一个数乘以小数教案设计范文(18篇)

格式:DOC 上传日期:2023-11-14 14:50:26
一个数乘以小数教案设计范文(18篇)
时间:2023-11-14 14:50:26     小编:影墨

教案的编写应该注重考虑学生特点和学习目标,使教学活动更有针对性和有效性。教案的核心是教师对教学目标的明确和教学过程的把握。教案是教师在备课过程中编写的一种教学计划。教案是为了指导教学过程,提供教学内容、方法、手段和评价等的一种工具。教案可以帮助教师合理组织教学,提高教学效果。编写教案前要充分了解教学目标,确立教学重点和难点。教案的编写需要遵循教学内容的逻辑顺序,合理安排教学步骤。以下是小编为大家整理的教案范例,供大家参考借鉴。

一个数乘以小数教案设计篇一

练习五的第3-10题。

使学生理解和掌握除数是小数的除法的计算法则,能够正确地计算除数是小数的除法。

小黑板出示复习用的口算题。

1、小黑板出示下面的口算题,指名口算。

3.2?0.8=40.81?0.09=92.4?1.2=2。

42?0.7=606.4?0.08=8036?0.06=600。

2.6?0.13=20xx?0.5=704.8?0.04=120。

84?0.7=1206.3?0.09=7072?0.6=120。

指名说一说口算“6.4?0.08”、“36?0.06”和“2.6?0.13”时,是怎样移动被除数的小数点的。

2、教师出示下在两道题,请两名学生板演,其他学生在练习本上做。

85.1?0.23=3704644?0.86=5400。

做完后,让两名学生对照自己做题的过程,说一说除数是小数的小数除法的计算法则。

1.练习五第3题。

让学生审题,找出每道题错在哪里?原因是什么,教师指名回答。

2.练习五第4题。

学生独立计算。

3.练习五第5题。

让学生把答案直接写在书上,做完后,集体订正。

4.练习五第6题。

先让学生观察左面一栏各题被除数和除数的小数点的移动情况。要求学生根据第1小题的计算结果,直接写出第2、3小题的得数。教师巡视时,注意学生是怎样根据除数和被除数同时缩小相同的倍数,而使商不变的。

教师让学生自己计算右面一栏的.3小题。做完后问:被除数和除数各有什么变化?商有什么变化?(被除数不变。除数是第2题比第1题缩小100倍,也就是除数的小数点向左移动两位;商扩大了100倍,也就是小数点向右移动了两位。第3题的除数比第1题的除数缩小1000倍,也就是小数点向左移动三位;商扩大了1000倍,也就是小数点向右移动三位。)。

5.练习五第7题。

让学生先审题,第4道小题的被除数和除数有什么特点?怎样根据这些特点来做题。做完后,教师让学生说一说:“是怎样根据被除数和除数的特点来计算的?”“哪道题的商比被除数大?”

6.练习5第8题中第1行的3道小题。

让学生独立计算。做完后,集体订正。

7.练习五第9题。

教师要求学生按照题意列式计算。做完后集体订正。

练习五第8题中第2、3行的6道小题和第10题。

一个数乘以小数教案设计篇二

(二)掌握转化的数学思想,提高抽象概括的能力。

(一)复习准备。

1、说一说。

(1)0.4表示什么?

(2)1.2表示什么?

(3)0.85表示什么?

(4)1.06表示什么?

2、口算:

3×2=30×20=。

300×200=3000×20xx=。

18×4=1800×400=。

180×40=18000×4000=。

3、写出数量关系,并列式计算。

花布每米6.5元,买2米、3米、4米各用多少元?

(1)总价=单价×数量。

列式:6.5×2=13(元)6.5×3=19.5(元)6.5×4=26(元)。

(2)说出上面各算式的意义。

6.5×2表示2个6.5是多少或6.5的2倍是多少。

(二)学习新课。

1、出示例2:花布每米6.5元,买0.5米和0.82米各用多少元?

(1)根据上面的数量关系列式:

6.5×0.5。

6.5×0.82。

观察例2与复习题3有何不同?(复习题中的乘数都是整数。例2中的乘数都是小数。)这就是我们今天要研究的“一个数乘以小数”。(板书课题)。

思考:乘数是小数与乘数是整数的意义能相同吗?

学生试着画图理解。

6.5×0.5和6.5×0.82的意义。

6.5×0.5和6.5×0.82各表示什么?

0.5米的总价:6.5×0.5表示求6.5的十分之五。

0.82米的总价:6.5×0.82表示求6.5的百分之八十二。

说出下列算式的意义:

1.5×0.7。

3.5×0.25。

4.5×0.4。

3.2×0.125。

小结:一个数乘以小数的意义是什么?(一个数乘以小数的意义是求这个数的十分之几,百分之几,千分之几,……)。

怎样计算6.5×0.5呢?

讨论:怎样把小数乘法转化成整数乘法呢?

学生试做后讲解算理:

(被乘数、乘数分别扩大了10倍,积就扩大了10×10=100倍,要使积不变,就要把积缩小100倍。)。

计算6.5×0.82.

学生计算后讲算理。(被乘数扩大10倍,乘数扩大100倍,积扩大了10×100=1000倍,要使积不变,就要把积缩小1000倍。)。

2、小结:

(1)比较因数和积的小数位数,它们有什么联系?(积的小数位数是因数的小数位数之和。)。

(2)一个数乘以小数的计算方法是什么?(先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。)。

(3)比较一个数乘以小数的计算方法与小数乘以整数的计算方法有什么关系?(它们的计算方法是一致的。)。

从而得出小数乘法的计算法则:计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

(三)巩固反馈。

1、课本p4:6;p5:8。

2、根据36×24=864,很快说出下面各题的积。

3、先判断积中有几位小数,再计算:

78×0.6=3.24×5.2=。

4、说出下列算式的意义:

0.25×0.6=0.25×6=0.78×0.35=0.78×35=。

思考:乘法算式的意义由什么数决定?(乘法算式的意义由乘数决定。当乘数是整数时,是求几个相同加数的和的简便运算;当乘数是纯小数时,是求这个数的十分之几,百分之几,千分之几,……)。

5、作业:课本p4:5,7;p5:9.

