诗歌是一种优美的语言艺术,可以用简洁的语言表达丰富的意境。总结应该体现个人的思考和反思,具有一定的深度和见解。希望大家在阅读这些总结范文的同时,也能够对自己的写作进行反思和反馈。
小学六年级数学教学设计篇一
教学目标:
1、知识与技能:掌握长方形、正方形的面积计算公式,并能解决一些简单的实际问题。
2、过程与方法:学生经历自己动手摆、动脑想和动口说等过程,掌握长方形、正方形面积计算公式的发现过程。
3、情感、态度与价值观:使学生认识到数学与实际生活是密切联系的,培养学生热爱生活、热爱数学的情感。
教学重点:掌握长方形、正方形面积的计算方法。
教具、学具准备:课件、小正方形、操作表、长方形卡纸。
教学过程:
一、复习旧知。
1、复习。
(1)同学们,上节课我们学习了有关面积的知识,我想考考大家,你们敢接受挑战吗?
你能说一说什么是面积?常用的面积单位有哪些呢?
(2)请你用手比划一下1平方厘米、1平方分米、1平方米有多大?
2、激趣引入:
二、情境导入。
1、出示例2:一个长方形长5厘米、宽3厘米。你能求出它的面积吗?
让学生利用摆小正方形的方法求出长方形的面积。
2、师:是不是每一个图形的.面积都可以用小正方形摆出来呢?
出示学校足球场和篮球场的图片,问:足球场和篮球场的面积能摆出来吗?为什么?
3、揭示课题:今天我们就来学习新方法用来计算长方形和正方形的面积。
三、自主探究。
1、(1)每个小组任取几个1平方厘米的正方形,拼成不同的长方形。边操作,边填表。
长(厘米)宽(厘米)。
面积(平方厘米)。
(2)学生动手操作,并计算所摆的长方形面积的大小。
2、让学生思考长方形的面积与它的长和宽有什么关系。
3、归纳总结。学生得出结论:长方形的面积=长×宽。
教师追问:求长方形面积必须知道长方形的哪个条件?
4、反馈练习。
做一做:先量一量,再计算它们的面积。
长=长=。
宽=宽=。
面积=面积=。
5、仔细观察,你发现了什么?
6、归纳小结:正方形的面积=边长×边长。
7、计算下面图形的面积。(单位:厘米)。
四、实践应用。
1、竞赛能手。
(1)门面长2米,宽1米,它的面积是()。
(2)黑板长3米,宽1米,它的面积是()。
(3)一块正方形手帕的边长是20厘米,它的面积是()。
2、智慧冲浪。
足球场的长是80米,宽是80米。它的面积是多少平方米?
3、勤学巧用。
篮球场的长是28米,宽是15米。它的面积是多少平方米?半场是多少平方米?
4、估一估。
请同学们任意选择身边的一样物体,先估计物体一个面的面积,并测量长长、宽计算面积,看看哪位同学估计得最准确。
五、课堂总结。
今天你学会了什么?把收获讲给大家听。
六、板书设计。
长方形、正方形面积的计算。
长方形的面积=长×宽。
正方形的面积=边长×边长。
教学反思:这节课的设计充分体现了新课程所倡导的“数学学习不是一个简单的接受过程,而是学生自己体验探索实践的过程”这一理念,课堂中给学生提供了充分的活动空间和时间,让学生合作探究,发现规律,提出猜想,验证概括。练习部分让学生用所学知识解决生活中的简单问题,体现了数学来源于生活,服务于生活的理念,使学生感受到学习数学的乐趣。建议在提出猜想之前,利用课件演示长方形的变化,如:一个长方形宽不变,长变长,观察面积的变化;另一个长方形长不变,宽加长,面积的变化,让学生猜想长方形的面积与它的长和宽有关系。
将本文的word文档下载到电脑,方便收藏和打印。
小学六年级数学教学设计篇二
1课时(40分钟)。
学情分析。
通过前几节课的学习,学生已经掌握了长方形的有关知识,会用数方格的方法计算长方形的面积,本节课也通过学生拼摆1平方厘米的小正方形来观察与长方形的长和宽的关系,进而概括出长方形的面积=长×宽。学生总结长方形面积公式也比较容易。因此,本节课应让学生亲自动手、动脑、小组合作共同推导出长方形和正方形的面积公式。
教学目标。
一、情感态度与价值观。
1、渗透“实验———发现————验证”的学习方法,培养学生的自主学习能力、小组合作意识和探究精神。
2、通过学生亲手操作,激发学生的学习兴趣和热情。
二、过程与方法。
引导学生小组合作通过用1平方厘米的小正方形摆一摆,掌握实验———发现————验证的学习方法。
三、知识与技能。
1、经历长方形和正方形面积公式的推导,理解并掌握长方形和正方形的面积计算公式。
2、会正确运用长方形和正方形的面积计算公式解决实际问题。
教学重点、难点。
1、让学生经历长方形面积计算公式的推导过程,并会应用面积公式解决实际问题。
2、让学生自主探究,推导出长方形和正方形的面积计算方法,并理解长方形所含的平方厘米数正好等于长方形长所含的厘米数与宽所含的厘米数的乘积。
教学资源。
(1)教学课件。
(2)每人15个边长1厘米的卡片、每2人一个长5厘米,宽3厘米的长方形卡片。
(3)每4人一张表格。
小学六年级数学教学设计篇三
教学内容:
纳税。课本第98页的内容和第99页的例5。
教学目标:
1,理解税收的专有名词,会计算应纳税额。
2.建立正确的纳税观,懂得纳税的重要性。
重点难点:
理解纳税的专有名词,会计算应纳税额。
教学用具:
实物投影。
教学过程:
一、学前导入:
你们在日常生活中听说过有关税收的知识吗?板书:纳税。
二、展示学习目标:
理解纳税含义,懂得应纳税额。
三、讨论发现:
1.什么人需要纳税?
2.为什么要纳税?
