平行四边形的判定一教案(热门20篇)

格式:DOC 上传日期:2023-11-16 06:04:07
平行四边形的判定一教案(热门20篇)
时间:2023-11-16 06:04:07     小编:影墨

教案是教师在备课过程中编写的一种教学计划。教案需要注意反馈机制的设置,及时了解学生的学习情况,提供有针对性的指导和支持。看一下这些教案,或许能帮助你更好地理解和掌握教学设计的方法和技巧。

平行四边形的判定一教案篇一

平行四边形在实际生活和工作中具有广泛的应用,因此它的性质和判定是本章的重点内容。性质和判定的学习是一个互逆的过程,性质是判定学习的基础。在设计《平行四边形的判定》一节内容时我在第一课时主要探讨平行四边形的判定的四种方法,在探讨时按照性质的探讨思路:从边、角、平分线三点来分别探讨,有了性质作为基础,因此对于判定的方法学生理解起来比较容易。在课堂上我要求学生将每种判定的数学语言和符号语言都按照格式书写出来,这样有利于他们数学习惯的培养。第二课时我主要是利用判定来证明平行四边形以及进行计算。

利用性质与判定的互逆,学生对四个判定的掌握比较好,而且由于要求学生对每一个判定都进行了数学语言和符号语言的书写练习,因此提高了学生的书写能力,在习题课上大部分的学生都能写出比较完整的证明过程。

几何证明题一直是学生的一个弱点。初二的学生按照课标不要求些规范的证明过程,但是考试却要求书写严格的过程,由于没有规范的例题示范以及有关习题,所以学生的几何证明题仍然是一个弱项,因此习题课上有部分学生仍然存在会分析,但是书写不规范的情况,这在今后的学习中是一个需要改变和提高部分。

平行四边形的判定一教案篇二

平行四边形的判定是新人教版八年级数学下册第十八章第一节第二部分内容,是在学习了平行四边形的性质的基础上进一步探究学习的,这一部分内容主要探究平行四边形的四条判定以及判断和性质的综合运用,培养学生的探究精神、创新精神和应用意识,也为后期学习特殊的平行四边形探索方法和奠定基础。

1、实验操作法。为了探索平行四边形的判定方法,我引导学生从实验入手,通过亲自动手操作,在操作中从感官上获取认识。

2、引导发现法。在学生实验的过程中,及时引导,细致观察,探索并发现判定一个四边形为平行四边形的条件,猜测平行四边形的判定方法,为归纳平行四边形的判定方法的可行性提供先决条件。

3、探究讨论法。在猜测得出平行四边形的判定方法后,引导学生在小组内充分进行讨论,从不同角度验证方法的正确性,进而归纳出平行四边形的判定方法。

4、练习法。采用讲练结合的方式让学生不仅学会探究,更要能够灵活运用,增强应用意识。

5、加强了变式训练。通过一题多变、一题多证、多题同证等变式训练,既巩固了学生对知识的灵活运用,也训练和发展学生的逻辑思维。

1、培养了学生的动手能力。通过多媒体、生活问题、实验教具等方式呈现问题情境,给学生足够时间亲自动脑、动手、动口参与教学,与老师共同探究判别方法,感悟知识的发生、发展过程。

2、训练了学生的思维能力。引导学生从不同角度、不同方面进行相互讨论、彼此交流,是他们的思维能力的得到了极大的发展和提升。

3、培养学的探究精神和创新精神。通过多层次、多角度例题及练习变式,培养学生思维的广阔性和深刻性,提升探究能力、开拓创新精神。

4、增强应用意识。通过对实际生活中的一些实例和问题进行探究解决,使学生进一步认识到数学应用于生活的重要性,增强学生的数学应用意识。

1、对教学设计与时间地分配还不够合理,还要做更好的思考,以增强对时间控制地敏感度,更好地分配好每一环节所花的时间。

2、课教学的节奏把握还不到位,需要在以后的教学中,争取让更多的学生消化好课堂新知,理解好知识点与例题。

3、学生的主体作用彰显不够,在课堂上要放心地让学生去尝试错误,多些让学生自主思考,充分发挥学生的主体作用。

4、对学生的学习与练习的方法指导还不足,应该多些方法性的引导。

总之,在以后的教学中要充分激发学生学习数学的兴趣,让学生积极参与、讨论,导中有练、有思、有研,改进教师先讲知识,然后再进行强化训练的做法,使讲、练、思、研融合在一起,让学生充分体验数学学习的乐趣,积累数学活动经验,体会数学推理的意义,让学生在做中学,逐步形成创新意识。

平行四边形的判定一教案篇三

3.通过解决问题的实践,激发学生的学习兴趣,培养学生的钻研精神。

一、教学重点、难点。

重点:简易方程的解法;

难点:根据实际问题中的数量关系正确地列出方程并求解。

二、重点、难点分析。

解简易方程的基本方法是:将方程两边同时加上(或减去)同一个适当的数;将方程两边同时乘以(或除以)同一个适当的数。最终求出问题的解。

判断方程求解过程中两边加上(或减去)以及乘以(或除以)的同一个数是否“适当”,关键是看运算的第一步能否使方程的一边只含有带有未知数的那个数,第二步能否使方程的一边只剩下未知数,即求出结果。