一个数乘以小数是小数乘以整数知识的扩展和延伸,教学中充分利用了已有知识和技能,重点分析了积的'小数点位置的确定。首先从观察整数乘法算式得出积的变化规律,即整数相乘的积扩大的倍数为两个因数扩大的倍数的乘积。为理解小数乘法中积的小数位数就是两个因数的小数位数的和奠定了基础。

教学中重视引导学生运用转化的思想及知识的迁移规律,在充分理解算理的基础上,逐步总结出小数乘法的计算法则。

(略)。

一个数乘以小数教案设计篇三

(一)复习准备。

1.说一说。

(1)0.4表示什么?

(2)1.2表示什么?

(3)0.85表示什么?

(4)1.06表示什么?

2.口算:

3×2=30×20=。

300×200=3000×20xx=。

18×4=1800×400=。

180×40=18000×4000=。

3.写出数量关系,并列式计算。

花布每米6.5元,买2米、3米、4米各用多少元?

(1)总价=单价×数量。

列式:6.5×2=13(元)6.5×3=19.5(元)6.5×4=26(元)。

(2)说出上面各算式的意义。(6.5×2表示2个6.5是多少或6.5的2倍是多少。)。

(二)学习新课。

1.出示例2:花布每米6.5元,买0.5米和0.82米各用多少元?

(1)根据上面的数量关系列式:

6.5×0.56.5×0.82。

观察例2与复习题3有何不同?(复习题中的乘数都是整数。例2中的乘数都是小数。)这就是我们今天要研究的“一个数乘以小数”。(板书课题)。

思考:乘数是小数与乘数是整数的意义能相同吗?

学生试着画图理解6.5×0.5和6.5×0.82的意义。

6.5×0.5和6.5×0.82各表示什么?

0.5米的总价:6.5×0.5表示求6.5的十分之五。

0.82米的总价:6.5×0.82表示求6.5的百分之八十二。

说出下列算式的意义:

1.5×0.73.5×0.254.5×0.43.2×0.125。

小结:一个数乘以小数的意义是什么?(一个数乘以小数的意义是求这个数的十分之几,百分之几,千分之几,……)。

怎样计算6.5×0.5呢?

讨论:怎样把小数乘法转化成整数乘法呢?

学生试做后讲解算理:

(被乘数、乘数分别扩大了10倍,积就扩大了10×10=100倍,要使积不变,就要把积缩小100倍。)。

计算6.5×0.82。

学生计算后讲算理。(被乘数扩大10倍,乘数扩大100倍,积扩大了10×100=1000倍,要使积不变,就要把积缩小1000倍。)。

2.小结:

(1)比较因数和积的小数位数,它们有什么联系?(积的小数位数是因数的'小数位数之和。)。

(2)一个数乘以小数的计算方法是什么?(先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。)。

(3)比较一个数乘以小数的计算方法与小数乘以整数的计算方法有什么关系?(它们的计算方法是一致的。)。

从而得出小数乘法的计算法则:计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

(三)巩固反馈。

1.课本p4:6;p5:8。

2.根据36×24=864,很快说出下面各题的积。

36×2.4=360×0.24=0.36×0.24=。

3.6×2.4=0.36×2.4=0.036×2400=。

3.先判断积中有几位小数,再计算:

78×0.6=3.24×5.2=。

4.说出下列算式的意义:

0.25×0.6=0.25×6=。

0.78×0.35=0.78×35=。

思考:乘法算式的意义由什么数决定?(乘法算式的意义由乘数决定。当乘数是整数时,是求几个相同加数的和的简便运算;当乘数是纯小数时,是求这个数的十分之几,百分之几,千分之几,……)。

5.作业:课本p4:5,7;p5:9。

一个数乘以小数是小数乘以整数知识的扩展和延伸,教学中充分利用了已有知识和技能,重点分析了积的小数点位置的确定。首先从观察整数乘法算式得出积的变化规律,即整数相乘的积扩大的倍数为两个因数扩大的倍数的乘积。为理解小数乘法中积的小数位数就是两个因数的小数位数的和奠定了基础。

教学中重视引导学生运用转化的思想及知识的迁移规律,在充分理解算理的基础上,逐步总结出小数乘法的计算法则。

板书设计(略)。

一个数乘以小数教案设计篇四

教学的节奏是由教师来把握,但是把我的前提是学生接受的程度,如果大面积的学生显示出需要“加强营养”的话,那我们就得反思自己的教学是不是有什么问题了,如果听之任之的话,将会收获一堆青涩的果实。

这是一节关于《一个数除以小数》的计算课,本节课由回顾“商不变的性质”导入新课,让学生再次感受当被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。从而自然而然的让学生面对一道一个数除以小数的题目让孩子们自己想解决问题的方法,大多数学生想到了利用商不变的性质去解决。但是从个别学生的表情上我观察到了一种茫然,于是我想到了再次让学生跟着我一起回顾上学期学习过的“商不变的性质”,用最简单的整数除法的例题引导她掌握规律,充分的进行相关的练习,直到离下课还剩下5分钟的时候才给这个孩子出了一道简单的例题:45÷1.5,让这几个学生探索,让他们先观察这个算式与45÷15的不同之处,然后再想想有没有什么方法去解决问题,如果这里的除数是什么样的数字就好办了?学生立刻想到了如果是整数就好办了,可是如果把除数变成整数的话,得出来的商肯定要发生变化的不是吗?因此,让孩子们跟着我来回忆商不变的性质是怎么说的……耐心的讲解和启发,是会让一朵朵小花开的很灿烂的!这种静待花开的感觉真好!

这样的教学还是初次尝试,但是基本上想要达到的效果还是有的。希望每天的花都能开的更美更艳丽,希望每天的教学都能够跟好更精彩!

