大数据实践报告(模板13篇)

格式:DOC 上传日期:2023-11-14 14:15:06
大数据实践报告(模板13篇)
时间:2023-11-14 14:15:06     小编:飞雪

在工作和学习中,我们常常需要编写各种类型的报告。一个好的报告应该能够提供有针对性的推荐和建议,帮助读者做出决策。以下是小编为大家收集的报告范文,供大家参考。请点击链接查看具体内容。

大数据实践报告篇一

前期在管理信息部的牵头组织下,我部申请将“贵金属交易潜在客户挖掘”项目为大数据分析示范项目,希望以贵金属业务为切入点,探索大数据分析在金融市场领域的应用。随着项目的推进,我对数据分析在贵金属业务领域的应用有了简单认识,但仍局限于对数据库表的统计、加工。通过本次的学习,加深了对我行大数据服务体系建设方案的了解,初步掌握了大数据分析的理论基础、方法流程,并尝试应用工具开展简单的分析工作,主要学习成果总结如下:

一、深入理解我行大数据体系建设方案。

今年年初,行党委审议通过了大数据分析的总体思路和实施方式,即建设“一个平台、一套机制、一支队伍”,以数据分析示范项目为驱动,带动“一个平台、一套机制、一支队”滚动发展,逐步建立完善大数据分析服务体系。经管理信息部及软件开发中心2年的不懈努力下,我行大数据分析的基础平台已搭建完成,为数据分析人员提供了一站式数据服务基础,同时也初步形成了一套健全的运营管理机制保障高效优质的数据服务,包括分析用户管理、数据安全管理、项目管理等。而一支队伍则是本次培训的主要目的,也是大数据分析工作的的关键,即形成一支我行自有的专业的数据分析师团队。

二、初步掌握大数据分析的理论基础及方法。

理论是支持实践的基础,可有效指导实践,大数据分析工作也不例外。数据分析的理论基础为概率论及数理统计,在大学时作为一门必修课,有一个学期的时间来学习,本次培训在讲师的带领下,则通过一天进行了回顾。同时也学习了统计学及常用统计模型,并结合实际简单案例了解应用场景,重点的学习模型包括logistic回归、决策树、时间序列,这些模型后续如何应用到实际业务分析中仍需要不断的探索实验。

理论是支持实践的基础,可有效指导实践,大数据分析工作也不例外。数据分析的理论基础为概率论及数理统计,在大学时作为一门必修课,有一个学期的时间来学习,本次培训在讲师的带领下,则通过一天进行了回顾。同时也学习了统计学及常用统计模型,并结合实际简单案例了解应用场景,重点的学习模型包括logistic回归、决策树、时间序列,这些模型后续如何应用到实际业务分析中仍需要不断的探索实验。

大数据分析工作也有一套方法、流程,一般数据分析的主要步骤包括业务理解、数据理解、数据准备、建模、评估/报告、应用、监测,在不断的循环迭代中加强数据对业务发展的支持。

三、尝试应用工具开展简单分析。

工欲善其事,必先利其器。在了解大数据分析的理论基础后,本次培训还介绍了我行现有数据分析工具:woody、mole及sas,以及对应的sql、python及sas编程基础,也通过一些简单的案例开展数据处理、建模、模型训练、评估等操作,将理论知识有效的结合实践中,也为往后开展实际业务分析打下了基础。

四、确定后续学习方向及定位。

两周的学习使我对大数据分析有了更加深入的认识,但仍局限于框架、概况,大数据分析的学习是持续的,而不同角色的分析人员需要关注的方向也不尽相同。正如孙总所提到的,数据分析师必须是复合型人才,作为业务部门的一名业务分析师,在加强对业务痛点理解的同时,后续仍需进一步学习分析工作所需的专业知识,不断自我提升,包括掌握常用的统计模型,结合实际业务场景选取尽可能合适的模型,掌握python语言,灵活运用woody及sas等分析工具,提高分析效率,成长为一名懂业务、懂技术、懂模型、懂市场的分析师。