列简易方程解应用题是以列代数式为基础的,关键是在弄清楚题目语句中各种数量的意义及相互关系的基础上,选取适当的未知数,然后把与数量有关的语句用代数式表示出来,最后利用题中的相等关系列出方程并求解。

三、知识结构。

导入方程的概念解简易方程利用简易方程解应用题。

四、教法建议。

(1)在本节的导入部分,须使学生理解的是算术运算只对已知数进行加、减、乘、除,而代数运算的优越性体现在未知数获得与已知数平等的地位,即同样可以和已知数进行加、减、乘、除运算。对于方程、方程的解、解方程的概念让学生了解即可。

(2)解简易方程,要在学生积极参与的基础上,理解何种形式的方程在求解过程中方程两边选择加上(或减去)同一个数,以及何种形式的方程在求解过程中两边选择乘以(或除以)同一个数。另一个重要的问题就是“适当的数”的选择了。通常,整式方程并不需要检验,但为了学生从一开始就养成自我检查的好习惯,可以让学生在草稿纸上检验,同时也是对前面学过的求代数式的值的复习。

(3)教材给出了三道应用题,其中例4是一道有关公式应用的方程问题。列简易方程解应用题,关键在引导学生加深对代数式的理解基础上,认真读懂题意,弄清楚题目中的关键语句所包含的各种数量的意义及相互关系。恰当地设未知数,用代数式表示数学语句,依据相等关系正确的列出方程并求解。

(4)教学过程中,应充分发挥多媒体技术的辅助教学作用,可以参考运用相关课件提高学生的学习兴趣,加深对列简易方程解简单的应用题的整个分析、解决问题过程的理解。此外,通过应用投影仪、幻灯片可以提高课堂效率,有利于对知识点的掌握。

五、列简易方程解应用题。

列简易方程解应用题的一般步骤。

(1)弄清题意和题目中的已知数、未知数,用字母(如x)表示题目中的一个未知数.。

(2)找出能够表示应用题全部含义的一个相等关系.。

(3)根据这个相等关系列出需要的代数式,从而列出方程.。

(4)解这个方程,求出未知数的值.。

(5)写出答案(包括单位名称).。

平行四边形的判定一教案篇四

本节主要学习了平行四边形的几种判定方法,以及平行四边形性质、判定的应用——三角形的中位线定理。通过问题情境引入平行四边形判定的研究,首先通过直观猜测判定的方法,再次通过几何证明来证明它的正确性。充分发挥学生的主观能动性。

知识与技能:

1.总结出平行四边形的三种判定方法;

2.应用平行四边形的判定解决实际问题;

3.应用平行四边形的性质与判定得出三角形中位线定理;

4.总结三角形与平行四边形的相互转化,学会基本的添辅助线法。

1.经历平行四边形判别条件的探索过程,逐步掌握说理的基本方法。

2.经历探究三角形中位线定理的过程,体会转化思想在数学中的重要性。

1.在探究活动中,发展合情推理意识,养成主动探究的习惯;

2.通过探索式证明法开拓思路,发展思维能力;

3.在解决平行四边形问题的过程中,不断渗透转化思想。

重点:1.平行四边形的判别条件;2.应用平行四边形的性质和判定得出三角形中位线定理。

难点:1.灵活应用平行四边形的判别条件;2.合理添加辅助线;3.三角形与平行四边形之间的合理转化。

小组讨论、合作探究

课时安排

3课时

教学媒体

课件、

第一课时

(一)引入

平行四边形的判定一教案篇五

通过平行四边形的性质,理解并探索并掌握平行四边形的判定条件,并能根据条件判定平行四边形。

【过程与方法】

经历平行四边形判别条件的探索过程,逐步掌握平行四边形判定的基本方法;在与他人交流的过程中,能合理清晰地表达自己的思维过程。

【情感态度与价值观】

主动参与探索的活动中,发展合情推理意识、主动探究的习惯,激发学习数学的热情和兴趣。

【重点】平行四边形的判定方法。

【难点】平行四边形判定方法的应用。

(一)导入新课

出示下图:学生观察下图,并提出下列问题。

(二)生成新知

通过前面的学习,我们知道,平行四边形的对边相等,对角相等,对角线互相平分。那么反过来,对边相等或对角线互相平分的四边形是不是平行四边形呢?下面我们就来验证一下。

提问1:你能写出两个实验中的已知条件和求证条件吗?

提问2:根据你写的已知条件,你能得到求证的条件吗?

提问3:通过上面的两个问题,最后你得到什么结论呢?

引导学生总结归纳出结论:

两组对边分别相等的四边形为平行四边形;

两组对角线分别相等的四边形为平行四边形;

对角线互相平分的四边形是平行四边形。

出示例题,通过对角线互相平分的四边形的平行四边形的是平行四边形为例,讲解并验证:

如图所示,在四边形abcd中,ac,bd相交于点o,且oa=oc,ob=od。求证:四边形abcd是平行四边形。

引导学生总结归纳出具体解题步骤:

(三)应用新知

1.在平行四边形abcd中,ac、bd相交于点o。

(2)若ac=10cm,bd=8cm,那么当ao=________cm,do=________cm时,四边形abcd为平行四边形。

(四)小结作业

小结:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?