一个数乘以小数教案设计篇五

(二)掌握转化的数学思想,提高抽象概括的能力。

教学重点和难点。

教学过程设计。

(一)复习准备。

1.说一说。

(1)0.4表示什么?

(2)1.2表示什么?

(3)0.85表示什么?

(4)1.06表示什么?

2.口算:

3×2=30×20=。

300×200=3000×=。

18×4=1800×400=。

180×40=18000×4000=。

3.写出数量关系,并列式计算。

花布每米6.5元,买2米、3米、4米各用多少元?

(1)总价=单价×数量。

列式:6.5×2=13(元)6.5×3=19.5(元)6.5×4=26(元)。

(2)说出上面各算式的意义。(6.5×2表示2个6.5是多少或6.5的2倍是多少。)。

(二)学习新课。

1.出示例2:花布每米6.5元,买0.5米和0.82米各用多少元?

(1)根据上面的数量关系列式:

6.5×0.56.5×0.82。

观察例2与复习题3有何不同?(复习题中的乘数都是整数。例2中的乘数都是小数。)这就是我们今天要研究的“一个数乘以小数”。(板书课题)。

思考:乘数是小数与乘数是整数的意义能相同吗?

学生试着画图理解6.5×0.5和6.5×0.82的意义。

6.5×0.5和6.5×0.82各表示什么?

0.5米的总价:6.5×0.5表示求6.5的十分之五。

0.82米的总价:6.5×0.82表示求6.5的百分之八十二。

说出下列算式的意义:

1.5×0.73.5×0.254.5×0.43.2×0.125。

小结:一个数乘以小数的意义是什么?(一个数乘以小数的意义是求这个数的十分之几,百分之几,千分之几,……)。

怎样计算6.5×0.5呢?

讨论:怎样把小数乘法转化成整数乘法呢?

学生试做后讲解算理:

(被乘数、乘数分别扩大了10倍,积就扩大了10×10=100倍,要使积不变,就要把积缩小100倍。)。

计算6.5×0.82。

学生计算后讲算理。(被乘数扩大10倍,乘数扩大100倍,积扩大了10×100=1000倍,要使积不变,就要把积缩小1000倍。)。

2.小结:

(1)比较因数和积的小数位数,它们有什么联系?(积的小数位数是因数的小数位数之和。)。

(2)一个数乘以小数的计算方法是什么?(先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。)。

(3)比较一个数乘以小数的计算方法与小数乘以整数的计算方法有什么关系?(它们的计算方法是一致的。)。

从而得出小数乘法的计算法则:计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

(三)巩固反馈。

1.课本p4:6;p5:8。

2.根据36×24=864,很快说出下面各题的积。

36×2.4=360×0.24=0.36×0.24=。

3.6×2.4=0.36×2.4=0.036×2400=。

3.先判断积中有几位小数,再计算:

78×0.6=3.24×5.2=。

4.说出下列算式的意义:

0.25×0.6=0.25×6=。

0.78×0.35=0.78×35=。

思考:乘法算式的意义由什么数决定?(乘法算式的意义由乘数决定。当乘数是整数时,是求几个相同加数的和的简便运算;当乘数是纯小数时,是求这个数的十分之几,百分之几,千分之几,……)。

5.作业:课本p4:5,7;p5:9。

课堂教学设计说明。

一个数乘以小数是小数乘以整数知识的扩展和延伸,教学中充分利用了已有知识和技能,重点分析了积的小数点位置的确定。首先从观察整数乘法算式得出积的变化规律,即整数相乘的积扩大的倍数为两个因数扩大的倍数的乘积。为理解小数乘法中积的小数位数就是两个因数的小数位数的和奠定了基础。

教学中重视引导学生运用转化的思想及知识的迁移规律,在充分理解算理的基础上,逐步总结出小数乘法的计算法则。

板书设计(略)。

一个数乘以小数教案设计篇六

教学目标:

1、知识与技能:掌握除数是小数的除法计算方法,注意被除数位数不够时的计算方法,会正确地计算。

2、过程与方法:经历一个数除以小数的计算过程,体验迁移应用的学习方法。

3、情感、态度与价值观:在学习活动中,体验知识之间的相互联系和数学知识的应用价值,感受发现知识的快乐,激发学习的兴趣。

教学重点:

一个数乘以小数教案设计篇七

教学目标:

巩固练习,使学生进一步掌握一个数除以小数的计算法则,比较熟练地进行计算。

教学重点:

位数不够时,被除数的末尾用“0”补足。

教具学具:

小黑板、卡片等。

教学过程:

一、练习。

(1)先处理小数点,再口算:

0.01÷0.13.6÷0.3624÷0.24。

0.28÷0.456÷0.89.6÷0.32。

1÷0.050.16÷0.020.108÷0.001。

(2)笔算:(三生板演,其余自练)。

1.0192÷0.281÷0.160.4÷1.25。

板演的学生讲述计算的过程。

二、新课练习。

1、视算,课本p22的第5题。

2、错题医院。

3、做课本第21页第6题。

4、课堂作业。

完成p22第8~10题。

1、第8题一半及第10题作为堂作。

2、第8题一半及第9题可作为家作,有时间第9题在课内完成。

一个数乘以小数教案设计篇八

我认为教学成功的关键在于让学生主动参与学习数学,获得成功的体验,取得预设的教学目标,为以后的学习打好基础。这节课我努力做到以下几点:

一、情境教学培养数学兴趣。

数学来源于生活,创设生活情境,列举生活中的问题,更能唤起学生的生活经验,产生很想解决生活问题的冲动。这种生活味的数学带来的现实感和亲切感更能激发学生学习数学的兴趣。使枯燥的计算生活性、生动性、趣味性,让学生愿算、会算、算准、算活!