3.你认为你身边的哪些事物是国家用税收款投资完成的?明确:1.无论是集体还是个人,都应该依法纳税。
2.纳税是根据国家税法的有关规定,按照一定的比率把集体个人收入的一部分缴纳给国家。
3.税收是国家收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防等事业。
税收主要分为消费税、增值税、营业税和个人所得税等几类。缴纳的税款叫作应纳税额,应纳税额与各种收入(销售额、营业额……)的比率叫做税率。
四、巩固练习:
出示例5:一家饭店十月份的营业额约是30万元。如果按营业额的5﹪缴纳营业税,这家饭店十月份应缴纳营业税约多少万元?(多名学生板书演示)。
求这家饭店十月份应缴纳营业税多少万元,就是求30万元的5﹪是多少。即:30×5﹪=1.5(万元)。
答:十月份应缴纳营业税约1.5万元。
五、作业安排:
课本练习二十三第102页第。
4、5题。教学内容:利率。课本第99、100页的内容。
小学六年级数学教学设计篇四
教学内容:新课标人教版六年级上册第99~100页。
教学目标:
1、知识技能目标:理解本金、利息和利率的含义,掌握利息的计算方法,会利用利息的计算公式进行一些有关利息的简单计算。
2、情感性目标:在合作与交流的过程中获得良好的情感体验及口头表达能力,感受到生活中处处有数学。
3、实践性目标:学生在调查实践中了解储蓄的意义、种类,培养学生搜集处理信息的能力。
4、体验性目标:让学生在解决问题的过程中,进一步体验数学与生活的联系,增强数学意识,发展数学思维。
(设计意图:关注学生发展,整合教学目标,新《课程标准》明确指出:数学教育要从以获取知识为首要目标转变为首先关注人的发展。这是对长期以来以知识为本位教育目标的重要改革,也是为学生终身学习和可持续发展奠定基础,更重要的是学生在今后获取高质量生存条件的有力保证。所以,本节课根据教材特征结合学生的生活背景,按照关注学生发展理念的认识,确立了知识技能目标、情感性目标、实践性目标和体验性目标。努力使学生在发展性领域和知识性领域获得发展、构建自我。对于本课的设计,本着新课标的基本理念,“人人都能获得良好的数学教育”,让学生通过对不同存款方式的操作,体验到货币的升值,也感受到不同的存款方式所带来的不同收益,更重要的是让学生感受数学知识服务于生活的价值,从小培养科学理财的意识。)。
教学重点:掌握利息的计算方法。
教学难点:税后利息的计算。
课前调查:银行储蓄凭证。
教具准备:课前搜集的有关利息的信息、多媒体课件、银行存款单、计算器、有关利率表格。
教学过程:
(设计意图:遵循《数学课程标准》的要求,从学生的认识发展水平和已有的知识经验出发,逐步构建起关于外界的知识,从而使自身知识结构将得到发展。为此,本节课的设计根据新课标精神:“重视从学生的生活经验和已有的知识中学习数学和理解数学,教师应充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,去体会数学在现实生活中的应用价值”。数学只有与学生生活相联系才能显得真实和精彩。本着这样的理念,所以在课堂设计中利求从学生的实际出发,在课堂中充分让学生“做主”,通过学生积极参与数学活动、独立思考、合作交流、自主地发现掌握本金、利息和利率含义,体会在银行存款时利息的计算方式,从而激发学生学习数学的积极性和学好数学、用好数学的自信心。因此在教学中我遵照以“以学生为本”的思想,共分为四个教学层次,一、创设情境,生成问题二、探索交流,解决问题,三、巩固应用,内化提高四、回顾整理,反思提升。)。
课前自学。
1、预习课本p99~100。
2、课前让学生分组或者自由结合到社会上进行调查、搜集有关储蓄的信息,把调查的结果、遇到的问题或感受记录下来。
3、向家长或银行工作人员了解课本上的相关内容。如储蓄的种类,银行存款的年利率、如何填写存款凭条等。
(设计意图:数学知识来源于生活,应用于生活。在学习新知前,先让学生预习课本。增强学生的感性认识,为帮助学生确实学好这部分知识打下基础。让学生分组进行有关储蓄知识的调查,组织学生进行有关的实践活动,培养了学生搜集信息的意识和实际调查的能力,分组调查中又培养了学生的合作精神和能力)。
一、创设情境生成问题。
1、开一个关于利率的发布会。
师:我们开一个关于利率的发布会。在调查储蓄的过程中,你搜集到哪些相关的知识?
学生分组汇报调查结果,开放的问题情景下,根据每组学生的差异,预计可能出现下列情况:(1)有关储蓄的一般知识,如储蓄的方式;(2)有关储蓄的相关概念,如本金、利息、利率、税后利息税的知识;(3)有关利息的计算方法,如有的小组利率的含义推导出利息的计算方法;(4)有关调查中遇到的困难、解决的方法和自己的感受。
根据每组交流的情况给予相应的评价,并和学生共同整理储蓄的相关知识,形成知识体系。
(设计意图:情境的创设,不仅充分调动了学生的学习积极性,而且为学生提供了从事数学活动的机会。学生通过课前的调查充分感知储蓄的益处,在不知不觉中学到了知识。以谈话方式导入,为学生创设真实的生活情境,不仅让学生感觉到亲切,而且从课的开始就让学生感受到数学与生活的密切联系,起到了开动思维的作用,使学生乐于参与数学活动。)。
二、探索交流解决问题。
1、感知利息。
生:存入银行......
师:人们常常把暂时不用的钱存入银行储蓄起来。那储蓄有什么好处呢?
生:放在银行比较安全;可以得到利息。
师:取款时,银行多支付的钱叫做利息。(板书:利息)。
小结:人们把钱存入到银行,国家可以把这部分暂时不用的钱通过多种方式投入到现代建议中去,这样可以支援国家建设,对国家有利,也使的个人用钱更加安全和有计划,还有利息,也可增加一些收入。我们可以这样概括:储蓄利国利民。
学生对于国家如何处理人民存入银行的钱,还有银行付给储户利息会不会亏本这些问题,搞不清楚。教师在这里向学生作一些解释是必要的,也是及时的。
(设计意图:根据学生的生活经验和要求,为了培养学生的各种能力,尝试大胆地开放教学过程。让学生通过小组交流,把搜集到的信息进行汇报整理,总结利息的求法,培养了学生信息的交流和处理能力。)。
2、存款的方式。
师:根据国家经济的发展变化,银行存款的利率也在变化。谈谈你所知道的储蓄有哪几种,并举例说明,然后教师作适当的补充。有时会有所调整,而且,根据存款是定期还是活期,定期时间的长短,利息也是不一样的。
出示存款凭证条,并让学生说说每一栏表示什么意思,“客户填写”一栏该如何填写,教师根据学生的回答作适当补充。
我们把钱存入银行,银行给我们一个什么凭证,证明你把钱存入了银行呢?
这些存单不仅能证明了我们把钱存入银行,还可以自由存款和取款。
学生一般都没有进行过实际的储蓄,多数学生都没有见过存单,所以这里老师把自己的存单展示给学生看,加深学生的感性认识。
学生观察讨论。
我们先来交流一下你能理解的信息。
生:我知道老师是在中国人民银行存的款。
师:你还知道有哪些银行吗?(建设银行,工商银行,交通银行等)。
生:我还知道老师存款的方式是定期存款。
什么是定期存款的存款方式?那你知道存款的其他方式吗?
生:整存整取,零存整取,定活两便、活期存款等。
生:我知道老师存的是一千元人民币。
师:银行还办理外币储蓄。
(设计意图:传统的教学过程将学生禁锢在课堂上,阻碍了学生能力的形成和发展。联系实际增加学生的感性认识,教材中还给出一张银行用的存款凭条和利息的计算公式,让学生知道在实际生产生活中的简单应用及简单的计算。这样在已有的生活经验的基础上出示一张真实的存款单,给学生一种真实的感觉,从而让学生更加体验到数学的价值。)。
3、认识本金、利息、利率;明白利息的计算方法。
通过课前的自学,你知道这一千元就叫……?
对,我们把存入银行的钱叫做本金。
生:我还看到利率是百分之二点二五。
你知道什么叫利率吗?
利息/本金=利率(老师板书)。
师:同学们手中都有一张利率表,大家看看。同桌之间说说你看到了什么?
关于利率,你们还知道什么?
………。
生:“利息/本金=利率”。我还知道:利息=本金×利率。
师:如果我要存定期二年能得到多少利息,该如何计算?引起学生的知识需求,产生探究欲望。
学生可能出现下面三个算式:
比较三个算式:
1)2.25%是一年的年利率,2.70%是定期二年的年利率。
2)让学生说说自己的看法。
生1:定期二年得到的利息等于本金乘二年期的利率。
生2:利率是“年”利率,利息的多少还与时间的长短有关,应该再乘时间。
师把公式填写完整:利息=本金×利率×时间(板书:×时间)。
小结:存款选择的时间不同,利率也不同。计算时一定要选择与存款时间相对应的利率。
(设计意图:完全放手让学生通过自主探究、合作交流的方式,完成新知的学习。这样为学生创设了思维的空间,探究的空间,交流的空间,注重了让学生经历知识的产生过程,即培养了学生的自学能力,又培养了学生的合作意识,即学会倾听又学会表达。)。
4、学习利息税知识:
教师课件出示,国家规定:存款的利息要按20%的税率纳税。哪位同学能解释一下?
生:要扣除利息所得税,要扣除20%的利息所得税。
师:那老师到期后能得到多少税后利息呢?