平行四边形的判定一教案篇六

本节课是平行四边形判定的第二节课,上一节课已经学习了判定方法1和判定方法2,再结合平行四边形的定义,同学们已经掌握了3种平行四边形的判定方法。本节课在上节课的基础上,学习平行四边形的判定方法3,使同学们会运用这些方法进行几何的推理证明,并且通过本节课的`学习,继续培养学生的分析问题、寻找最佳解题途径的能力。

本节课的知识点不难,教材内容也较少,但学生灵活运用判定定理去解决相关问题并不容易,基于此,在本设计中加强了一题多解和寻找最佳解题方法的训练教学,丰富了课堂活动。

平行四边形的判定一教案篇七

《平行四边形的判定》是学生学习平行四边形的重要知识。一共分为4个课时。在学习平行四边形的判定,同时,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫。在设计教学的.亮点是充分利用小组合作学习、一题多变、一题多解、多题一法。

充分利用小组合作学习,在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。

一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的东西为核心问题。从课前小练变到典型例题,还是比较合理的。

一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。用典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的联系和区别,同时提升解题能力,避免了“题海战术”。

多题一法,从课前小练到例题再到练习题,虽然题目各不相同,但解法却都是相通的:即根据条件,选择一种判定方法进行判定。这有利于学生“悟”出解题的思路,找到数学的乐趣。

总之,尝试了生活数学、问题探究模式等教学方式和理念在自己课堂上的运用,并充分意识到多媒体教学的辅助手段对于增进学生学习兴趣、提高课堂效率起到的积极推进作用。在以后的日常教学中,要有自己的思想和独创。

平行四边形的判定一教案篇八

《平行四边形的判定》是学生学习了平行四边形的重要知识。一共分为4个课时。在学习了平行四边形的判定,同时,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫。在设计教学的亮点是充分利用小组合作学习、一题多变、一题多解、多题一法。

充分利用小组合作学习,在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。

一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的东西为核心问题。从课前小练变到典型例题,还是比较合理的。

一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。用典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的联系和区别,同时提升解题能力,避免了“题海战术”。

多题一法,从课前小练到例题再到练习题,虽然题目各不相同,但解法却都是相通的:即根据条件,选择一种判定方法进行判定。这有利于学生“悟”出解题的思路,找到数学的乐趣。

总之,尝试了生活数学、问题探究模式等教学方式和理念在自己课堂上的运用,并充分意识到多媒体教学的辅助手段对于增进学生学习兴趣、提高课堂效率起到的积极推进作用。在以后的日常教学中,要有自己的思想和独创。

平行四边形的判定一教案篇九

2、经历平行四边形识别条件的探究过程,使学生逐步掌握探究的方法和说理的基本技能。

3、在有关活动中发展学生合理推理意识。

二、教学重难点。

三、教学过程。

1、复习引入:什么是平行四边形?

学生回答后教师总结:两组对边分别平行的四边形是平行四边形,它是一个中心对称图形,它具有如下一些性质:(1)两组对边分别平行且相等;(2)两组对角分别相等;(3)两条对角线互相平分。

2、新课讲解:问:怎样判定一个四边形是平行四边形呢?

(1)当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定。

(2)借鉴“逆命题与逆定理”的方法,将平行四边形的性质的条件与结论相交换,形成性质定理的逆命题。

你能说出上述三条性质的逆命题吗?

学生通过小组合作整理出上述各性质的逆命题的文字表达。

逆命题a:两组对边分别相等的四边形是平行四边形。

逆命题b:两组对角分别相等的四边形是平行四边形。

逆命题c:对角线相互平分的四边形是平行四边形。

在教师得指导下,学生通过画图,观察,推理证明出上述三个命题都是真命题,由此得出这三个命题都是平行四边形的判定定理。

四、随堂练习:课后练习讲解证明。

五、课后小结:谈谈本节课的.学习收获和体会。

六、教后反思。

本节课以复习引入的方式,首先复习了平行四边形的定义和性质,唤起了学生对已有知识的回忆,接着通过探究逆命题的真假直接引出本节课的学习内容和任务,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫。

平行四边形的判定一教案篇十

昨天下午,我上了一节数学电教课《平行四边形的判定》第一课时,本节课在引入的环节上,我采用复习引入的方式,平行四边形判定课后反思。首先复习了平行四边形的定义和性质,唤起学生对已有知识的回忆,接着通过探究逆命题的真假直接引出本节课的学习内容和任务。同时,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫。

一、本节课对教材内容进行了重组和编排。

教材中平行四边形的判定的第一课时学习的判定定理是:两组对边分别相等的四边形是平行四边形,对角线互相平分的四边形是平行四边形。因为平行四边形的性质是从边、角、对角线三个方面研究的,所以,我将判定方法也从这三个方面入手,将教材内容进行调整,本节课从边进行研究判定方法。