二、计算方法学生自主探索。

课前,教师出示问题,简便快速地引出这节课的问题----如何计算除数是小数的除法。因为之前学生已经掌握了相关的知识及小数除以整数的除法,所以学生可以利用这些知识经验探索一个数除以小数的计算方法。之所以能放手让学生在自主探索、反馈校正中获得经验,得出计算方法,关键在于我对计算教学有了新的认识:着眼学生可持续发展能力的培养。计算教学的目标不仅仅是让学生学会计算,还要对学生探究能力、知识迁移、合作交流能力进行培养。为以后的数学学习积累经验,打下基础。

三、学生自主优化计算方法。

《数学课程标准》非常强调:计算教学时,要鼓励算法多样化,要避免繁杂的运算,避免将运算与应用割裂开来。课堂上,我引导学生呈现各种方法,学生在理解各种方法的过程中,不仅思维得到锻炼,而且提高了自己对方法的优化。教师不强求学生用一种固定的方法,这会局限学生的思维,同时应该引导学生掌握好的方法。教学时我也注意到了不能一味地追求算法的多样化,而是让学生积极、主动地去探索众多算法中更简便的方法。学生在选择合理方法进行计算时,处理了算法的多样化与一般化之间的关系,渗透策略优化的思想。

四、实践应用感受数学价值。

过去的.解决问题,总是一些数学模式化后的习题。学生按照模式能很快地找到解决问题的方法。可以说,这些数学化的习题,降低了学生分析问题的能力。而本节课的实践应用,较真实地呈现给学生各种方案,学生在进行了比较的时候,自然地发现要运用今天所学的知识解题。这样的习题设计,一方面巩固了学生知识技能的掌握,另一方面也培养了学生学习数学的兴趣。

一个数乘以小数教案设计篇九

我认为教学成功的关键在于让学生主动参与学习数学,获得成功的体验,取得预设的教学目标,为以后的学习打好基础。这节课我努力做到以下几点:

一、情境教学培养数学兴趣。

数学来源于生活,创设生活情境,列举生活中的问题,更能唤起学生的生活经验,产生很想解决生活问题的冲动。这种生活味的数学带来的现实感和亲切感更能激发学生学习数学的兴趣。使枯燥的计算生活性、生动性、趣味性,让学生愿算、会算、算准、算活!

二、计算方法学生自主探索。

课前,教师出示问题,简便快速地引出这节课的问题----如何计算除数是小数的除法。因为之前学生已经掌握了相关的知识及小数除以整数的除法,所以学生可以利用这些知识经验探索一个数除以小数的计算方法。之所以能放手让学生在自主探索、反馈校正中获得经验,得出计算方法,关键在于我对计算教学有了新的认识:着眼学生可持续发展能力的培养。计算教学的目标不仅仅是让学生学会计算,还要对学生探究能力、知识迁移、合作交流能力进行培养。为以后的数学学习积累经验,打下基础。

三、学生自主优化计算方法。

《数学课程标准》非常强调:计算教学时,要鼓励算法多样化,要避免繁杂的运算,避免将运算与应用割裂开来。课堂上,我引导学生呈现各种方法,学生在理解各种方法的过程中,不仅思维得到锻炼,而且提高了自己对方法的优化。教师不强求学生用一种固定的方法,这会局限学生的思维,同时应该引导学生掌握好的方法。教学时我也注意到了不能一味地追求算法的多样化,而是让学生积极、主动地去探索众多算法中更简便的方法。学生在选择合理方法进行计算时,处理了算法的多样化与一般化之间的关系,渗透策略优化的思想。

四、实践应用感受数学价值。

过去的.解决问题,总是一些数学模式化后的习题。学生按照模式能很快地找到解决问题的方法。可以说,这些数学化的习题,降低了学生分析问题的能力。而本节课的实践应用,较真实地呈现给学生各种方案,学生在进行了比较的时候,自然地发现要运用今天所学的知识解题。这样的习题设计,一方面巩固了学生知识技能的掌握,另一方面也培养了学生学习数学的兴趣。

一个数乘以小数教案设计篇十

“除数是小数的除法”是小学数学教学中的一个重点,又是难点,它在计算教学中处于关键地位。这一内容是在学生掌握了整数除法,除数是整数的小数除法及商不变规律的基础上教学的。本节课的教学重点是让学生理解并掌握一个数除以小数的算理和计算方法。教学难点是让学生理解“被除数的小数点位置的移动要随着除数的变化而变化”。

一、以商不变的性质为突破点。

除数是整数的小数除法学生较容易掌握。但除数是小数的除法却是个难点。而商不变性质正是联系旧知与新知的桥梁,也是新知的最佳生长点。在教学中,复习旧知后,我要求学生根据表格的数据总结出商不变的规律。这是学习层面的一个飞跃,但却是有根据、有基础的飞跃。学生能根据商不变性质来说理,就证明了这个飞跃是学生能够接受的。紧紧抓住商不变性质这根线索,这部分内容就能轻松获得突破。

二、突出“转化”的数学思想。

引导学生将新知识转化成旧知识(将一个数除以小数转化成小数除以整数)进行学习,注重“转化”的'数学思想方法。计算除数是小数的除法,要根据商不变性质先转化为除数是整数的小数除法来计算,再反推出原式的商。计算除数是小数的除法,最根本的是要先按照除数是整数的除法算出商,教学中让学生在计算前多说一说除数和被除数要同时扩大到原数的多少倍,小数点同时向右移动几位。使学生习惯于把除数是小数的除法转化成除数是整数的除法来计算。

三、坚持以学生为主体的原则。

课堂上注意给学生充分独立思考的时间和机会。比如,列出算式7.65÷0.85后,问学生“这个算式和我们以前学的除法算式有什么不一样?你会算吗?自己先试试”。尊重学生原有的知识结构,让学生有一个独立思考的时间,通过思考出现认知冲突,从而激起学生的学习兴趣。