学生计算后小组交流,生列式计算,允许用计算器。
然后归纳公式。
税后利息=本金×利率×时间×(1-20%)(板书)。
教师及时向学生进行要长大以后要做一个依法纳税的好公民。关于税后利息的计算最好还是建议学生用分步列式计算,先求出税前利息,再求出应纳税额,最后再求税后利息,这样有利于学困生掌握,而且还利于学生弄清每步求的是什么,同时在遇到求应纳税额时,学生才不会混淆。
小结:在计算时,要看清求的是利息还是税后利息,再灵活计算。
(设计意图:在引导学生探究学习的过程中,层层分析含义、比较数量关系,从而弄清“利息”的初步知识,知道“本金、利息、时间、利率”的关系,巧妙突破教学难点。让学生运用所学知识解决实际问题,在解决实际问题的同时,提高学生灵活运用知识的能力,同是针对利息税,进行公民要依法纳税的教育,提高学生的纳税意识。)。
(设计意图:学生各种能力的形成和发展是我们教学的首要任务。学生在自主探索和合作交流中,对知识的理解与把握非常深刻。为了使学生对本课时的教学内容得到巩固和加深,提高综合运用所学数学知识解决简单的实际问题的能力,我在教法上注重课堂教学的灵活性、科学性。联系实际增强学生的感性认识,抓住各知识的细节性、过渡性、完整性进行教学,同时、采用自主探究、观察、对比、独立思考、小组合作交流、动手操作、汇报演示等学习策略激发学习动机,促使学生肯学、会学、善学,让学生在动手做一做、说一说的学习过程中培养学生的概括能力,把握并突破重、难点,获取新知。引导学生积极参与学习过程,促进学生数学概念的形成和数学结论的获取。教学中还注重沟通师生的情感因素,面向全体学生,充分调动学生的积极性,使所有学生都能在数学学习中增强克服困难的勇气和毅力,提高学习数学的兴趣。)。
三、巩固应用内化提高。
1、基本应用:
(1)、例题:王奶奶要存1000元请你帮助王奶奶算一算存一年后可以取回多少钱?(整存整取一年的利率是2.25%)。
在弄清以上这些相关概念之后,学生尝试解答例题。
在学生独立审题解答的基础上订正。
板书:
方法一方法二。
1000×2.25%×1=22.50(元)1000×2.25%×1=22.50(元)。
22.50×20%=4.50(元)1000+22.50×(1-20%)。
1000+22.50-4.50=1018(元)=1018(元)。
答:一年后王奶奶可以取回1018元。
师:我们存入银行所得的利息要缴纳利息税,利息税是利息的20%。王奶奶存1000元1年,到期利息22.50元,应缴纳利息税22.50×20%=4.50元,这样她存入1000元,到期后她可以实际得到本金和税后利息一共是1018元。
四人小组互相检查对方的计算是否正确。选一到二位同学(实物投影交流)。
这里既是一种实践应用,也是对学生课前作业的照应,体现了教学设计的完整性,又使学生通过解答,达到了灵活运用知识的能力。
(3)、102页第6、7题,学生尝试计算后,交流。完成练习时看清题目认真审题,有的要缴纳利息税,有的则不必缴纳利息税,像国债、教育储蓄就不缴利息税。
2、综合应用。
让学生明白,如果定期存款中途取时,只能按活期算。
生:可以先向别人借钱,等存款到期后,再归还借款。
生:可以用存折作抵压,从银行贷款,然后等存款到期后,再归还借款。
这里是本课的高潮所在,学生灵活运用自己所学知识或已有的生活经验解决实际问题。
(2)、课后实践、体验储蓄过程。
师:请同学们课后把平时积攒的零用钱存入银行,在储蓄的过程中如果遇到问题,你能想办法解决吗?把不懂的问题记下来,存入问题银行,我们下节课继续交流讨论。
(设计理念:针对学生差异,实施多元评价。我精心设计练习,让学生用合作学习的方式运用所学知识解决实际问题,提高学生的实际运用能力。第二个层次的练习设计为实践延伸,对学生提出具有挑战性的要求,让学生获得实践体验,感受到所学的知识能运用于生活。体会到在实际生活中要根据个人的不同需求,选择适合自己的款方式,体验到不同的存款方式带来的不同益处。课后要求学生去亲自实践,体验储蓄的过程,培养了学生良好的生活习惯和利用知识解决问题的能力。)。
四、回顾整理反思提升。
通过本课的学习,你有什么收获?
(设计理念:《新课程标准》评价体系,不仅要求教师要关注学生在语文和数学逻辑方面的发展,而且要发现和发展学生多方面的潜能,了解学生发展中的需求,帮助学生认识自我,建立自信,促进学生在已有的水平上发展,发挥评价的教育功能。本节课在教学过程中,除了针对学生的个性差异采取各种教学活动外,还给学生提供各种展示自己的机会和空间。在课内进行交流时,教师还能根据学生的不同回答,给出知识性、行为逻辑性、实践性、合作性等方面的多元评价方式,使不同的学生认识了自我,有利于他们的再发展。)。
板书设计。
利率。
存入银行的钱叫做本金。
取款时银行多支付的钱叫做利息。
利息与本金的比值叫做利率。
(设计意图:板书设计为学生提供直观性的顺思维与逆思维两种形式,使学生一目了然,并能依据板书归纳和小结本课时所学的内容。)。
小学六年级数学教学设计篇五
《什么是周长》是小学数学北师大版三年级上册第五单元《周长》的内容,是新课标教材中“空间与图形”领域中有关“图形与测量”的内容。在一、二年级学生已经认识了三角形、平行四边形、长方形、正方形等平面图形,并且已经掌握了这些平面图形的基本特征。此外,在日常的生活中,学生对周长也有一定的了解。本节课主要通过描一描、摸一摸、量一量等实践活动,让学生自己体验“边线、一周、封闭”这些词,初步感知周长的含义。为后面认识各种图形的周长,及周长的计算做好铺垫。
【课前预设】。
《新课标》指出:“数学教学应紧密联系学生的生活实际,让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程,在这一理念的指导下,本课我准备采用来源于生活——提炼为数学——应用于实际这一种新型的教学模式,指导学生在自主探究、合作交流中学习,让学生在活动中亲身体验知识的形成和发展过程,以培养学生的创新意识和初步的探索问题、解决问题的能力。
因而本课我打算以创设情境,导入新课;实践探索,理解新知;操作实践,巩固新知;实践训练,深化新知;归纳总结,完善认识五个环节,通过比一比、画一画、评一评;描一描、摸一摸、走一走;量一量、围一围;想一想、算一算、练一练;说一说这些活动进行教学。
【教学目标】。
1、结合具体事物或图形,通过观察、操作等活动,认识周长。
2、能测量并计算三角形、平行四边形、梯形等图形的周长。
3、结合具体情境,感知周长与实际生活的密切联系。
【教学重点】。
结合具体事物或图形,通过观察、操作等活动,认识周长。
【教学难点】。
结合具体事物或图形,通过观察、操作等活动,认识周长。
【教学具】。
1、电脑课件、展示台。
2、学具袋(直尺、细绳子或皮卷尺、水彩笔、树叶、作业纸。
【教学流程】。
一、创设情境,引入新课。
板书课题:什么是周长(周长的认识)。
【设计意图】。
三年级的学生对于枯燥的空间与图形的数学内容还不是很感兴趣,所以通过一个童话故事引入新课是根据学生的年龄特征,抓住学生的好奇心来进行下一步的学习。
二、实践探索,理解新知。
1、比一比、画一画、评一评感知周长。
(1)课件出示各种封闭与不封闭图形,问:哪些图形是有周长的?
(2)画几个自己喜欢的封闭图形。
(3)展示学生作品,并指出图形周长,进一步体会到在同一平面内封闭图形一周的长度叫做这个图形的周长。
2、描一描、摸一摸,走一走体验周长。
(1)描一描。
a、课件出示立体图形和平面图形,让学生指一指、说一说周长。
b、描一描光碟的边线,问光碟的内部线是它的周长吗?