二、充分利用小组合作学习。

在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上,教学反思《平行四边形判定课后反思》。学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。

三、本节课题量不算太大,但做到了几点:

(1)一题多变。

一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的东西——核心问题。本课的核心问题就是,平行四边形的判定方法的选择。自认为从课前小练变到典型例题,还是比较合理的。因为,前面的练习其实就是为例题做了一定铺垫,学生可以建立起知识联系,寻求解题突破口。但从典型例题变到能力训练题,并不理想,没有紧扣“平行四边形的判定”而变。

(2)一题多解。

一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。本课中,典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的联系和区别,同时提升解题能力,避免了“题海战术”。

(3)多题一法。

本课从课前小练到例题再到练习题,虽然题目各不相同,但解法却都是相通的:即根据条件,选择一种判定方法进行判定。这有利于学生“悟”出解题的思路,找到数学的乐趣。

四、在对课案的反复打磨期间,自己也收获颇丰。

尝试了生活数学、问题探究模式等教学方式和理念在自己课堂上的运用,并充分意识到多媒体教学的辅助手段对于增进学生学习兴趣、提高课堂效率起到的积极推进作用。在以后的日常教学中,要有意识地进一步尝试和运用,真正使学生能力得以培养,技能逐步形成,数学素质得到提高。

教学永远是一门遗憾的艺术,吹尽黄沙始现金。让我们以“没有最好,力求更好”来不断改进我们的教学,实现真正意义上的与时俱进。

将本文的word文档下载到电脑,方便收藏和打印。

平行四边形的判定一教案篇十一

本节课是平行四边形判定的第二节课,上一节课已经学习了判定方法1和判定方法2,再结合平行四边形的定义,同学们已经掌握了3种平行四边形的判定方法。本节课在上节课的基础上,平行四边形的判定方法3的学习,使同学们会运用这些方法进行几何的推理证明,并且通过本节课的学习,继续培养学生的分析问题、寻找最佳解题途径的能力。

本节课的知识点不难,教材内容也较少,但学生灵活运用判定定理去解决相关问题并不容易,基于此,在本设计中加强了一题多解和寻找最佳解题方法的训练教学,丰富了课堂活动。

由于本节已经完成了平行四边形的教学,因此本设计中注意了平行四边形判定方法的及时归纳,从边、角、对角线三个角度进行盘点,思路清晰,便于存贮、提取、应用。同时通过题目训练,让学生了解平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题。例如求角的度数线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再用平行四边形的性质去解决某些问题。

平行四边形的判定一教案篇十二

经历探索平行四边形判别条件的过程,培养学生操作、观察和说理能力;掌握两组对边分别相等的四边形是平行四边形这一判别条件。

本节课是在学生学习了平行四边形的两个判定定理之后即将学习的第三个判定定理——两组对边分别相等的四边形是平行四边形。

重点:

探索并掌握平行四边形的判别条件。

难点:

对平行四边形判别条件的理解及说理的基本方法的掌握。

两根长40厘米 和两根长30厘米的木条

首先复习平行四边形的定义,然后通过学生活动发现平行四边形的另一判定定理,然后借助各种方法加以验证。最后依靠课本所设计的“做一做” ,“议一议” 以及“随堂练习”加深对平行四边形判定定理的理解。

1、复习平行四边形的定义。(旨在为证明一个四边形是平行四边形做铺垫)

2、小组活动

用两根长40厘米和两根30厘米的木条作为四边形的四条边,能否拼成平行四边形?与同伴进行交流。 (通过小组活动,学生亲自动手操作,得出结论——当两组对边相等时,四边形是平行四边形;对边不相等时,所围成的四边形不是平行四边形)。 平行四边形的判定定理——两组对边相等的四边形是平行四边形。

3、课本91页的“做一做” (其目的是巩固和应用“两组对边相等的四边形是平行四边形”的判定定理。)

4、“议一议”

问题1、一组对边平行,另一组对边相等的四边形一定是平行四边形吗?说说你的想法。 (先鼓励学生自主探索,再分组讨论,最后全班交流得出正确结论)

问题2、要判别一个四边形是平行四边形,你有哪些方法?

5、通过课本的“随堂练习”,使学生对平行四边形的判别条件加以应用和巩固

平行四边形的判定一教案篇十三

平行四边形的判定是新人教版八年级数学下册第十八章第一节第二部分内容,是在学习关于平行四边形的性质的基础上进一步探究学习的,这一部分内容主要探究平行四边形的四条判定以及判断和性质的综合运用,培养学生的探究精神、创新精神和应用意识,也为后期学习特殊的平行四边形探索方法和奠定基础。

在教学时我主要采用了以下方法:

1、实验操作法。为了探索平行四边形的判定方法,我引导学生从实验入手,通过亲自动手操作,在操作中从感官上获取认识。

2、引导发现法。在学生实验的过程中,及时引导,细致观察,探索并发现判定一个四边形为平行四边形的条件,猜测平行四边形的判定方法,为归纳平行四边形的判定方法的可行性提供先决条件。