在本节课的实际教学中,自己有很多做得不够的地方,如:学生在汇报完自己的想法,引导学生观察、比较、分析例题与复习题之间的联系与区别时,太急于归纳“一个数除以小数”的计算法则,而没有让很多的学生通过更多的练习经历自己进行归纳;练习的设计虽然有层次,但是还可以设计一些体现怎样移动小数点,使除数是小数的除法如何转换成除数是整数的除法,这样的练习不需要学生计算,这样可以更好的提高教学效率,加强学生对本节课教学重点的掌握。

一个数乘以小数教案设计篇十一

教学目标。

1.使学生理解除数是小数的除法可以转化成除数是整数的小数除法进行计算的算理,归纳出除数是小数的除法的计算法则,并能运用法则正确地进行计算。

2.在探究一个数除以小数计算方法的过程中,培养学生分析、转化和归纳的能力,进一步提高学生的计算能力和解决实际问题的能力。

3.渗透转化的数学思想及事物之间相互联系的辩证唯物主义观点,从中获得积极的价值体验。

教学重点。

利用商不变性质,把除数是小数的除法转化成除数是整数的除法。

教学难点。

把除数是小数的除法转化成除数是整数的除法时,正确地移动被除数的小数点。

教学准备。

将本课教学内容制成ppt课件。

教学过程。

一、复习旧知,铺垫新知。

1.先把下面的数改成整数,再说说分别扩大了多少倍?

0.952.937.60.041。

2.填表思考:被除数、除数、商每一组之间有什么关系?

(商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。)。

2、创设情境,自主探究。

1.同学们知道这是什么吗?(中国结)。

2.奶奶是编“中国结”的高手,看,她又在忙起来了。

3.从图中你能获得哪些数学信息?根据这些信息应该怎样列式?

4.板书算式:7.65÷0.85=(就是7.65里含几个0.85,用除法计算)。

5.探索计算方法。

(1)这个除法和我们上节课学过的除法有什么不同?(上节课学习的除数是整数的小数除法,这道题的除数是小数。)。

(2)估算。

那你们能不能先估算一下,大约能编几个中国结?

(估算的非常好,除数是整数的小数除法我们会算,那除数是小数的呢,我们该如何处理这个小数,才能计算出结果呢?)。

请同学们先独立思考,在本上写出你的方法。

6.汇报。

方法一:单位转换。

(1).0.85米=85厘米。

7.65米=765厘米。

765÷85=9(个)所以7.65÷0.85=9。

(利用单位转换,把米转换成厘米,也就是把0.85米扩大100倍是85厘米,把7.65米扩大100倍是765厘米。)。

(2).出示课件讲解。

方法二:竖式。

根据商不变的性质,把被除数和除数同时扩大100倍。

(1)提问:为什么要把除数和被除数都扩大到原来的100倍呢?(引导学生说出把除数扩大到原来的100倍后,除数就变成了整数,为了使商不变,被除数也要扩大到原来的100倍。)。

(2)这位同学的思路非常好,很清晰。但是书写还不是十分规范,下面请跟着老师,看一看正确的书写。

7.65÷0.85边写转化过程边讲解。

把小数0.85扩大到它的100倍,就是把小数点向什么方向移动几位?(向右移动两位)把除数的小数点和没有用的“0”划去。用一个小斜线,不要画的特别长。7.65扩大100倍,把小数点向右移动两位,小数点划掉。

一定要注意除数扩大多少倍,被除数也要扩大多少倍。

765÷85会做了吗?那你们把按照老师的这种方法把这道题完成。(补全单位和答)。

(3)归纳小结。

师:那我们再看这道题,做除数是小数的除法时我们要注意什么?

通过刚才的学习,我们总结一下:一个数除以小数,怎样计算?(出示课件)。

三、练习巩固。

1.完成课本第28页“做一做”。(同桌说一说扩大多少倍)。

全体学生做,指定三名学生板演,教师巡视指导,完成后让学生说说是怎样算的。

(第三题:544÷1654.4÷16544÷160)。

小结:计算小数除法时,要根据除数的小数数位进行转换。特别是当它们的小数位数不同时,要看将除数转化成整数,小数点向右移动了几位,再把被除数的小数点向右移动相同的位数。

3.解决问题。

一个长方形的面积是23.52平方米,宽是2.4米,这个长方形的长是多少米?23.52÷2.4=9.8(米)。

四、总结。

谈谈这节课的收获?

一个数乘以小数教案设计篇十二

学生试算,小组交流。(学生出现了几种列式计算方法,有的对,有的错了。)。

交流讨论:四人小组讨论:你认为这几种方法对吗?(在学生交流的基础上,师生归纳出:先把除数扩大成整数,再根据整数除法的`法则进行计算。)。

1.再次尝试:26.88÷0.96。

2.校对交流:除数是小数的除法,既可以把被除数和除数都转化成整数,也可以中把除数转化成整数,这两种方法都是正确的。

3.感受发现:先把除数扩大成整数,再根据整数除法的法则进行计算方便多了。

4.归纳小结。

1.判断:0.81÷0.9=81÷9。

6.6÷0.2=6÷2。

2.列式算一算:7.56÷1.2和3.216÷0.16。

3.实践运用。

学校要修建数学活动室,现有三家承包商参加招标,情况如下:在建造时间不超过6天的前提下,请你算一算,哪家承包商每平方米造价最便宜?(1)你会先考虑什么?再考虑什么?(2)四人小组讨论交流。(3)代表汇报。

承包商。

活动室设计面积(平方米)。

平均每天建造面积(平方米。

总造价(元)。

14.4。

3.6。

374.4。

15.6。

2.6。

413.4。

19.6。

2.8。

446.88。

1.基本练习。

我认为教学成功的关键在于让学生主动参与学习数学,获得成功的体验,取得预设的教学目标,为以后的学习打好基础。

一个数乘以小数教案设计篇十三

教学内容:

五年级上册第21、22页的例。

5、例6及“做一做”,练习四的部分习题。教学目标:

1.使学生理解除数是小数的除法的计算方法,并能够正确地计算。2.培养学生的分析、转化及归纳的能力。

3.使学生体验到所学知识与现实生活之间的联系,并能应用所学知识解决生活中的简单问题。教具、学具准备:多媒体课件教学设计:

一、尝试口算,感悟计算方法。

1、我们来看一张口算表。你能快速说出结果吗?