(2)摸一摸(44页摸一摸)。
让学生用手分别摸一摸数学课本封面的边线及文具盒面的边线,与同桌交流认识周长。
(3)走一走。
怎样走才是教室的周长?怎样走才是操场的周长?
【设计意图】。
通过多种学习活动以及各种学习方式,让学生在动手、动脑的学习过程中循循渐进的掌握知识。
三、操作实践,巩固新知。
1、量一量(实践活动)。
(1)测量自己的腰围与头围。
自主选择测量工具和测量方法,量出结果并记录下来,然后在小组内交流测量过程;
(2)测量树叶的周长。
自选测量工具,测量树叶周长,并在小组内交流测量方法。
2、围一围(45页第1题)。
【设计意图】。
让学生与同学合作量一量身边的一些物体的周长,既培养了他们的动手能力,还培养了学生的合作意识。
四、实践训练,深化新知。
1、想一想。
如果要知道三角形的周长应该怎样量?四边形呢?为什么?
2、算一算(45页第2题)。
3、练一练(45页第3题)。
运用课件,通过测量、移动的方法,直观的比较两组图形的周长,从而深化知识。
【设计意图】。
练习题由易到难,从基础题到拔高题,层层深入,这样既顾及到全班好中差三个层面的学生,又为尖子生补充了”营养“。
五、归纳总结,完善认识。
这节课,你知道了什么?学会了什么?还有什么地方不懂?
【设计意图】。
让学生从小就能自己对所学知识进行梳理与整理,并养成不懂就问的好习惯。
【反思】。
《什么是周长》是一节帮助学生建立周长概念的一节课,这是学生在认识了长方形、正方形、三角形、圆形等平面图形的基础上展开的,认识平面图形是学习习近平面图形周长的基础。学生只有对周长的概念做到真正的理解,形成表象。才能为后面的测量周长,计算周长以及周长的应用做好铺垫。同时也为日后学习面积的相关知识,区分周长与面积的概念打好伏笔。基于以上的认识,在这节课的.教学中我注意了以下两点:
(一)让学生在亲身体验中感悟周长。
在本节课的教学中我重点放在让学生亲身感悟。首先我通过蚂蚁爬树叶的情境让学生看蚂蚁爬过树叶一周的长度,通过对”一周“的强调初现周长概念。再让学生通过比、画、摸、走、描几种图形的周长,让学生感受到周长都是沿着图形的”边线“进行的,也让学生在这些活动中充分感受”封闭平面图形“、”一周“、”长度“这三个关键词,让学生用自己的语言说一说图形的周长,从而抽象出周长的概念是图形一周的长度。我知道仅靠以上的体验肯定是不够的,所以我接着让学生围一围、量一量、想一想、算一算、练一练来加深学生对周长的理解,整节课我都注重了调动学生的各种感官,让他们在有效的活动中全方位的感受、探索周长的含义。
(二)在练习中让学生对周长的认识得到升华。
小学六年级数学教学设计篇六
1000×2.25%×1=22.50(元)1000×2.25%×1=22.50(元)22.50×20%=4.50(元)1000+22.50×(1-20%)。
1000+22.50-4.50=1018(元)=1018(元)。
答:一年后王奶奶可以取回1018元。
师:我们存入银行所得的利息要缴纳利息税,利息税是利息的20%。王奶奶存1000元1年,到期利息22.50元,应缴纳利息税22.50×20%=4.50元,这样她存入1000元,到期后她可以实际得到本金和税后利息一共是1018元。
四人小组互相检查对方的计算是否正确。选一到二位同学(实物投影交流)。
这里既是一种实践应用,也是对学生课前作业的照应,体现了教学设计的完整性,又使学生通过解答,达到了灵活运用知识的能力。
(3)、102页第。
6、7题,学生尝试计算后,交流。完成练习时看清题目认真审题,有的要缴纳利息税,有的则不必缴纳利息税,像国债、教育储蓄就不缴利息税。
2、综合应用。
让学生明白,如果定期存款中途取时,只能按活期算。
生:可以先向别人借钱,等存款到期后,再归还借款。
生:可以用存折作抵压,从银行贷款,然后等存款到期后,再归还借款。
这里是本课的高潮所在,学生灵活运用自己所学知识或已有的生活经验解决实际问题。
(2)、课后实践、体验储蓄过程。
师:请同学们课后把平时积攒的零用钱存入银行,在储蓄的过程中如果遇到问题,你能想办法解决吗?把不懂的问题记下来,存入问题银行,我们下节课继续交流讨论。
(设计理念:针对学生差异,实施多元评价。我精心设计练习,让学生用合作学习的方式运用所学知识解决实际问题,提高学生的实际运用能力。第二个层次的练习设计为实践延伸,对学生提出具有挑战性的要求,让学生获得实践体验,感受到所学的知识能运用于生活。体会到在实际生活中要根据个人的不同需求,选择适合自己的款方式,体验到不同的存款方式带来的不同益处。课后要求学生去亲自实践,体验储蓄的过程,培养了学生良好的生活习惯和利用知识解决问题的能力。)。
四、回顾整理反思提升。
通过本课的学习,你有什么收获?
(设计理念:《新课程标准》评价体系,不仅要求教师要关注学生在语文和数学逻辑方面的发展,而且要发现和发展学生多方面的潜能,了解学生发展中的需求,帮助学生认识自我,建立自信,促进学生在已有的水平上发展,发挥评价的教育功能。本节课在教学过程中,除了针对学生的个性差异采取各种教学活动外,还给学生提供各种展示自己的机会和空间。在课内进行交流时,教师还能根据学生的不同回答,给出知识性、行为逻辑性、实践性、合作性等方面的多元评价方式,使不同的学生认识了自我,有利于他们的再发展。)。
板书设计。
利率。
存入银行的钱叫做本金。
取款时银行多支付的钱叫做利息。
利息与本金的比值叫做利率。
(设计意图:板书设计为学生提供直观性的顺思维与逆思维两种形式,使学生一目了然,并能依据板书归纳和小结本课时所学的内容。)。
小学六年级数学教学设计篇七
教学目标:
1、给合生活实际,通过观察、操作等活动认识圆,认识到“同一个圆中半径都相等、直径都相等”,体会圆的特征及圆心和半径的作用,会用圆规画圆。
2、通过观察、操作、想象等活动,发展空间观念。
教材分析:
重点 在观察、操作中体会圆的特征。知道半径和直径的概念。
难点 圆的特征的认识及空间观念的发展。
教具准备:
教学圆规、电化教具、课件。
教学过程:
一、观察思考。
1、(呈现教材套圈游戏中的第一幅图)这些小朋友是怎么站的?在干什么?你对他们这种玩法有什么想法吗?(从公平性上考虑)得到:大家站成一条直线时,由于每人离目标的距离不一样导致不公平。
2、(呈现教材套圈游戏中的第二幅图)如果大家是这样站的,你觉得公平吗?为什么?得到:大家站成正方形时,由于每人离目标的距离也不一样导致也不公平。
3、为了使游戏公平,你们能不能帮他们设计出一个公平的方案?(学生思考)学生想到圆后,出示第三幅图,提问:为什么站成圆形就公平了呢?(每人离目标的距离都一样)。
4、上面我们接触了三种图形-----直线、正方形、圆。其中圆是有点特殊的,你能说说圆与正方形等图形的不同之处吗?举出生活中看到的圆的例子。
二、画圆。
1、你们谁能画出圆来吗?动手试一试。
2、谁来展示一下自己画的圆,并说说你是怎样画的?画的时候要注意什么?其他同学有想法可以补充。
3、思考:以上这些画法中有什么共同之处?注意的问题你是怎么想到的?(固定一个点和一个长度,引出圆心和半径)。
三、认一认。
1、教师边画圆边讲概念。(概念讲解一定要结合图形,并要举一些反例)强调:圆心是一个点,半径和直径是线段。
2、半径和直径的辨认。
四、画一画,想一想。
1、画一个任意大小的圆,并画出它的半径和直径。想:在同一个圆中可以画多少条半径、多少条直径?同一个圆中的半径都相等吗?直径呢?(放动画)。
2、以点a为圆心画两个大小不同的圆。
3、画两个半径都是2厘米的圆。
五、应用提高。
讨论:圆的位置和什么有关系?圆的大小和什么有关系?