3、探究讨论法。在猜测得出平行四边形的判定方法后,引导学生在小组内充分进行讨论,从不同角度验证方法的正确性,进而归纳出平行四边形的判定方法。

4、练习法。采用讲练结合的方式让学生不仅学会探究,更要能够灵活运用,增强应用意识。

5、加强了变式训练。通过一题多变、一题多证、多题同证等变式训练,既巩固了学生对知识的灵活运用,也训练和发展学生的逻辑思维。

反思自己的教学,还是获得了一些成功之处:

1、培养了学生的动手能力。通过多媒体、生活问题、实验教具等方式呈现问题情境,给学生足够时间亲自动脑、动手、动口参与教学,与老师共同探究判别方法,感悟知识的发生、发展过程。

2、训练了学生的思维能力。引导学生从不同角度、不同方面进行相互讨论、彼此交流,是他们的思维能力的得到了极大的发展和提升。

3、培养学的探究精神和创新精神。通过多层次、多角度例题及练习变式,培养学生思维的广阔性和深刻性,提升探究能力、开拓创新精神。

4、增强应用意识。通过对实际生活中的一些实例和问题进行探究解决,使学生进一步认识到数学应用于生活的重要性,增强学生的数学应用意识。

当然,在教学中也还存在许多不足:

1、对教学设计与时间地分配还不够合理,还要做更好的思考,以增强对时间控制地敏感度,更好地分配好每一环节所花的时间。

2、课教学的节奏把握还不到位,需要在以后的教学中,争取让更多的学生消化好课堂新知,理解好知识点与例题。

3、学生的主体作用彰显不够,在课堂上要放心地让学生去尝试错误,多些让学生自主思考,充分发挥学生的主体作用。

4、对学生的学习与练习的方法指导还不足,应该多些方法性的引导。

总之,在以后的教学中要充分激发学生学习数学的兴趣,让学生积极参与、讨论,导中有练、有思、有研,改进教师先讲知识,然后再进行强化训练的`做法,使讲、练、思、研融合在一起,让学生充分体验数学学习的乐趣,积累数学活动经验,体会数学推理的意义,让学生在做中学,逐步形成创新意识。

平行四边形的判定一教案篇十四

今天学习《平行四边形判定》,主要内容是让学生推理三个判定方法和对判定方法的运用.这节课有以下三个启示:

1.目标指导要明确.在八班布置三个判定定理的讨论时,结果有些同学过了几分钟竟然不知道该如何处理问题.所以在七班我设法把问题更加明确化,而且指明努力的方向,结果表明效果好很多.所以要充分估计问题的难度,要让学生能明了思考的方向。

2.在学生讨论中,要指导学生注意讨论的效率,帮助学生学习如何沟通,如何倾听.这是传统课堂所不能训练的内容.老师除了关心教学内容外,更重要的是要关心学生的一些非智力因素的培养.协调小组同伴之间的关系,帮助提高学习效率。

3.当有同学上台展示自学成果的时候,老师要关注学生是否认真倾听,而且允许学生在讲解过程中询问为什么.这样,既可以让讲解者能及时梳理清晰自己的思路,语言表达更加准确,而且也能让更多的人跟上节奏,让讲解者和倾听者都能在交流中受益.其实,听比讲更加需要专注力。

平行四边形的判定一教案篇十五

一、教学目标:

2、透过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的潜力。

3、感受数学与生活的联系,激发学数学的兴趣。

二、教学重点:掌握平行四边形的计算公式,能正确运用。

三、教学难点;把平行四边形转化成长方形,找到长方形与平行四边形的关系,从而顺利推导出平行四边形的面积计算公式。

四、教学过程:

1、创设情境、激趣导入。

生:想。

师:你们准备怎样解决?

师:怎样才能明白这块长方形菜地的面积?

生:测出菜地的长和宽,用长乘宽就等于面积。

生:不明白。

师:那我们这天就来研究怎样求平行四边形的面积(板书课题;平行四边形的面积)。

2、探究发现、提出猜想。

生:数格子。

师:下方我们就用这种方法来算算平行四边形的面积。(学生数格子,在书上填表)。

师:谁愿意帮老师把这个表格填一填(生上黑板填写)。

师;能告诉大家你是怎样数的吗?

生:我是先数整格,再数半格。

师:还有不一样数法吗?

生:……。

生:不方便。

师:既然不方便,那么不数格子,能不能计算出平行四边形的面积呢?

师:请同学们仔细观察表格中的数据,你发现了什么?

生:我发现平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。

生:我还发现这个平行四边形的底是6,高是4,而面积是24,正好是6与4的乘积。

师:他说的对不对呢?下方让我们动手操作验证一下吧。(学生验证,师巡视)。

3、验证猜想、推导公式。

师:哪个小组说说你们是怎样验证的?

生:我们小组把这个平行四边形沿着高剪开,然后拼成了一个长方形,这个长方形的长相当于平行四边形的底,宽相当于平行四边形的高。长方形的面积等于长乘宽,平行四边形的面积就就应等于底乘高。

师:这组同学想到了用剪拼的方法,将平行四边形转化成了长方形,用旧知识解决了新问题,十分好!这种转化的方法在数学中经常用到。

师:哪个小组再来说说你们是怎样验证的?

