最新《几何原本》读书心得600字(三篇)

格式:DOC 上传日期:2023-01-29 08:22:07
最新《几何原本》读书心得600字(三篇)
时间:2023-01-29 08:22:07     小编:zdfb

在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。

《几何原本》读书心得600字篇一

《原本》的两个理论支柱——比例论和穷竭法。为了论述相似形的理论,欧几里得安排了比例论,引用了欧多克索斯的比例论。这个理论是无比的成功,它避开了无理数,而建立了可公度与不可公度的正确的比例论,因而顺利地建立了相似形的理论。在几何发展的历史上,解决曲边围成的面积和曲面围成的体积等问题,一直是人们关注的重要课题。这也是微积分最初涉及的问题。它的解决依赖于极限理论,这已是17世纪的事了。然而在古希腊于公元前三四世纪对一些重要的面积、体积问题的证明却没有明显的极限过程,他们解决这些问题的理念和方法是如此的超前,并且深刻地影响着数学的发展。

化圆为方问题是古希腊数学家欧多克索斯提出的,后来以“穷竭法”而得名的方法。“穷竭法”的依据是阿基米得公理和反证法。在《几何原本》中欧几里得利用“穷竭法”证明了许多命题,如圆与圆的面积之比等于直径平方比。两球体积之比等于它们的直径的立方比。阿基米德应用“穷竭法”更加熟练,而且技巧很高。并且用它解决了一批重要的面积和体积命题。当然,利用“穷竭法”证明命题,首先要知道命题的结论,而结论往往是由推测、判断等确定的。阿基米德在此做了重要的工作,他在《方法》一文中阐述了发现结论的一般方法,这实际又包含了积分的思想。他在数学上的贡献,奠定了他在数学史上的突出地位。

作图问题的研究与终结。欧几里得在《原本》中谈了正三角形、正方形、正五边形、正六边形、正十五边形的作图,未提及其他正多边形的作法。可见他已尝试着作过其他正多边形,碰到了“不能”作出的情形。但当时还无法判断真正的“不能作”,还是暂时找不到作图方法。

高斯并未满足于寻求个别正多边形的作图方法,他希望能找到一种判别准则,哪些正多边形用直尺和圆规可以作出、哪些正多边形不能作出。也就是说,他已经意识到直尺和圆规的“效能”不是万能的,可能对某些正多边形不能作出,而不是人们找不到作图方法。1801年,他发现了新的研究结果,这个结果可以判断一个正多边形“能作”或“不能作”的准则。判断这个问题是否可作,首先把问题化为代数方程。

然后,用代数方法来判断。判断的准则是:“对一个几何量用直尺和圆规能作出的充分必要条件是:这个几何量所对应的数能由已知量所对应的数,经有限次的加、减、乘、除及开平方而得到。”(圆周率不可能如此得到,它是超越数,还有e、刘维尔数都是超越数,我们知道,实数是不可数的,实数分为有理数和无理数,其中有理数和一部分无理数,比如根号2,是代数数,而代数数是可数的,因此实数中不可数是因为超越数的存在。虽然超越数比较多,但要判定一个数是否为超越数却不是那么的简单。)至此,“三大难题”即“化圆为方、三等分角、二倍立方体”问题是用尺规不能作出的作图题。正十七边形可作,但其作法不易给出。高斯(gauss)在1796年19岁时,给出了正十七边形的尺规作图法,并作了详尽的讨论。为了表彰他的这一发现,他去世后,在他的故乡不伦瑞克建立的纪念碑上面刻了一个正十七边形。

几何中连续公理的引入。由欧氏公设、公理不能推出作图题中“交点”存在。因为,其中没有连续性(公理)概念。这就需要给欧氏的公理系统中添加新的公理——连续性公理。虽然19世纪之前费马与笛卡尔已经发现解析几何,代数有了长驱直入的进展,微积分进入了大学课堂,拓扑学和射影几何已经出现。但是,数学家对数系理论基础仍然是模糊的,没有引起重视。直观地承认了实数与直线上的点都是连续的,且一一对应。直到19世纪末叶才完满地解决了这一重大问题。从事这一工作的学者有康托(cantor)、戴德金(dedekind)、皮亚诺(peano)、希尔伯特(hilbert)等人。

当时,康托希望用基本序列建立实数理论,代德金也深入地研究了无理数理念,他的一篇论文发表在1872年。在此之前的1858年,他给学生开设微积分时,知道实数系还没有逻辑基础的保证。因此,当他要证明“单调递增有界变量序列趋向于一个极限”时,只得借助于几何的直观性。

实际上,“直线上全体点是连续统”也是没有逻辑基础的。更没有明确全体实数和直线全体点是一一对应这一重大关系。如,数学家波尔查奴(bolzano)把两个数之间至少存在一个数,认为是数的连续性。实际上,这是误解。因为,任何两个有理数之间一定能求到一个有理数。但是,有理数并不是数的全体。有了戴德金分割之后,人们认识至波尔查奴的说法只是数的稠密性,而不是连续性。由无理数引发的数学危机一直延续到19世纪。直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数,并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机。