六、作业。
1、教材第5页练一练。
2、在平面上先确定两个不同的点a和b,再画一个圆,使这个圆同时经过点a和点b(就是这两个点都在所画的圆上),这样的圆能画几个?(提高题)。
训练学生的观察能力,发现问题的能力。
不直接说出圆,把思考的空间留给学生。
在画图中体会圆的特征。
思考共同之处时再一次体会圆的特征。
通过正反例的练习,加深对半径和直径的理解。
动手操作,理解画圆的关键是定圆心(位置)和半径(大小)。
巩固提高,满足不同学生要求。
板书设计:
圆的认识(一)。
圆(本质特征):圆上各点到定点(半径)的距离都相等。
圆的画法:
圆的相关概念:圆心,半径,直径。
同一个圆中,有无数条半径,它们都相等;同一个圆中有无数条直径,它们也都相等。
教学后记:
在学生已认识圆的基础上,深入的了解圆的各部份名称。学生对圆心与圆。
的半径的作用能理解,掌握了本课的重点内容。
小学六年级数学教学设计篇八
教学目标:
1.使学生学会在具体情境中探索确定位置的方法,懂得能用数对表示物体的位置。
2.经历探索确定物体位置的方法的过程,让学生在学习的过程中发展空间观念。
3.使学生感受确定位置的丰富现实情景,体会数学的价值,产生对数学的亲切感。
教学重点:能用数对表示物体的位置。
教学难点:能用数对表示物体的位置,正确区分列和行的顺序。
教学准备:投影仪、本班学生座位图。
教学过程:
一、复习旧知,初步感知。
1、教师提问:同学们,你能介绍自己座位所处的位置吗?
学生介绍位置的方式可能有以下两种:
(1)用“第几组第几个”描述。
(2)用在我的“前面”、“后面”、“左面”、“右面”来描述。让学生先说说。
3、学生各抒己见,讨论出用“第几列第几行”的方法来表述。
二、新知探究。
1、教学例1。
学生对照座位图初步感知,说出自己的位置。个别汇报,集体订正。
(2)学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)。
(3)教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)。
2、小结例1:
(1)确定一个同学的位置,用了几个数据?(2个)。
(2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。比较(2,3)与(3,2)的不同。
{在比较中发现不同之处,从而加深学生对数对的更深了解。}。
3、 练习:
(1)教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。
(2)生活中还有哪里时候需要确定位置,说说它们确定位置的方法。
(电影院里的座位、地球仪上的经纬度、我国古代围棋等。)。
{拓宽学生的视野,让学生体会数学在生活中的应用。}。
三、当堂测评。
教师课件出示,学生独立完成。小组内评比纠错。
{做到兵强兵、兵练兵。}。
四、课堂总结。
我们今天学了哪些内容?你觉得自己掌握的情况如何?还有什么不懂的?
{让学生说出,了解对知识的掌握情况。}。
第二课时:位置(二)。
教学目标:
1.使学生能结合方格纸用两个数据来确定位置,能依据给定的数据在方格纸上确定位置。
2.通过学习活动,增强学生运用所学知识解决实际问题的能力,提高应用意识。
教学重点:
在方格纸上用数对确定点的位置。
教学难点:
利用方格纸正确表示列与行。
教学准备:
教师准备:投影机。
学生准备:方格纸。
教学过程。
一、复习巩固。
标出下列班上同学的位置(图略)。
{借助教师操作台上的学生座位图,迅速将实际的具体情境数学化}。
二、新知探究。
(一)教学例2。
1.我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。
2.依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)。
(在教学的过程中,教师要特别强调0列、0行,并指导学生正确找出。)。
3.同桌讨论说出其他场馆所在的位置,并指名回答。
4.学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)。
练习一第6题。
(1) 独立写出图上各顶点的位置。
(3)照点a的方法平移点b和点c,得出平移后完整的三角形。
(4)观察平移前后的图形,说说你发现了什么?小组内相互说说。
(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)。
三、当堂测评。
练习一第4题。
学生独立完成,然后同学之间互相检验交流,最后,教师再展示学生的作品,学生评价。
练习一第5题。
(1)学生自己在方格纸上画一个简单的多边形。各顶点用两个数据表示。
(2)同桌互相合作,一人描述,一人画图。
{继续渗透数形结合的思想.}。
四、课堂自我评价。
这节课你觉得自己表现得怎样?哪些方面还需要继续努力?
五、设计意图:
本节知识,我充分利用学生已有的生活经验和知识,从学生熟悉的座位顺序出发,让学生在口述“第几组几个”的练习过程中,潜移默化地建立起“第几列第几行”的概念,让学生从习惯上培养起先说“列”后说“行”的习惯。然后再过度到用网格图来表示位置,让学生懂得从网格坐标上找到相应的位置。这样由直观到抽象、由易到难,符合孩子的学习特点。
课后小记。
小学六年级数学教学设计篇九
1、通过搭积木比赛的游戏,从三个不同的位置观察由5个小正方体搭成的立体图形,能正确辨认和画出相应的图形,发展空间观念。
2、能按照指定的从两个不同位置看到的图形,用5个小正方体搭成的立体图形。
能正确辨认和画出从正面、侧面、上面观察一组立体图形的形状。
能按照指定的`不同位置看到的图形,用几个小正方体搭成立体图形。
电脑课件正方体木块若干。
谈话法情景引入发合作探究法。
一段:学什么。
知识回顾引入课题。
1、孩子们,看见大屏幕上的图片和黑板上的表格,你想到了什么呢?
对,这节课我们就来进行一场搭积木比赛。(板书题目)。
师:相信通过大家的努力,你们一定会品尝到合作的愉快,成功的甘甜。
2、课件出示学习目标:
(1)正确辨认从不同方向观察到的立体图形的形状,并画出相应的图形.
(2)能根据从不同方向观察到的平面图形还原立体图形。确定搭成这个立体图形需要的正方体的数量范围。
二段我来学。
第一场比赛:(独立完成)。
1、课件出示要求:
2、引导学生观察,并板书(观察)。
3、学生在方格纸中画出图形。
4、汇报交流。(重点说明怎样画出从左面看到的?)。
5、课件演示。
第二项比赛(同桌合作完成)。
师:下面我们进行第二项比赛,在第二项比赛中我们进行三个回和的较量。准备好了吗?
课件出示问题要求。
(1)同桌合作完成,看看哪桌搭的多?(两个方向)。
(2)指名汇报。
师:真是太棒了,同学们有了这么多的搭法。从两各方向观察,我们不能确定立体图形的形状,但可以确定搭成这个立体图形所需要的小正方体的数量范围。那么,搭这个立体图想最多需要几个小正方体,最少需要几个小正方体呢?先猜一猜。
(3)验证(同桌合作)。
(4)从三个方向看到的图形,还原立体图形(三个方向唯一性)。
课件出示结论填空。
第三项比赛(小组合作完成)。
看谁搭的多。用六个小正方形搭一个立体图形,从上面看到的形状是。
三段我来用。
1、学生完成答题卡。
2、指名汇报答案。
一思我来思。
本节课你有哪些收获?你的感受是什么?