生:我们组也是沿着平行四边形的高剪的,把平行四边形拼成了长方形,得到平行四边形的面积公式是底乘高。(教师板书平行四边形的面积公式)。

师:平行四边形的面积还能够用字母表示,如果用s表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高。怎样用字母表示平行四边形的面积。

生:s=ah。

4、解决问题,拓展延伸。

生列式。

师:这两块地的面积相等吗?能够换吗?

生:相等,能够换。

师口述例1、一个平行四边形花坛的底是6米,高是4米,它的面积是多少?

生:24平方米。

生:32÷4=8(米)。

师:老师这还有两道决定题。

师:任何一个平行四边形都能割补成长方形。

生:对。

生:不对,因为面积单位是平方米。

师:同学们表现真好,书中还为我们准备了一些搞笑的练习,我们去看一看吧。

生看第6题回答32÷4=8(米)8×8=64(米)。

生:周长没有变化。

师:你真是一个善于发现的孩子。

5、全课总结、深化认识。

生:我还明白任意一个平行四边形都能够拼成一个长方形。

师:同学们的收获真不少,老师很佩服你们!想一想,能不能用这节课的方法推导出三角形、梯形的面积公式?课后研究研究,老师相信你们必须能有所发现,有所收获的,这节课就上到那里。

平行四边形的判定一教案篇十六

尊敬的各位评委,老师们:

大家好!我是来自实验学校的杨小君,我今天说课的内容是人教版义务教育课程标准实验教科书八年级下册19、1、2平行四边形的判定第一课时。我将由教材分析,教学目标、教法、学法、教学过程、课堂评价这6个方面向大家介绍我的设计构思。

一、教材分析。

四边形是我们生活与生产实践中应用广泛的图形,平行四边形作为四边形的重要研对象,对以后特殊四边形的学习有重大作用。本堂课是在学习了平行四边形的定义和性质定理的基础上,进一步探究平行四边形的判定定理。因此它的作用与地位体现在以下三个方面:

1、是平行线与全等三角形知识的应用与延伸。

2、对以后矩形、菱形、正方形、梯形等特殊四边形的判定学习奠定基础。

3、.对加强学生逻辑推理能力和思维的严密性有积极的意义。

本节课的重点在于探究平行四边形的两种判定定理。难点在于理解和灵活运用平行四边形的判定方法。为了更好的突出重点,突破难点,关键在于通过问题情境的`设计,课堂实验研讨,引导学生发现,分析并解决问题。

学情分析。

初二下半学期,学生已经学习了初中阶段包括全等三角形的性质判定在内的绝大多数几何概念及定理。抽象思维能力、逻辑推理能力已经逐步形成,学生对新鲜的知识也充满了好奇心和强烈的求知欲望,而平行四边形的判定条件中,又有许多颇有思考价值的问题。因此由教师组织教学,让学生全开放自主探索平行四边行的判定定理,让学生的综合能力得到一次检验和再提升。

二、教学目标分析。

《数学课程标准》中明确指出:义务教育阶段的数学课程,其基本出发点是促进学生全面、持续和谐的发展。学生在获得对数学理解的同时,在思维能力,情感态度与价值观等多方面得到进步与发展。基于此,我将这节课的教学目标制定如下:

1、知识与技能——掌握平行四边形判定定理,并会运用判定定理解决相关问题。

2、方法与过程——探索两种组成平行四边形的方法。由此发现平行四边形的判定,体验教学活动充满着探索性和挑战性。

3、情感态度价值观——经过自主探究与合作交流,敢于发表自己的观点,有团结协作和合作意识。

三、教法分析。

在本堂课的教学中,我将主要采用两种教学方法:

1、引导启发——在本节课的教学中,教师所起的作用不再是一味“传授”,而是巧妙地创设问题情境,启发学生发现、解决问题,在学生思维受阻时给予适当引导。

2、激趣教学——学习本应是件快乐的事,为了让学生“乐”学,我将通过实验,抢答等游戏极大的激发学生的学习兴趣,提高学习的效率。

四、学法分析。

在合理选择教法的同时,还应注重对学生学法的指导,本节课主要指导学生以下两种学法:

1、自主探究——本节课的两条判定定理都是通过学生的动手操作、观察、猜想、推理等活动得出的,使学生亲历了知识的发生、发展、形成的全过程,从而变被动接受为主动探究。

2、合作学习——教学中鼓励学生积极合作,充分交流,帮助学生在学习活动中获得最大的成功,促使学生学习方法的改变。

五、教学过程分析。

为了更好的完成教学目标,我设计了以下教学流程:

流程1:复习定义性质,引发思考。

首先给出一些平行四边形的图片和图形,让学生说出平行四边形的定义和性质定理,然后在纸上写出定义和性质的逆命题。

这样设计的目的在于复习前面的知识,为新课奠定基础,向学生说明定义既是平行四边形的性质也可以作为判定平行四边形的方法。提问:除了定义,同学们还想知道其他判定平行四边形的方法呢?这就是我们今天要学的“平行四边形的判定”

