生进一步明确倍数与因数的含义,进而进一步理解和掌握倍数与因数相互依存的关系。

环节四、引发反思,全课小节

通过让学生回顾新知,谈收获,给学生再次交流的机会,让学生互相提醒,进一步突出本节课的知识要点。师生共同完成课堂评价。

环节五:布置作业,课后提高

根据学生的个体差异性,为更好的体现因材施教的原则作业我将分为必做题和选做题,必做题是课后练习;选做题是找找生活中的运用。

黑板上呈现的就是我的板书设计,我的设计以提纲式的板书为主,这样可以很直观、很清晰、更明了的整课内容展示出来,一目了然,便于学生对所学知识的理解和掌握。

倍数的认识说课稿篇十

我说课的内容是:人教版五年级下册第88~90页的《最小公倍数》一课。最小公倍数是在学生掌握了倍数、因数和公因数概念的基础上进行教学的,主要是为了以后学习通分做准备。在生活实际中也存在它自身的的意义和作用,这节课是一节以概念为本的教学。教材的编写意图是使抽象的数学知识与生活实际相联系,建立概念;用自己想到的方法尝试求两个数的最小公倍数,体现算法的多样化。

在不同的学校、班级进行前测,直接让不同认知水平的学生,用模拟的小长方形墙砖铺成正方形。在动手操作中,由于受密铺的影响,横拼竖摆,不但耗时过长,而且很难有效的构建公倍数内在的结构关系。因此在设计操作环节时,我搭建“脚手架”。通过构建公倍数内在的结构关系和构建公倍数体系两个环节进行有效教学。成功搭建起教学内容与学生求知心理之间的桥梁。

(1)建立公倍数与最小公倍数的概念,会用集合图表示。掌握求100以内两个数最小公倍数的方法。

(2)通过动手操作、独立思考、合作探究、合作交流等方式,建立公倍数和最小公倍数的概念,培养发现问题、解决问题的能力。

(3)学会用数学的眼光观察生活、思考问题。积极参与到对数学问题的探究活动中。真真切切地体验到学习数学的快乐和价值。

教学重点:建立公倍数与最小公倍数的概念。

教学难点:掌握求100以内两个数最小公倍数的方法。

游戏卡片一套,模拟墙壁的平面图、模拟长方形墙砖多套,作业纸多张和多媒体课件一套。

加点理念课堂上我采用尝试教学法和启发教学法。

学生通过动手操作、独立思考、合作探究、合作交流等方法进行学习。

这节课我按照下面五个环节进行教学:初步感知,建立表象;动手操作,建立概念;自主探究,归纳方法;实际应用,回归生活;全课总结,延伸课外。

(一)、初步感知,建立表象。

首先我从游戏中引入,我把枯燥的倍数复习设计成“抢倍数的游戏”。让学生初步感悟公倍数。(预设5-6分钟)。

具体操作:

首先我手里拿着数字卡片,给学生说,今天老师给大家带来一个风靡我们全班的游戏—抢倍数游戏。面对全体同学讲一下规则:找两个同学上来,一个负责抢3的倍数,一个负责抢2的倍数。老师把卡片放到黑板上,过了抢的时间老师会把卡片收起来。最后抢的多的同学获胜。

然后把全班分成两大组,要求每组快速派一名代表上来。当两名学生上台进行游戏,其他学生做裁判共同参与。

接下来游戏,当第7张卡片出来的时候,两个同学会同时抢6这个数字。如果没有出现抢的局面。我会再出示12这个数字。学生很容易发现并说出:数字6是决定游戏胜负的关键,因为6既是2的倍数,又是3的倍数。

紧跟着追问:“为什么都来抢6这张卡片”。先让这两个代表说说,再让其他同学说说。

然后揭示出公倍数的概念。6既是2的倍数,又是3的倍数,也就是说6是3和2公有的倍数,我们把6叫做3和2的公倍数.(板书公倍数及概念。)。

引导学生想想:那你还知道哪个数是3和2的公倍数?

学生答出12、18、24等数,并用这些数完整的表述出公倍数的概念。

及时表扬说的对,说的完整的同学。多让几个同学说说,并让同桌说说,强化公倍数的概念。

(二)、动手操作,建立概念。

这一大环节是深刻理解公倍数,建立最小公倍数的重点内容,为此我分两个层次进行教学。

(1)固定的正方形边长,选择长方形墙砖。(预设6-7分)。

首先在前面通过游戏感悟公倍数的基础上,过渡到生活中。让学生体验公倍数能在生活中帮我们做什么。

(出示生活情境,课件显示。)。

当学生明白题意后,要求学生利用模拟的长方形墙砖和墙壁正方形平面图,

分小组活动进行动手操作。学生通过摆一摆,画一画,得到不同的方案。

在汇报方案时,学生都会选择长3分米,宽2分米的墙砖。让学生说说自己的想法。适时进行追问:“正方形墙面墙壁的边长所用墙砖的长和宽有什么关系?”