师总结:我们平常观察物体的时候,一定要记住“认真”二字,认真观察,再加上自己的想象,你就可以确定这些立体图形或平面图形的样子,同时,我们的空间能力和想象能力也会得到进一步的提高。
小学六年级数学教学设计篇十
教学目标:。
1、通过动手操作实验,推导出圆锥体体积的计算公式。
2、理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题。
3、通过学生动脑、动手,培养学生的观察、分析的综合能力。
教具准备:等底等高的圆柱体和圆锥体5套,大小不同的圆柱体和圆锥体5套、水槽5个,以及多媒体辅助教学课件。
一、复习旧知,做好铺垫。
1、认识圆柱(课件演示),并说出怎样计算圆柱的体积?(屏幕出示:圆柱体的体积=底面积×高)。
2、口算下列圆柱的体积。
(1)底面积是5平方厘米,高6厘米,体积=?
(2)底面半径是2分米,高10分米,体积=?
(3)底面直径是6分米,高10分米,体积=?
3、认识圆锥(课件演示),并说出有什么特征?
二、沟通知识、探索新知。
教师导入:同学们,我们已经认识了圆锥,掌握了它的特征,但是,对于圆锥的学习我们不能只停留在认识上,有关圆锥的知识还有很多有待于我们去学习、去探究。这节课我们就来研究“圆锥的体积”。(板书课题)。
1、探讨圆锥的体积计算公式。
学生回答,教师板书:
圆柱------(转化)------长方体。
圆柱体积计算公式--------(推导)长方体体积计算公式。
教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较后,再用课件演示。
(1)提问学生:你发现到什么?(圆柱和圆锥的底和高有什么关系?)。
(学生得出:底面积相等,高也相等。)。
教师:底面积相等,高也相等,用数学语言说就叫“等底等高”。
(板书:等底等高)。
(不行,因为圆锥体的体积小)。
教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)。
用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。
(3)学生分组做实验,并借助课件演示。
(教师深入小组中了解活动情况,对个别小组予以适当的帮助。)。
a、谁来汇报一下,你们组是怎样做实验的?
b、你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?
(学生发言:圆柱体的体积是圆锥体体积的3倍)。
教师:同学们得出这个结论非常重要,其他组也是这样的吗?
学生回答后,教师用教学课件演示实验的全过程,并启发学生在小组内有条理地表述圆锥体体积计算公式的推导过程。
(板书圆锥体体积计算公式)。
教师:我们学过用字母表示数,谁来把这个公式用字母表示一下?(指名发言,板书)。
学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。(教师拿起一个小圆锥、一个大圆柱)如果老师在这个大圆锥体里装满了水,往这个小圆柱体里倒,需要倒三次才能倒满吗?(不需要)。
为什么你们做实验的圆锥体里装满了水往圆柱体里倒,要倒三次才能倒满呢?(因为是等底等高的圆柱体和圆锥体。)。
(教师给体积公式与“等底等高”四个字上连线。)。
进一步完善体积计算公式:
圆锥的体积=等底等高的圆柱体体积×1/3。
=底面积×高×1/3。
v=1/3sh。
教师:现在我们得到的这个结论就更完整了。(指名反复叙述公式。)。
课件出示:
想一想,讨论一下:?
(1)通过刚才的实验,你发现了什么?
(2)要求圆锥的体积必须知道什么?
学生后讨论回答。
三、应用求体积、解决问题。
1、口答。
(1)有一个圆柱的体积是27立方分米,与它等底等高的圆锥体积是多少?
(2)有一个圆锥的体积是9立方分米,与它等底等高的圆柱体积是多少?
2、出示例题,学生读题,理解题意,自己解决问题。
a、学生完成后,进行小组交流。
b、你是怎样想的和怎样解决问题的。(提问学生多人)。
c、教师板书:。
1/3×19×12=76(立方厘米)。
答:它的体积是76立方厘米。
3、练习题。
一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)。
我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。
4、出示例2:要求学生自己读题,理解题意。
在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)。
(1)提问:从题目中你知道了什么?
(2)学生独立完成后教师提问,并回答学生的质疑:
3.14×(4÷2)2×1.2×1/3表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?….
5、比较:例1和例2有什么不同的地方?
(1)例1直接告诉了我们底面积,而例2没有直接告诉,要求我们先求出底面积,再求出圆锥体积;(2)例1是直接求体积,例2是求出体积后再求重量。
小学六年级数学教学设计篇十一
1、通过对立体图形的复习,进一步发展学生的空间观念,掌握各个立体图形的概念、特征。
2、通过复习使学生掌握立体图形表面积、侧面积、体积的计算公式。
3、培养学生运用所学知识解决实际问题的能力。
课件
一、复习引入
1、课件出示“点’,这是一个点。
师:将点移一移,所留下痕迹,你能想到什么?生:线、直线、射线、线段。评:好,联想对学数学很重要。继续想。
师:如果将线段往下移一移,你又能想到什么呢?生:长方形、正方形
师:刚才由点联想到线段再联想到面,继续想。
师:如果把这个面往后面移一移,你又能想到什么呢?
师:如果将这个长方体像这样切成若干份,你又能想到什么呢?
(板书:长方体、正方体)
师:按这样的思路,根据圆柱,你可以想到什么?它们之间有什么关系?
师:同学们,点线面体存在一定的联系,那我们就从点线面三个方面对4个立体图形的特征进行整理。
二、知识点归纳
(一)复习立体图形特征
1、(出示长方体、正方体)长方体、正方体它们各有什么特征?它们有什么相同点和不同点,谁能看着表格说一说。(指生上来汇报,拿着模型)
长方体与正方体有什么关系?
2、(出示圆柱和圆锥)圆柱、圆锥它们又各有什么特征?
沿高剪开,侧面展开图是一个长方形或正方形。当底面周长与高相等时展开是正方形,当底面周长与高不相等时,展开是一个长方形。
3、分类,建立知识网络.
你能给这四个立体图形分分类吗?(为什么)
交流:(1)长方体、正方体一组,(都有六个面、12条棱、方方的)圆柱圆锥一组。(底面都是圆)
4、观察物体,从不同侧面看到的图形是什么形状。
(二)复习表面积和体积
2、课前老师让同学们整理了这些立体图形的表面积和体积公式,谁原意来交流一下,我们先说表面积公式(教师板书公式)。
重点:圆柱的侧面积为什么是底面周长×高?
再交流体积公式(教师板书公式)。
3、出示。
师:怎样比较这三个立体图形的体积呢?谁能列出算式?
追问:如果不计算体积结果能比较三个立体图形的体积大小吗?
(观察三个图形,有什么特点?高相等,只要看什么就可能比较体积大小了?)
操作结合板书。
你能找到计算这3种立体图形体积的统一公式吗?
小结:这三个立体图形都是柱体,像这样的三棱柱、六棱柱也都是柱体,其实所有的柱体都可以用底面积乘高来计算体积。
三、巩固练习
1、测测你的判断力
(1)体积单位比面积单位大。()
(2)把一个圆柱削成一个最大的圆锥体削去部分的体积与圆锥的体积的比是2:1。()
(3)把一个长方体铁块熔铸成一个圆柱体,形状虽然变了,但它们所占空间的大小没有变。()
(4)一个圆柱的底面直径是4厘米,高是4厘米,将这个圆柱的侧面展开后一定是一个正方形()
2、填空。
(1)一个长方体的棱长总和是40厘米,其中长5厘米,宽3厘米,高是()厘米。
(2)把四个棱长是3厘米的正方体木块拼成一个长方体,拼成的这个长方体的表面积是(),体积是()。
(3)等底等高的圆柱的底面积是1.5平方分米,那么与它体积和高都相等的圆锥的底面积应是()平方分米。
(4)等底等高的圆柱和圆锥体积之和是36立方厘米,那么圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。
3、只列出综合算式,不解答
(1)一个长方体水槽,底面积是35平方分米,水深6分米,把一个不规则的石块扔进去后,水面上升了2分米,求石块的体积。
4、提高练习
五、小结
出示三个立体图形,介绍底面和侧面,你能找到求这三个图形侧面积的统一公式吗?(板书表面积、问号)
小学六年级数学教学设计篇十二
1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。
2、让学生切实体会到数学在体育等领域的广泛应用。
教学重点:
如何确定每一条跑道的起跑点。
确定每一条跑道的起跑点。
一、提出研究问题。(出示运动场运动员图片)。
1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)。
2、各条跑道的起跑线应该向差多少米?