流程2:创设情境,引出新课。

让学生用课前准备好的学具,完成活动1。

活动1的设计,是为了让学生动手操作,经历将两两相等的木条,作为对边得到平行四边形的过程,体验“发现”知识的快乐。

流程3:命题论证,得到判定。

证明这一命题是个难点,首先指导学生根据命题画出几何图形,写出已知求证。证明过程采用学生先独立思考。小组合作,再由教师引导,把证明平行四边形的问题逐步转化为证明线平行——角相等——三角形全等的问题。突破难点,体现划归的思想。

流程4:引发猜想,得到命题。

让学生继续动手,完成活动2.。得出命题2:对角线互相平行的四边形是平行四边形。在此活动中,教师应重点关注学生操作的准确性。

流程5:命题证明,得出判定。

命题2的证明,鼓励学生用类比的思维方法仿照命题1的证明,独立思考,小组内交流意见,教师关注学生能否用不同的方法从理论上证明自己的猜想和发现,以及学生使用几何语言的规范性与严谨性。

流程6:应用判定,小试牛刀。

这三个小题是对判定的直接应用,采用小组抢答的方式来完成,其他小组作出评价,既检验学生对新知识的掌握情况,又活跃了课堂气氛,同时让学生体验到成功的快乐。

流程7:例题讲解,练习巩固。

出示例题给予足够的时间让学生独立思考,小组合作,由不同的学生表述自己的思路,教师展示学生的不同方案,对于有创意的方案要大力表扬,然后引导学生从多种证明思路中,选择较为简洁的方法,规范板书。

然后出示练习题,1、2体学生独立思考口答完成填空,3小题小组合作探讨,整理思路,写出解题过程。

流程8:小结本课,布置作业。

引导学生多方面,多角度说出自己的收获,可以是知识方面的,也可以是数学思想方法,还可以是自己的感受,只要学生的收获,都应得到肯定。

六、课堂评价分析。

对于数学学习效果的评价,既要关注学生知识与技能的理解与掌握,更要关注他们情感与态度的形成与发展。在教学各环节中,我注重采用学生自我评价,学生互评,教师评价相结合,实现评价主体多元化;采用口试,课堂观摩,课后作业等多种形式,多层面了解学生,在学习过程中,从学生参与教学活动的程度,合作意识,思考习惯,发现能力几方面,及时调控教学进程。

总之,我这堂课的设计理念来自于建构主义思想,以学生为中心,强调学生对知识的主动探索,主动发现和对所学知识意义的主动建构,因此创设学习环境是主要任务,体现学生主动学习是这堂课的核心内容。