2、我们已经开始学习小数除法了,下面我们来看一个问题(投影出示):一个日记本要2.4元,一块橡皮要0.6元。

1、出示:7.65÷0.85这道题能一眼看出答案来吗?有困难,找笔算。

我希望在大家的笔算竖式中,能看出你们心里是怎么计算的。学生独立尝试,请学生板演。

大家有什么问题吗?预设:a、为什么要划去小数点。

b、为什么被除数和除数都要划去小数点。c、下面的765为什么没有小数点。

d、不是说商的小数点要和被除数的小数点对齐吗?商的小数点呢?

2、4.48÷3.2学生笔算,指名板演。比较你喜欢哪一种思考方法?突出根据除数的小数位数来确定扩大的倍数。

三、小结方法。

讨论,除数是小数的除法,怎样计算?

四、巩固练习。

2、判断题。

先说一说,你是怎样看出错误的,再全班练习,订正答案。

五、拓展:

板书设计:

除数是小数的除法。

除数是整数的除法。

思考:

1、从口算入手,理清算理。

2、尊重学生个体体验,形成笔算格式。

3、控制一节课的内容非常重要。

4、唤醒学生的知识库存记忆是很有必要的。

一个数乘以小数教案设计篇十四

《一个数除以小数》是人教版五年级上册第三单元的一节内容,是在一个数除以整数基础上的延伸。所以在教学中最关键的就是用转化思想把它转化成一个数除以整数来计算。

本学期第三代导学案的使用一直在摸索改进中。前段时间导读单在课前批改,更正,上课时再交流,总觉有点重复,而且一交流一节课的教学内容又完不成,本节课我进行了改进,上课不再交流,直接展示导读单中例题的核心内容,提问重点知识,然后进行分层训练,学生演板,向大家讲解计算过程,下面的同学可以对讲解提出质疑。讲解的重点放在分层训练的第一题,教师的角色知识只是引导学生把没有讲明白的.地方再讲明白,真正讲不明白的让其他学生补充,如果没有人补充,就在抽查下面的同学,看是否真正学明白。就这样一节课下来,不到40分钟就进行完了这堂课。评课时回想起来,这节课确实做到了吧课堂还给学生,让学生做,让学生说,从中发现问题,解决问题的能力。虽然学生有时说的不完整,甚至表达不太清楚,但是只要学生敢说,学生总会有进步的。

这节课虽然学生说了,但总觉说的还不够,下面的学生交流还太少,特别是分层训练第一个题,虽然提问了几个学生,但没有让同桌交流是一大缺憾。我们的教学面对的是全体,所以小组交流、同桌交流切不可少。

一个数乘以小数教案设计篇十五

教学目标:

1.初步理解并掌握除数是小数的除法的计算法则,并能正确地进行计算。

2.掌握将小数的除法转化成除数是整数的除法的推导过程,初步培养学生转化的思想。

教学重点:

理解除数是小数的`除法的计算法则和算理。

教学难点:

掌握被除数的小数点向右移动时,如果位数不够,要在被除数末尾用“0”补足的方法。

教学工具:

课件,实物投影。

教学过程:

1、复习除数是整数的小数除法。

5.04÷6=50.4÷60=。

(1)竖式计算5.04÷6=。

(2)不计算说出50.4÷60的商。(根据被除数和除数变化相同,商不变)。

2、新课引入。

(1)列式。

(2)与前面两题比较有何不同。(板书:一个数除以小数)。

(3)能转化成除数是整数的除法来算吗?为什么?

(4)怎样列竖式?

小结:一个数除以小数,根据“被除数和除数的变化相同,商不变”,可通过把除数和被除数的小数点同时向右移动相同的位数,转化为除数是整数的除法来计算。

3、基本练习一。

竖式计算下列各题。

62.4÷2.6=0.544÷0.16=12.6÷0.28=。

(1)说一说,怎样以上各式转化成除数是整数的除法。

(2)竖式计算,学生1号本上演算,三位学生板演。

(3)集体评讲。注意第三题,被除数的小数位数不够时,怎么办?(用“0”补足)。

基本练习二。

1.8÷0.24=21÷1.4=。

小结:当被除数的小数位数不够足时,用“0”补足。

4、基本练习三。

独立完成书22页“做一做”的第2题,先判断对错,说明错在哪里并且改正。

5、总结:通过今天的学习,说一说一个数除以小数的计算方法是什么?

6、作业布置。

一个数乘以小数教案设计篇十六

新课程标准指出,“数学课程不仅要考虑教学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,我认为教学中成功的关健在于:教师的“教”立足于学生的“学”。

1、从学生的思维实际出发,激发探索知识的愿望,在引导学生感受算理与算法的过程中,放手让学生尝试,让学生主动、积极地参与新知识的形成过程中,并适时调动学生大胆说出自己的方法,然后让学生自己去比较方法的正确与否,简单与否。这样学生对算理与算法用自己的思维方式,既明于心又说于口。

1与生活的密切联系。通过合作交流、比较的方法,归纳出“一个数除以小数的除法”的计算方法。

【教学目标】。

(1)通过自主探索、合作交流,理解小数的除法计算法则,能正确地进行计算。(2)培养学生运用转化的思想,自己发现问题,解决问题。(3)通过学习活动,培养积极学习态度,树立学好数学的信心。

【教学重点与难点】。

(1)教学重点:利用商不变的规律,正确地把除数是小数的除法转化成除数是整数的除法。

(2)教学难点:除数转化成整数,正确移动被除数的小数点。【教学准备】。

一、复习铺垫。

1、游戏导入。

师:同学们,你们喜欢玩游戏吗?生:喜欢!