二、收集数据。
1、看课本75页了解400m跑道的结果以及各部分的数据。
2、出示图片、投影片让学生明确数据是通过测量获取的。
直跑道的长度是85。96m,第一条半圆形跑道的直径为72。6m,每一条跑道宽1。25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)。
三、分析数据。
学生对于获取的数据进行整理,通过讨论明确一下信息。
1、两个半圆形跑道合在一起就是一个圆。
2、各条跑道直道长度相同。
3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。
四、得出结论。
1、看书p76页最后一图。
2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1。25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2。5m)。
3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2。5)。
五、课外延伸。
200m跑道如何确定起跑线?
小学六年级数学教学设计篇十三
1、了解储蓄的有关知识,能综合应用相关知识合理存款。
2、经历调查、解决问题的过程,体验合作探究的学习方法。
3、体会数学知识在日常生活中的广泛应用,培养学生的理财意识。
了解各种存款方式的利率和相关规定,设计合理的存款方案。
能综合应用条件灵活解决问题。
综合实践《合理存款》
问题分析:根据自学导案,归纳要解决的问题:怎样存款收益最大。明确本活动中存款的本金、可存期限以及这笔存款的用途。明确需要收集与该问题相关的信息。(通过对问题的简单分析让学生初步了解存款的三种方式,为下一步学生收集信息做基础)
课外调查:学生以小组合作学习的方式去银行调查不同的存款方式的利率等信息,学生可以利用网络,或者直接到银行到银行调查存款的方式和相关信息,并做好记录。
设计意图:这节课中教材主题图中所提供的存款利率是以前的利率,和现在的利率是不同的;国债利率也未明确给出。因此,通过课外调查让学生明确当前的存款利率等信息,并且,学生到银行调查是一次有价值的实践活动,是一个学习、体验的过程,可以有意识地体会数学与生活经验、社会现实和其他学科知识的联系。有了这样一个过程使这一实践活动更具有现实意义和实效性。
根据学生调查的信息设计存款方案。
学生以小组合作学习的方式共同设计方案,填写下表。
定期储蓄存款的方案可填在第第一张表格中。其他存款方案,如教育储蓄存款方案以及买国债的方案可填在第二张表格中。每一个具体方案都要求明确填出存期、到期利息、利息税以及到期收入等信息。
小学六年级数学教学设计篇十四
1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。
2、联系学生的生活实际创设情境,体现解比例在生产生活中的广泛应用。
3、利用所学知识解决生活中的问题,进一步培养学生综合运用知识的能力及情度、价值观的发展。
使学生自主探索出解比例的方法,并能轻松解出比例中未知项的'解。
利用比例的基本性质来解比例。
1、什么叫做比例?
3、比例有几种表示形式?(板书:a:b=d:ca/b=d/c)。
同学们,你们知道吗?比例的基本性质有两个作用,一个就是我们刚才用来判断两个比能否组成比例,而另一个是什么呢?同学们想不想知道?这节课我们就来研究研究。
1、出示埃菲尔铁挂图。
这是法国巴黎有名的塔叫埃菲尔铁塔,高320米。我国的旅游景点北京公园里有这座塔的一具模型,这具模型有多高呢?到北京公园游玩的游客都想知道。你们能帮帮他们吗?那我们先来看看这道题。
2、出示例题。
(1)读题。
(2)从这道题里,你们获得了哪些信息?
(3)在这信息里,关键理解哪里?(埃菲尔铁模型与埃菲尔铁塔的高度比是1:10)。
(4)这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)。
(5)还有一个条件是什么?(埃菲尔铁塔的高是320米)。
(6)我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)。
(7)这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。
(8)根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度设为x米”,把这个x代入这个数学模式中就组成了一个比例式(板书:x:320=1:10)。
(9)这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?
(10)不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)。
(11)指着x:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做?(指名板演)。
(12)为什么可以写成这样的等式呢?10x=320*1(根据比例的基本性质)。
(13)对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)。
(14)这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。
(15)我们解出的答案对不对呢?怎么知道?可以怎样检验?(把结果代入题目中看看对应的比的比值是不是能成比例。)。
(16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。)。
(17)解比例在生活中的应用十分广泛,我们处处都有可能用到,要是遇到这样的问题怎么来解决呢?我们先来总结总结:(在这道题里,我们先根据问题设x——再依据比例的意义列出比例式——然后根据比例的基本性质把比例转化为方程——最后解方程)。
现在同学们会用解比例的方法来解决问题了吗?
2、教学例3。
(1)出示例3,问:这题与刚刚那个比例有哪些不同?
(2)解这种比例时,要注意些什么呢?(找出比例的外项、内项)。
(3)在这个比例里,哪些是外项?哪些是内项?
(4)解答(提问:你们是怎么解答的?)、检验。
(5)12/24=3/x。
3、巩固练习。
4、课堂小结。
(1)这节课主要学习了什么内容?(板课题:解比例)什么叫解比例?怎样解比例?(先依据比例的基本性质,把比例转化为方程,再解方程求解。)。
(2)现在你们知道比例的基本性质的另一个作用是什么了吗?(用来解比例)。
5、拓展延伸。
小学六年级数学教学设计篇十五
教学目标:
1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。
2、发展学生思维,侧重培养学生分析问题的能力。
教学重点:
理解数量关系。
教学难点:
根据多几分之几或少几分之几找出所求量是多少。
教具准备:
多媒体课件。
教学过程:
一、旧知铺垫(课件出示)。
1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?
(1)一块布做衣服用去。
(2)用去一部分钱后,还剩下。
(3)一条路,已修了。
(4)水结成冰,体积膨胀。
(5)甲数比乙数少。
2、口头列式:
(1)32的是多少?
(2)120页的是多少?
3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?
4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应用题”。
小学六年级数学教学设计篇十六
知识与技能:
1、理解比的基本性质。
2、正确应用比的基本性质化简比。
过程与方法:
1、利用知识的迁移,使学生领悟并理解比的基本性质。
2、通过学生的自主探讨,掌握化简比的方法并会化简比。
情感态度与价值观:
初步渗透事物是普遍联系的辩证唯物主义观点。
理解比的基本性质,推倒化简比的方法,正确化简比。
正确化简比。
写有例题和练习题的小黑板。
一、导入。
1、比与分数、除法的关系。
2、复习分数的`基本性质和商不变的性质。
老师:请大家回忆一下,分数有什么性质?除法又有什么性质?它们的内容分别是什么?
二、教学探究。
1、猜想。
汇报时,让学生说说猜想的根据,老师也可引导学生在“分数的基本性质”上进行替换。
引导学生用语言表述,比的前项相当于分数的分子,后项相当于分母,分数的分子和分母同时乘或除以同一个数(0除外),分数的大小不变。因此,比的前项和后项同时乘或除以同一个数(0除外),比值不变。或者比的前项相当于除法中的被除数,后项相当于除数,被除数和除数同时乘或除以同一个数(0除外),商不变。因此,比的前项和后项同时乘或除以同一个数(0除外),比值不变。
2、验证。
以小组为单位,讨论、验证一下刚才的猜想是否正确。
学生汇报。
3、小结。
经过同学们的验证,我们知道这个猜想是正确的,并且经过补充使它更完整了,在比中确实存在这种性质。
板书课题:比的基本性质。
4、化简比。
老师:应用比的基本性质,我们可以把比化成最简单的整数比。
出示例1的第(1)题。
让学生在练习本上写出一小一大两面联合国旗长和宽的比,15:10和180:120。
提问:你怎样理解最简单的整数比这个概念?