平行四边形的判定一教案篇十七

1、一个四边形是平行四边形,这个四边形的两组对边分别相等。

2、一个四边形是平行四边形,这个四边形的两组对角分别相等。

3、夹在两条平行线间的平行的高相等。

4、连接任意四边形各边的中点所得图形是平行四边形。

5、过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。

6、平行四边形abcd中,ac、bd是平行四边形abcd的`对角线,则各四边的平方和等于对角线的平方和。

平行四边形的判定一教案篇十八

根据平行四边形的定义:在同一个二维平面内,由两组互相平行的对边组成的闭合图形叫平行四边形。

长方形和正方形都具有平行四边形的特征,长方形是四个角都是直角的特殊平行四边形,正方形是四个角都是直角,四条边长相等的特殊平行四边形。

长方形:长方形也叫矩形,是有一个角是直角的平行四边形,也可以定义为四个角都是直角的平行四边形。

判定方法。

1、对角线相等的菱形是正方形。

2、有一个角为直角的菱形是正方形。

3、对角线互相垂直的矩形是正方形。

4、一组邻边相等的矩形是正方形。

5、一组邻边相等且有一个角是直角的`平行四边形是正方形。

6、对角线互相垂直且相等的平行四边形是正方形。

7、对角线相等且互相垂直平分的四边形是正方形。

8、一组邻边相等,有三个角是直角的四边形是正方形。

9、既是菱形又是矩形的四边形是正方形。

平行四边形的判定一教案篇十九

义务教育课程标准实验教科书(西南师大版)四年级(下)第97,98页中的主题图和例题1,例2,以及第97~99页中课堂活动第1~2题和练习二十第1题。

1、通过观察、操作等活动,认识平行四边形以及图形的特征;通过操作活动(折纸)认识并理解平行四边形的高。

2、经历探索平行四边形形状的过程,了解它的基本特征,进一步发展空间观念,培养学生动手操作能力。

3、通过观察、操作、交流等数学活动,体验数学问题的探索性和挑战性,感受数学思考的条理性。

让学生在观察、操作、交流等教学活动中认识平行四边形。

一个长方形方框,多媒体课件。

每人一块直尺、一副三角板、一张印有平行四边形的白纸和一个剪好的平行四边形、一个硬纸条做的长方形方框。

一、谈话引入。

教师:同学们,在以前的学习中我们已经初步认识了平行四边形。实际上,在我们生活中也经常见到平行四边形。请看大屏幕。

(课件出示主题图)。

请同学们仔细观察这些物体,你能在这些物体上找出平行四边形吗?(请同学到台上用鼠标边指边说,然后课件再呈现学生所指出的平行四边形。)。

教师:同学们观察得非常仔细,找到了这么多的平行四边形,它们有些什么共同的特征呢?今天这节课老师就和同学们一起来进一步认识平行四边形。

二、探究新知。

(1)教师:同学们喜欢看魔术表演吗?(喜欢)现在,老师就给同学们表演一个小魔术。

(教师出示一个长方形方框)这个图形大家认识吗?(它是长方形)。

教师:对!这是一个长方形。老师握着这个长方形方框的两个对角,轻轻地拉一拉。变!变!变!这还是长方形吗?(平行四边形)对!这是平行四边形。

教师:你们想玩玩这个魔术吗?

(2)学生自己用硬纸条做的长方形方框来体验平行四边形的不稳定性。

(3)师:同学们观察老师手里的平行四边形,同桌讨论你们发现了什么?

生1:对边平行。

生2:对边相等。

同学们真聪明,真能干通过观察发现了这么多!

同学们,这些发现对吗?现在我们来验证我们的发现,请同学们拿出老师发的平行四边形,首先我们用画平行线的方法来验证对边是否平行。

汇报结果:对边平行。

现在我们再来验证一下对边真的相等吗?应该怎样办呢?

师:请拿出你们的直尺测量手中平行四边形四条边的长度。

汇报结果:对边相等。

师:同学们,我们现在发现了平行四边形有两个特点,它们是什么呢?

教师通过学生的回答引导出:对边平行的四边形,叫做平行四边形。

同学们真能干!这么快就知道了什么叫做平行四边形,现在我们来学习-平行四边形另外一个特征。请同学们拿出老师发的平行四边形跟老师做(折高)。

师:打开平行四边形,观察折痕有什么特点(垂直于边)。

第99页第3题,学生独立完成之后全班交流,教师强调底与高的对应性。

师:引导认识底。

3、引导学生认识长方形、正方形、平行四边形的关系。

(1)完成表格。

(2)归纳总结第98页课堂活动第1题。

教师:请同学们想一想,到现在为止,我们都学习了哪些四边形?(长方形、正方形、平行四边形……)。

教师:它们都有哪些地方一样呢?(它们都是对边相等,对边互相平行……)。

教师:平行四边形的这些特征,长方形、正方形都具备。

我们通常说长方形、正方形是特殊的平行四边形。

长方形、正方形是特殊的平行四边形。平行四边形的对边平行且相等,具有不稳定性。

三、课堂小结。

同学们,这节课你学到了哪些知识?能给大家讲讲吗?

平行四边形的判定一教案篇二十

【原创】没有最好,力求更好――《平行四边形判定》课后反思。

昨天下午,我上了一节数学电教课《平行四边形的判定》第一课时,本节课在引入的环节上,我采用复习引入的方式。首先复习了平行四边形的定义和性质,唤起学生对已有知识的回忆,接着通过探究逆命题的真假直接引出本节课的学习内容和任务。同时,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫。

一、本节课对教材内容进行了重组和编排。

教材中平行四边形的判定的第一课时学习的判定定理是:两组对边分别相等的四边形是平行四边形,对角线互相平分的四边形是平行四边形。因为平行四边形的性质是从边、角、对角线三个方面研究的,所以,我将判定方法也从这三个方面入手,将教材内容进行调整,本节课从边进行研究判定方法。

二、充分利用小组合作学习。

在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的`,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上。学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。

三、本节课题量不算太大,但做到了几点:

(1)一题多变。

一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的东西---核心问题。本课的核心问题就是,平行四边形的判定方法的选择。自认为从课前小练变到典型例题,还是比较合理的。因为,前面的练习其实就是为例题做了一定铺垫,学生可以建立起知识联系,寻求解题突破口。但从典型例题变到能力训练题,并不理想,没有紧扣“平行四边形的判定”而变。

(2)一题多解。

一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。本课中,典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的联系和区别,同时提升解题能力,避免了“题海战术”。

(3)多题一法。

本课从课前小练到例题再到练习题,虽然题目各不相同,但解法却都是相通的:即根据条件,选择一种判定方法进行判定。这有利于学生“悟”出解题的思路,找到数学的乐趣。

四、在对课案的反复打磨期间,自己也收获颇丰。

尝试了生活数学、问题探究模式等教学方式和理念在自己课堂上的运用,并充分意识到多媒体教学的辅助手段对于增进学生学习兴趣、提高课堂效率起到的积极推进作用。在以后的日常教学中,要有意识地进一步尝试和运用,真正使学生能力得以培养,技能逐步形成,数学素质得到提高。

教学永远是一门遗憾的艺术,吹尽黄沙始现金。让我们以“没有最好,力求更好”来不断改进我们的教学,实现真正意义上的与时俱进。

【本文地址:http://www.xuefen.com.cn/zuowen/12316564.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档