让学生自主发现:按照要求进行,所铺成的正方形边长必须是小长方形长和宽的公倍数这一结论。

这个时候多让几个学生说说这一结论。

其次我再追问:“大家为什么都不选择长5分米,宽3分米的墙砖?”

学生很容易答出,因为12不是5和3的公倍数。

最后我作课堂小结:“看来所铺正方形墙壁的边长必须是长方形墙砖长3分米,宽2分米的公倍数。”

(2)用固定的长方形墙砖,铺多个的正方形。(预设6-7分)。

从上个环节直接过渡到问题中。“同学们,真了不起,通过动手操作,获得很有价值的发现。(课件出示情境)用这种长3分米宽2分米的长方形墙砖,整块整块的铺,还可以铺成边长是多少分米的正方形?”

然后先让学生独立思考。当有的同学有想法后,请同学们拿出表格,填写完整。

让学生填出表格,空间想象能力好的学生能直接想到这些正方形的边长都是2和3的公倍数,想象不出来的,允许动手摆一摆,画一画。

其次把两个同学的表格用实物投影仪打出。让学生交流这样填的想法。

学生有可能答出:发现这些正方形的边长必须是所铺长方形墙砖长和宽的公倍数。及时表扬:“你能用今天所学的公倍数知识解决问题,这了不起”

还可能发现:其他公倍数都是6的倍数;最小的公倍数;公倍数是有很多个…。

如果没有学生说出来,及时追问:“察这些公倍数,最小的是几?”学生很容易。

说出6是公倍数中最小的。揭示出:6是最小的公倍数。叫做3和2的最小公倍数。(板书:最小)。

及时强化最小公倍数的概念。让多个学生说说6是3和2的什么数?同桌也互相说说。

再次追问:3和2有没有最大的公倍数?这些公倍数能写完吗?让学生说出公倍数是无限的。

首先让学生用数学上的集合圈的形式表示3的倍数和2的倍数。并把3和2的公倍数画出来。(课件出示两个空白的集合圈)。学生写完后,汇报结果。同时课件显示出答案。

然后利用课件使集合圈重叠一部分。给学生问题:如果这两个集合圈这样放在一起,该怎样填呢?(课件出示空白的交叉的集合圈)。

让学生思考、交流。明白各部分填什么,怎样填。让学生在作业纸上。

完成后汇报结果。(课件出示答案)并让学生说说3和2的公倍数和最小公倍数,再次理解公倍数和最小公倍数。

(三)、自主探究,归纳方法。(预设7-8分钟)。

这一环节是让学生自主探究出找两个数的最小公倍数的方法。

直接出示问题:那给你两个数6和8,怎样求这两个数的最小公倍数。(板书:怎样求6和8的最小公倍数。)。

这时候给学生独立思考的时间。当学生有了想法后,让学生拿出作业纸,把过程写出来。

然后让学生小组可以互相交流一下。

接下来让学生进行汇报。(找几个不同的方法,用实物投影仪展示出来。)。

在展示过程中,让学生交流、争辩,在交流各种方法的同时,可能发现:两个数相乘方法和倍数关系时找最大数的局限性。认识到列举法的普遍性。

在学生交流各自的方法后。我会说:老师非常欣赏大家的方法。我这也。

有个方法。我们可以把这些数在有方向的直线上表示出来。上面表示6的倍数,下面表示8的倍数。所圈重叠的线段是6和8的公倍数。

(教材中出现了数轴上表示倍数的方法,考虑到学生想不到这种方法,我参与活动中,最后展示这种图形结合的方法。)。

(四)、实际应用,回归生活。(预设3-4分钟)。

做一个课堂小结,转到学生解决问题中。“大家通过自己的努力,认识了公倍数和最小公倍。掌握了求两个数的最小公倍数的方法。相信大家一定有很深的收获。让我们带着收获进行下面的练习。相信你一定没有问题。”

课件出示一道生活情境题)。

2、学生交流汇报得出:全班可能有48人或24人,最少为24人。

(五)、全课总结,延伸课外。(预设3分钟)。

告诉学生在天文学中也有最小公倍数的知识,让学生边听边看屏幕:

(随着音乐的响起,播放图片。)。

我朗诵:中国人对日食现象的记载,已有将近四千年的历史。在汉代就发现日食出现具有一定的周期。月球从月初到下一次月初是一个朔望月,平均约长30天。太阳从月球轨道的升交点再回到升交点是一交点年,平均约长347天。朔望月与交点年的最小公倍数就和日食的周期有关。

课堂结语:“奇妙吧!如果大家还想继续了解,回去可以上网查找一下相关的资料。让我们带着收获,下课!”