原本还研究了其它许多问题,如求两数(可推广至任意有限数)最大公因数,数论中的素数的个数无穷多等。

《几何原本》读书心得600字篇二

“古希腊”这个词,我们耳熟能详,很多人却不了解它。

如果《几何原本》的作者欧几里得能够代表整个古希腊人民,那么我可以说,古希腊是古代文化中最灿烂的一支——因为古希腊的数学中,所包含的不仅仅是数学,还有着难得的逻辑,更有着耐人寻味的哲学。

《几何原本》这本数学著作,以几个显而易见、众所周知的定义、公设和公理,互相搭桥,展开了一系列的命题:由简单到复杂,相辅而成。其逻辑的严密,不能不令我们佩服。

就我目前拜访的几个命题来看,欧几里得证明关于线段“一样长”的题,最常用、也是最基本的,便是画圆:因为,一个圆的所有半径都相等。一般的数学思想,都是很复杂的,这边刚讲一点,就又跑到那边去了;而《几何原本》非常容易就被我接受,其原因大概就在于欧几里得反复运用一种思想、使读者不断接受的缘故吧。

不过,我要着重讲的,是他的哲学。

书中有这样几个命题:如,“等腰三角形的两底角相等,将腰延长,与底边形成的两个补角亦相等”,再如,“如果在一个三角形里,有两个角相等,那么也有两条边相等”。这些命题,我在读时,内心一直承受着几何外的震撼。

我们七年级已经学了几何。想想那时做这类证明题,需要证明一个三角形中的两个角相等的时候,我们总是会这么写:“因为它是一个等腰三角形,所以两底角相等”——我们总是习惯性的认为,等腰三角形的两个底角就是相等的;而看《几何原本》,他思考的是“等腰三角形的两个底角为什么相等”。想想看吧,一个思想习以为常,一个思想在思考为什么,这难道还不够说明现代人的问题吗?

大多数现代人,好奇心似乎已经泯灭了。这里所说的好奇心不单单是指那种对新奇的事物感兴趣,同样指对平常的事物感兴趣。比如说,许多人会问“宇航员在空中为什么会飘起来”,但也许不会问“我们为什么能够站在地上而不会飘起来”;许多人会问“吃什么东西能减肥”,但也许不会问“羊为什么吃草而不吃肉”。

我们对身边的事物太习以为常了,以致不会对许多“平常”的事物感兴趣,进而去琢磨透它。牛顿为什么会发现万有引力?很大一部分原因,就在于他有好奇心。

如果仅把《几何原本》当做数学书看,那可就大错特错了:因为古希腊的数学渗透着哲学,学数学,就是学哲学。

哲学第一课:人要建立好奇心,不仅探索新奇的事物,更要探索身边的平常事,这就是我读《几何原本》意外的收获吧!

《几何原本》读书心得600字篇三

《几何原本》的作者欧几里得能够代表整个古希腊人民,那么我可以说,古希腊是古代文化中最灿烂的一支——因为古希腊的数学中,所包含的不仅仅是数学,还有着难得的逻辑,更有着耐人寻味的哲学。

《几何原本》这本数学著作,以几个显而易见、众所周知的定义、公设和公理,互相搭桥,展开了一系列的命题:由简单到复杂,相辅而成。其逻辑的严密,不能不令我们佩服。

就我目前拜访的几个命题来看,欧几里得证明关于线段“一样长”的题,最常用、也是最基本的,便是画圆:因为,一个圆的所有半径都相等。一般的数学思想,都是很复杂的,这边刚讲一点,就又跑到那边去了;而《几何原本》非常容易就被我接受,其原因大概就在于欧几里得反复运用一种思想、使读者不断接受的缘故吧。

不过,我要着重讲的,是他的哲学。

书中有这样几个命题:如,“等腰三角形的两底角相等,将腰延长,与底边形成的两个补角亦相等”,再如,“如果在一个三角形里,有两个角相等,那么也有两条边相等”。这些命题,我在读时,内心一直承受着几何外的震撼。

我们七年级已经学了几何。想想那时做这类证明题,需要证明一个三角形中的两个角相等的时候,我们总是会这么写:“因为它是一个等腰三角形,所以两底角相等”——我们总是习惯性的认为,等腰三角形的两个底角就是相等的;而看《几何原本》,他思考的是“等腰三角形的两个底角为什么相等”。想想看吧,一个思想习以为常,一个思想在思考为什么,这难道还不够说明现代人的问题吗?

大多数现代人,好奇心似乎已经泯灭了。这里所说的好奇心不单单是指那种对新奇的事物感兴趣,同样指对平常的事物感兴趣。比如说,许多人会问“宇航员在空中为什么会飘起来”,但也许不会问“我们为什么能够站在地上而不会飘起来”;许多人会问“吃什么东西能减肥”,但也许不会问“羊为什么吃草而不吃肉”。

我们对身边的事物太习以为常了,以致不会对许多“平常”的事物感兴趣,进而去琢磨透它。牛顿为什么会发现万有引力?很大一部分原因,就在于他有好奇心。

如果仅把《几何原本》当做数学书看,那可就大错特错了:因为古希腊的数学渗透着哲学,学数学,就是学哲学。

哲学第一课:人要建立好奇心,不仅探索新奇的事物,更要探索身边的平常事,这就是我读《几何原本》意外的收获吧!

【本文地址:http://www.xuefen.com.cn/zuowen/1201485.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档