师:在上课前,我们来做一个接龙游戏,看看哪个组表现最好,好吗?生:好!。

(点击多媒体课件,出示四组下面这样的题目进行接龙游戏。)。

(1)0.78扩大10倍是()。

(2)9.38扩大100倍是()。

(3)6.73扩大1000倍是()。

(4)0.023扩大100倍是()(表扬表现出色的小组。)。

2、点击多媒体课件出现:

你能不用计算,判断出下面各式的商是否一样?请说明理由。270÷90。

27÷9。

2.7÷0.9(学生归纳出商不变的规律,答对的表扬,答错给予鼓励。)。

二、创设情境,激趣导入。

师:(教师手拿中国结)同学们,你们看这是什么?

生齐答:“中国结”。

师:你们知道“中国结”是用什么做?

生1:用丝绳。生2:用彩绳。

师:你们对它的了解有多少?生1:代表吉祥如意。生2:表示祝福。

学生3:是中国的一种特色手工艺品。师:你们想学吗?生齐说:想。

师:老师介绍一位老奶奶给你们认识好吗?她的手可巧,会编各种的“中国结”。这节课谁表现出色,老师就把“中国结”奖给谁。全体学生:好!

师:请同学们打开书本29页,例5。

三、探索计算方法。

(一)教学例5。

师:请同学们独立分析题目的已知条件和问题,列出算式。生:7.65÷0.85=。

(老师板书算式)师:请说说你是怎样想的?

生:要求这些丝绳可编成几个“中国结”,就是求7.65里面有几个0.85,用除法计算。

2、观察并比较式子的特点。

师:这个算式和上节课学的除法算式有什么不同?生:上节课学习的除数是整数,而这道题的除数是小数。

3、小组合作,初步探索计算方法。

小组1:我们小组愿意,把7.65米0.85米都换成分米作单位的数,然后再计算。就可以计算出结果了。

师:你们说得好!(老师、学生掌声鼓励小组1。)。

0.85米=85厘米。

765÷85=9(个)师:这个组也不错!

小组3:我们小组认为可以运用商不变的规律,把被除数和除数同时扩大100倍,变成765÷85计算就可以了。

4师:第3小组说得非常好,同学们用热烈的掌声表扬这个小组。

小组4:我们小组与他们的都不同,我们刚学过除数是整数的小数除法,根据商的变化规律,被除数不变,除数扩大到它的100倍,商就缩小到它的100倍,这样也可以算出7.65÷0.85的商。师:也说得对!

5、交流,比较寻求最佳计算方法。

师:同学们通过动脑筋想出这么多方法计算7.65÷0.85,真了不起!

师:你认为这几种做法,哪种方便,为什么?(让学生各抒己见,说出自己的理由。)。

生1:我认为第3种方法好,方便又快。

生2:我同意第一位同学的说法,因为第1、2种只适合能够进行单位换算的一些数量,没带单位的数量就不能计算了;第4种更麻烦,换来换去容易出错;第3种就不同了,利用商不变的规律,只要把除数变成整数就行了。

生3:我们小组原来用第2种方法做的,但经过比较觉得第3种方法好,把米数改写成厘米数,实际上是间接的把被除数和除数同时扩大到原来的100倍。师:对,第3种方法方便。通过比较我们发现,可以利用商不变的规律,把7.65÷0.85转化成765÷85,也就是把“除数是小数的除法”转化成“除数是整数的除法”来计算。(教师板书)。

板书:除数是小数的除法。

商不变的规律转化。

6、指导书写格式(竖式板书)。

〔设计意图:使学生清楚地明白转化的过程,又掌握了规范的竖式书写格式。〕。

7、反馈练习47.85÷0.75。

(学生独立完成后检验,同位交流;在学生独立做题时,教师辅导学习有困难的5学生。)。

(二)教学例6(自主学习)(教学时间:5分钟)。

1、出示例6计算12.6÷0.28。

2、尝试独立计算。(要求学生边算边思考下面的问题,这些问题用多媒体课件演示。)。

(1)这里被除数和除数各有几位小数?(2)怎样才能把除数变成整数?(3)被除数只有一位小数,小数位数不够怎么办?(在学生做题时,老师巡视用日记本做好学生错题记录。)。

3、教师把巡视时,记录的错例让学生进行对比分析。(让书写端正的一位学生到黑板做12.6÷0.28。)。

(三)通过对比,归纳小数除法的计算方法。

1、师:观察例。

5、例6,它们有哪些相同的地方?那些不同的地方?

生1:相同的是,两题的除数都是小数;不同的是,例5被除数与除数小数的位数相同,例6被除数与除数小数的位数不同。

生2:相同的是,都是把除数的小数点去掉,使除数变为整数;不同的是,例6的被除数在移动小数点时,位数不够要在末尾用“0”补足。

(1)鼓励学生大胆地用自己的语言描述一个数除以小数的计算方法。(2)引导学生把“一个数除以小数的除法”的计算方法,分三个步骤总结。教师加以提炼得出:

一看:看清除数有几位小数;

三算:按照除数是整数的除法的方法计算。(点击多媒体课件出示计算方法)。

6(3)找出计算方法的关键。

师:你认为除数是小数的除法计算,关键是什么?