倍数的认识说课稿篇十一

今天参加了县小学数学研究班下各组的业务培训活动,王薇薇老师上的《最小公倍数》(五下)一课给我留下了较深的印象。合理清晰的思路、简洁明亮的风格、灵活有效的调控,取得了较好的教学效果。

1.从春游话题引入信息:小兰想让爸爸妈妈带她去春游,四月一日起,妈妈每4天休息一天,爸爸每6天休息一天。

2.讨论“每4天休息一天”的意思。

3.出示问题:在这一个月里,他们可以选哪些日子去呢?

这一情境的创设至少有三点好处:一是适时,三月底,正是春游的好时候;二是激趣,一家子出游是学生感兴趣的事件;三是切题,爸爸妈妈共同的休息日就是4和6的公倍数。

1.(一学生回答是12日或24日)问:你是怎样找到的?

2.师生共同寻找:

30以内4的倍数有:4、8、12、16、20、24、28(问:为什么要加“30以内”)。

30以内6的倍数有:6、12、18、24、30。

30以内4和6的公倍数有:12、24。

3.根据上面的信息,她们最早可以哪一天去?(这一生活问题对应的数学问题是“最小公倍数”是多少。)。

4.(4和6的最小公倍数有:12)在这里为什么不用加“30以内”?

5.尝试用集合图来表示黑板上的内容。

这一环节之后是否要拓展?如果把“30以内”去掉,集合图里的数据该怎样修改?省略号表示什么?(两个数的公倍数是无限的)。

努力引导学生主动参与两个数最小公倍数的探究过程,重视数学技能的形成。特别是倍数关系和互质关系的两个数的最小公倍数的求法,让学生经历了猜测——举例验证——归纳的学习过程,学生思维活跃,如在找对象11和13的最小公倍数时,11的倍数从1倍找到11倍还能口算,老师问12倍不能口算怎么办,一生能够提出只要再加上11就行了。在求一般关系两数的最小公倍数时,引导学生归纳步骤:首先多写其中某一数的倍数,然后再写第二个数的`倍数,当出现和第一个数相同时就是这两数的最小公总数了。

其外,老师也非常重视书写格式的规范,虽会多花了点时间,也是一种好习惯。

探讨一个问题:练习的侧重点应该是一般关系还是特殊关系两个数最小公倍数的求法?

特殊关系两数的最小公倍数探究过程费时费力,但规律出来之后是容易掌握的,关键是在求之前先判断。一般关系在概念教学时就已完整呈现了方法,理解较方便,但从我们平时经验看,出错的往往是这一类。

另外,照应开头,回归生活,也有补一些应用性的解决问题。

骆老师能找准学生的知识起点,激活学生的学习经验。创设的情境合理:既能符合儿童心理有趣味,又能启发学生深入思考:这个活动或游戏隐藏了什么数学问题?能获得什么解决问题策略?每节课,学生都积极动手,主动合作,踊跃交流…。智慧的火花在课堂中不时闪现,愉悦的神情在小脸上洋溢。骆奇老师的教学内容是五年级的“最小公倍数”,通过设计生动有趣的智力游戏“动物尾巴重新接回”创设情境激发兴趣,寻找公倍数与最小公倍数的奥秘。课堂围绕主要问题“尾巴重新接回的奥秘到底是什么?”引导学生展开积极的思考、热烈的讨论。老师以“为什么重新接回的次数就正好是多边形边数的公倍数呢?”激发学生创新思维,引导学生汇报交流,课堂结束后,学生与现场观众还沉浸在对“奥秘”的进一步思考中。

倍数的认识说课稿篇十二

1、使学生结合整数乘、除法运算初步认识倍数和因数的含义,探索并掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。

2、使学生在认识倍数和因数以及探索一个数的倍数或者因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。

让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。

是理解因数和倍数的概念,能有序地求出一个数的因数和倍数。

(一)激发兴趣,引入新课:让学生针对12个正方形的摆法讨论,激发学生兴趣,引入数学中自然数和自然数之间也有各种关系,初步体会数和数的对应关系,既拉近了数学和生活的联系,又培养了学生的兴趣。