学生讨论,指名回答,达成共识,最简单的整数比必须是一个比,它的前项和后项都是整数,而且前项和后项应该是互质数。
让学生自己尝试把这两个比化成最简单的整数比,然后集体订正答案。
15:10=(15÷5):(10÷5)=3:2。
180:120=(180÷60):(120÷60)=3:2。
提醒学生注意两个比化简的结果,并让学生说说结果相同,说明了什么?(说明两面国旗大小不同,形状相同。)。
出示例1的第(2)题。
(2)把下面各比化成最简单的整数比。
1/6:2/90.75:2。
让学生独立试做,教师巡视指导,请两名学生在黑板上板演。
师生共同讲评。
1/6:2/9=(1/6×18):(2/9×18)=3:4。
提问:为什么要乘18?可能会有学生想到不同方法,教师应给予肯定。
0.75:2=(0.75×100):(2×100)=75:200=3:8。
或(0.75×4):(2×4)=3:8。
老师强调:不管选择哪种方法,最后的结果都应该是一个最简单的整数比,而不是一个数。
三、堂堂清测试。
1、完成教材第46页的“做一做”,集体订正。在校对、交流的基础上,引导学生对化简比的方法进行小结。
2、完成教材第48页练习十一的第4。
小学六年级数学教学设计篇十七
“算出它们的普及率”。
1、使学生能应用百分数的知识计算出本班同学家庭的电话、电脑的普及率,并能进行简单的比较、分析和估计发展趋势,培养学生比较、分析等思维能力和实践能力。
2、使学生体会和感受数学与生活的联系,逐步培养学生应用数学知识的意识和能力。
3、使学生认识到改革开放后我国人民生活水平迅速提高,增强热爱社会主义祖国的思想感情。
情景一:
师:同学们,老师昨晚想通知大家今天带计算器,可以用什么方法呢?
生1:可以打我们家的电话,或打爸爸、妈妈的手机。
生2:发电子邮件。我的e-mail是……。
生3:您只要通知我一个人,然后我去通知5个人,被通知的同学再分别通知5个同学,这样又快又好。
师:我班同学家里有电话的很多,有电脑的也不少。今天,我们来调查一下,我班谁家已安装了电话,谁家购买了电脑。
生1:老师,不用调查了。我这儿有全班同学家的电话。我班100%同学家里有电话。
生2:我们可以调查哪些同学家里有手机或小灵通这些移动电话,这样方便联系。
师:(生1)李××,你真是一个有心人。100%同学家里有电话,可以说成电话的普及率是100%。在我们的生活里,经常要计算和使用“普及率”。这节课,我们就来计算一些普及率。如家庭移动电话普及率、电脑普及率等。
评析在这一环节中,能及时改变原来的教学预设,给了学生一次展示的机会,其意义将是深远的。
情景二:
学生分组统计后汇报统计和计算的百分率结果。
师:我班同学家庭移动电话的普及率是多少?你是怎样计算的?
生1:移动电话的普及率是96.6%,就是求出已有移动电话的56个家庭数占全班58个家庭数的.百分之几。
生2:老师,我觉得应说“大约是96.6%”。
生3:我班同学家庭有电脑的是39户,普及率大约是67.2%。
师:你能根据计算的结果推算出本地区电话和电脑的普及率大约是多少吗?
生1:我认为我们南通市居民的固定电话普及率接近100%,移动电话的普及率大概是95%,电脑的普及率低一些,可能有60%。
生2:我不完全同意你的观点。不能认为我班同学家庭电话普及率是100%,就认为南通市居民的固定电话普及率接近100%,你要考虑到南通市还有比较贫困的地方。应该说,学田地区的电话普及率接近100%。
生3:我同意刚才同学的观点。因为我班同学大部分住在学田新村,如果要调查南通市居民的固定电话普及率,还应该到其他学校或新村去调查。
师:你想得真周到,你认为应怎样调查呢?
生3:我想在南通市的东西南北中各确定一个学校或新村去调查统计才准确。
师:也就是说,推算和估计普及率要考虑我班同学家庭的经济状况在南通地区处于什么水平。
评析在这个过程中,让学生尽情地展示自己最为真实的思想,不必考虑教师希望他说什么,而在意“我”自己的观点,是否准确,是否独特,是否有自己的个性。教师的鼓励与反馈“有利于创造活动的一般条件------心理的安全和心理的自由”。学生在心理安全的环境中,才能大胆猜想,质疑问难,发表不同意见。
情景三:
师:通过这一次实践活动,你有哪些体会?
生1:我懂得了通过调查统计后,能求出某种东西的普及率。
生2:我知道电脑的普及率比电话的普及率低,我们可以把调查的结果反馈给电脑商,让他们加强宣传的力度,多搞促销活动。
生3:我知道了我们学习的统计和百分数的知识很有用。
生4:我觉得生活水平提高了,因为我奶奶说,以前人憧憬“楼上楼下,电灯电话”这样的好日子,现在我们不但有了电灯电话,还有了电脑,有人家还有了私家车呢!
生5:……。
师:我们还可以进行哪些有意义的调查活动?
生1:我班同学戴眼镜的很多,可以调查我班的近视率,或全校的近视率,引起大家的重视。
生2:我经常看到有同学在校外的小摊买零食。我想调查一下我班同学每月零花钱的用法,到底有多少钱买学习用品,多少钱买零食。
生3:我想调查有多少人还知道张思德,现在许多同学知道“小燕子”赵薇,不知道英雄张思德了。
生4:我想调查南通市有多少贫困家庭。
生5:……。
评析学生是课堂的主体,给学生提供参与的机会,凡是学生能操作的,能颔悟到的,教师绝不包办代替。不刻意要求学生与教师思维一致;不刻意要求个别学生给出的答案对全班具有代表性。数学教学应当培养学生的发现、提问、分析和解决问题的能力。
数学课程标准的基本理念之一是“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”这堂实践活动课是在学生初步学习了百分数的意义和应用后安排的。活动内容来源于生活,能使学生感受到数学就在身边,让学生感受到数学与生活是密不可分的。小学生的思维正逐渐从具体形象思维向抽象思维过渡,但这并不意味着学生就不需要具体形象思维。数学来源于生活,但高于生活,具有一定的抽象性和逻辑性。著名数学家华罗庚说:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。
对学生来说,如果始终是被动地接受,像成人一样地学习,他们就会觉得学习数学是索然无味的,他们的主动性、积极性、创造性会渐渐地沉睡起来,他们会渐渐地疏远数学。实践活动使学生从被动型向主动型转变,重复性向创新性过渡,有利于学生个性的发展,有利于学生创新意识和实践能力的培养。生动有趣的实践感受使学生觉得数学并不枯燥。让儿童在自己的世界里用自己喜爱的方式探究数学,在探究中体验数学、享受数学。当数学与儿童的现实生活密切结合时,数学才是活的,富有生命力的。
提倡学生用自己的话说收获,而不是仅仅重复教师的讲授,面对着具有鲜活生命和灵动个性的学生,教师更多地关注学生在数学活动中表现出来的情感与态度,应当给予积极的评价,为学生提供自由表达自己思想、表述自己观点、实现自己思维飞跃的舞台,帮助他们认识自我,建立学习自信心,教师成为学生学习过程中的欣赏者、支持者和引领者。
如何正确认识数学实践活动,如何上好数学实践活动课,数学实践活动课以怎样的模式呈现,是我们迫切需要解决的问题。我感觉到这是极其新鲜而富有挑战性的。在探索中,我了解到实践活动是“做数学”的具体表现,它是以解决某一实际的数学问题为目标,以引起学生的数学思维为核心的一种新型的课程形态,让学生在解决具体问题的过程中,对数学本身的探索中理解、掌握和应用数学。实践活动是一种研究性学习,学生应经历一个收集信息、处理信息和得出结论的完整过程。这节课给我留下的启迪是:当你真正将新课程的理念落实到具体的教学行为时,学生会还你一个惊喜!
【本文地址:http://www.xuefen.com.cn/zuowen/12102158.html】