生1:我认为,在计算一个数除以小数的关键是把除数转化成整数然后计算。生2:我认为,“除数和被除数的小数点同时向右移动相同的位数,使除数变成整数。当被除数位数不够时,用0补足”是计算的关键。

生3:我认为,关键是转化时看除数有几位小数,就把除数的小数点向右移几位,同时被除数的小数点也要向右移动几位。

(四)阅读与质疑。

(1)认真阅读书本例5和例6的内容。

(2)质疑。

(2)。

四、展示练习,深化认识。

(1)在()里填上适当的数。

0.12÷0.3﹦()÷。

33.72÷2.4﹦()÷240.672÷0.28﹦()÷28。

1.36÷0.16﹦()÷16(学生回答后表扬)。

(2)书本“做一做”第1题。

(你要认真审题,完成后还要认真检验哦!)(3)数学医院:(书本“做一做”的第2题)。

(看看谁是个好医生,要细心点哦!)。

(4)现场实践活动(在教室内设置几个购物点,由几位同学扮演售货员,同学们前往购物。)师:同学们,你们表现这么出色,老师带你们去购物好吗?全体生:好!出现下面情景:

7※情景1:学生拿25.2元到商店买日记本,每本日记本3.6元,能买几本。※情景2:到书店购买书每本10.5元,带了31.5元,可以买几本。※情景3:到超市买巧克力,每块2.5元,10元可以买几块。

五、谈收获:

(3)。

1、这节课你有什么收获?请和你的同学交流。

2、发奖,表扬表现出色的同学。

六、板书设计:

除数是小数的除法商不变的规律。

【设计思路】。

一个数除以小数是人教版五年级上册第二单元的内容。是在学生学习过除数是整数的除法后进行的。在教学时,我是这样做的:

一、先创设情境,媒体出示两种价格的笔记本图,先让学生审清题意,再说数量关系并列式。列式后提问你会算哪个算式?学生算完除数是整数的除法后说说要注意什么。

二、让学生观察另一个算式与以前学过的除法有何异同,即引导学生通过与旧知识的比较,发现新旧知识的主要区别是“除数由整数变成了小数”。你能用我们学过的本领尝试解决今天的除法是小数的除法?小组讨论。这时学生的思维就会变得十分活跃,想出解决问题的许多办法:有的组联想到利用商不变性质,被除数和除数同时扩大10倍,;也有的组联想到化成较低单位的数。

三、优化方法,教师把学生的表达用简练的语言总结。让学生明白,小数除8以小数的关键在于转化,即把除数转化为整数。如何转化,要利用商不变的性质。先把除数的小数点画去,再把被除数的小数点向右移动,移动的位数取决于除数的小数位数。除数有几位小数,被除数的小数点就向右移动几位。最后通过一些课后练习及生活中的数学,让学生巩固方法。

在作业反馈中,我发现学生计算错误较多。主要表现在:

一、不能顺利的移动小数点。通过移动小数点把除数变成整数,所有的学生都知道,也都能顺利完成,关键是后进生总是忘了同样移动被除数的小数点。或者移动得次数与除数不一致。虽然他们知道除数与被除数的小数点移动是根据商不变的性质来的,但是他们在做作业的时候,就忘记了。

二、在完成竖式的过程中,数位对不齐。

三、商的小数点与被除数原来的小数点对齐。

四、算时用商乘以移动小数点后的除数。

五、除到哪位商哪位,不够时忘记在商的位置上写0,再拉下一个数。新课标要求数学课程不仅应重视教学的内容和要求,更应充分关注课程中的学习过程,创设有利于学生发挥主体性和创造性的条件。在学习小数除法的时候,其实有很多性质和常识可以帮助我们初步判断商是否准确,比如被除数比除数小,商就比1小,被除数比除数大,商就比1大,被除数除以小于一的数,商反而大,包括之前提到的商不变的性质。可是学生由于缺乏生活经验,并不能很灵活的利用这些性质和意义,在求出错误商时,不注意检查!

一个数乘以小数教案设计篇十七

1.情感目标:渗透普遍性寓于特殊性之中的哲理,通过枚举归纳,认识分数乘法的本质属性,通过类比(与整数、小数乘法比较),认识事物的异同、变化和发展,初步掌握比较与归纳的`思维方法,提高认识事物的能力。

2.认知目标:认识分数乘法的含义、掌握分数乘法计算法则,能把分数乘以整数、整数乘以分数都归纳到一个数乘以分数,概括出分数乘法的基本法则。

一个数乘以小数教案设计篇十八

教学目的:

1、使学生初步理解并掌握除数是小数的除法的计算法则,并能正确地进行计算。

2、掌握将除数是小数的除法转化成除数是整数的除法的推导过程,初步培养学生转化的数学思想。

3、培养学生利用旧知识解决新问题的能力,提高学生知识迁移的能力。

教学重点:理解除数是小数的除法的计算法则和算理。

教学难点:掌握被除数的小数点向右移动时,如果位数不够,要在被除数末尾用0补足的方法。

教学过程:

一、复习旧知:

1、把下列各数的小数点去掉,原数扩大了多少倍?

13.84.670.725。

2、把5.34扩大10倍,小数点应怎样移动?要扩大1000倍呢?

3、学生填写括号里的数:

被除数15150()。

除数550500。

商()()3。

问:运用了什么规律?(商不变的性质)。

4、计算:43.5÷5=8.7。

二、引入新课:

三、新授:

1、出示例5。

观察算式和前面学习的除法算式有什么不同?

今天这节课我们就一起来探讨除数是小数除法的计算方法。

问:怎样转化?组织学生分组讨论,把讨论的意见写在纸上,让一个组的学生在视频展示台上展示出来,边展示边讲解,讲解后问台下的学生“你们对我们讨论的结果有什么意见?”台下的学生给台上的学生提建议,从而引发全班讨论.多让几个小组的学生上台讲解自己组的意见。

问:为什么要把除数和被除数同时扩大10倍?

生讨论得出:把除数0.85扩大100倍变成85,被除数7.65也要扩大100倍,这样商不变。注意:原竖式中除数的小数点和前面的0及被除数的小数点划去。

2、出示例6:

教师:你们是怎样处理被除数和除数小数位数不同的问题的呢?引导学生说出在被除数的小数末尾添0,使除数和被除数的小数位数相同以后,再把除数和被除数同时扩大相同的倍数。小数位移不够,在小数末尾添0。

小结:学生说一说学到了什么?你能说一说除数是小数的除法如何计算?教师引导学生从一看、二移、三算三个方面进行归纳。

四、巩固练习:

1、p22做一做。

2、判断并改错:

1.44÷1.8=811.7÷2.6=4.54.48÷3.2=1.4。

五、小结:今天的内容你学会了吗?

【本文地址:http://www.xuefen.com.cn/zuowen/11989136.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档