(二)情境体验,理解概念:分三个层次进行教学。

(1)情境体验,初步感知倍数和因数的意义。让学生根据12个正方形的不同摆放方式写出算式,让学生充分经历了“由形到数、再由数到形”的`过程,既为倍数和因数概念的提出积累了素材,又初步感知倍数和因数的关系,为正确理解概念提供了帮助。

(2)在具体的乘法算式中,理解倍数和因意义。这样做不仅降低了难度,而且为学生的后续学习拓展了空间。根据算式介绍倍数和因数的意义,然后让学生根据其余两道乘法算式模仿的说一说,充分的读一读,在通过“能说4是因数,36是倍数吗?这一反例的教学,充分感受倍数和因数是相互依存的。

明确:倍数和因数表示的是两个数之间的关系,所以不能单说谁是倍数,谁是因数。

(设计意图:结合具体的乘法算式介绍倍数和因数时,让学生充分地读一读,使学生初步感受倍数和因数是相互依存的,再通过对反例的辨析,使学生的感受更加深刻。)。

接下来结合板书算式,考考大家谁是谁的倍数,谁是谁的因数?

若学生没有举到除法算式,就由老师举例一道除法算式。“能说谁是谁的倍数,谁是谁的因数吗?”

学生自由发言,统一认识。

小结:除法可以转化成乘法,只要满足两个自然数的乘积等于另外一个自然数,它们之间就存在倍数和因数的关系。

第三个环节是探索方法,发现特征:分两个层次进行,首先找一个数的因数,为了考查学生的动手有的可能是用乘法想(乘积是20的两个数是20的因数)有的可能是用除法想(除数和商都是20的因数)这两种方法都出现一个问题:无序。从而导致重复、遗漏现象。为了解决问题,我再次放手,小组交流,并在此基础上让学生自主探求”怎样找才会有序,找到什么时候为止”?用自己的语言总结,最后师生达成共识:按一定的顺序一对对的找,找到两个数接近为止。并通过找三个数的所有因数,而找出引述的特征,从而在互相评价、充分比较、集体交流中感悟有序思考的必要性和科学性。

接下来找一个数的倍数。我将教学过程设计成了一个个问题链,什么样的数是3的倍数?,怎样找才能有条理?比一比谁找的倍数多?能把3的倍数全找完吗,应该怎样表示问题的答案?你有什么窍门找一个数的倍数?在学生自主探索的基础上,小组合作,全班交流,并在找因数特征的基础找到倍数的特征。

倍数的认识说课稿篇十三

课程标准指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。罗老师执教的这节《公倍数与最小公倍数》就是很好地采用了适合这节课本身又有利于提高学生数学学习活动的方式,是在引导学生自主参与、发现、归纳的基础上认识并建立公倍数和最小公倍数概念的。整节课给人以清新、流畅之感,纵观这节课的教学,有以下几个吸引我的亮点:

五年级学生的生活经验和知识背景更为丰富,课标要求教材选择具有现实性和趣味性的素材,由浅入深地促使学生在探索与交流中建立概念。本节课罗老师采用了一个渔夫打鱼的故事导入,此材料不仅紧贴课堂所要教学的主题,又使数学教学与生活实际紧密联系在一起,并且很能激发学生的学习积极性。通过解决故事中的问题,让学生经历概念的揭示过程,体验成功的喜悦。

罗老师十分注重讲练结合及前后知识的'整合。练习中有一般基础题,有求一定范围内的两数的公倍数,还有根据学生已有的知识经验判断2和3、2和5、3和5这些特征明显的两数的公倍数和最小公倍数。学生在练习中获得对新知的巩固和强化,同时也巩固了已有的知识,加强了数学知识的联系性。练习时,罗老师不仅关注学生会不会做,更重要的是关注怎么做,当学生反馈时,注重让学生自己来讲讲思考过程,暴露自己的想法,培养学生的应用能力。

罗老师这节课还有一个亮点就是她采用的是flash课件,较一般的幻灯片课件要清新、漂亮。漂亮的课件不但吸引了学生的注意也将我们听课教师的目光牢牢锁住。并不是华而不实,罗老师的这套课件对完成这堂课的教学起到了很好的辅助作用,许多地方通过动态演示显得更清楚明了。

当然,这节课也存在一些需要进一步改进的地方,如:同类型教学出现次数过多,像是在教学并概括出4的倍数还有很多可用省略号表示后,6的倍数还在叫生一一列举,难免给人。

【本文地址:http://www.xuefen.com.cn/zuowen/12505463.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档