大数据实践报告篇二

摘要:毕业设计是高校重要的实践教学环节,是提升学生综合能力的主要途径。文章从毕业设计管理现状出发,提出了毕业设计信息管理系统的设计策略,并分析了该系统的应用前景,旨在优化毕业设计管理过程,提高毕业设计质量。

关键词:毕业设计;高校;信息管理学院。

业设计是高校实践教学环节的重要组成部分。毕业设计可以培养学生运用专业知识解决实际问题的能力及创新意识,加强学生的实践操作能力,提高学生的专业素质[1]。在高校人才培养方案中,毕业设计学分最高、耗时最久、考核综合性最强,是可以衡量和评价学生综合水平及专业知识储备量的重要教学实践环节。因此,科学、合理、高效地管理毕业设计的是高校教学工作的重点。随着工程化培养工作的推进及教学多元化的发展,新形势下传统的管理方式已不能满足毕业设计的管理要求,本文将分析毕业设计的管理现状,结合毕业设计的发展形势,提出基于信息化管理模式的毕业设计管理方式及其信息系统的设计思想和技术路线。

一、毕业设计管理现状问题。

鉴于毕业设计在高校实践教学工作中的重要地位,国内各大高校均高度重视毕业设计的管理工作,经过多年的积极实践及探索,结合各自实际的教学管理模式,均制定了较为规范的毕业设计实施细则及管理制度[2-3]。但是,随着科技不断进步、教学工作的多元化发展,已构建的毕业设计管理模式不断出现新的问题和挑战,直接影响了毕业设计的质量。

(一)学生重视度低。

(二)选题监管不严。

毕业设计选题阶段目前普遍存在课题重复率较高、专业相关度较低、虚假课题等现象[4]。毕业设计是综合使用专业知识解决实际问题的过程,若选择陈旧、无前瞻性、无创新性可言的课题,或是不切实际的虚假课题,将限制学生的创新思维和实践能力,不能发挥毕业设计的教学作用。

(三)毕业设计场所分散。

随着教学模式的不断改革,校企合作作为高校推进工程化人才培养工作的重要举措,逐步渗透到高校的教学工作中。校企合作不仅涉及课程企业化改革,高校也与企业共同组建毕业设计企业教师指导团队,并由学生自主选择企业进行毕业设计。但由于毕业设计场所分散,学生不能及时获取校内关于毕业设计的相关通知,且学生与校内指导教师沟通不及时,致使学生毕业设计期间的过程监督、管理效果较差,直接影响毕业设计质量。

(四)毕业设计过程管理松懈。

大数据实践报告篇三

毕业实训是学生在校其间的最后一次实践性教学环节,主要培养学生更快适应社会,熟悉各种工程设计规范,锻炼学生走向社会的综合技术技能和社交能力。本次实训使我对电工工具、电器元件及线路安装有一定的理论和实践基础,了解一些初步的线路原理以及通过线路图安装、调试、维修的方法;对电工技术等方面的专业知识做初步的理解;培养和锻炼我们的实际动手能力,使我们的理论知识与实践充分地结合,作到不仅具有专业知识,而且还具有较强的实践动手能力,能分析问题和解决问题的高素质人才。

很多的东西我没有接触过,一山还有一山高的道理,现在才真切的体会到。通过这两个月的电工技术实训,我个人收获颇丰,这些都是平时在课堂理论学习中无法学到的,我主要的收获有以下几点:

3.认识了许多在控制电路中的电器元件及其作用。

低压抽屉式配电柜的原理及接线。

大数据实践报告篇四

有些人感觉身体不舒服,但到医院进行西医体检,各项指标都是正常。为此,很多人开始接受中医体检。昨天,南京市中西医结合医院在膏方文化节启动仪式上,发布南京首个中医体质检测大数据报告:在该院对1000名参与中医体检的市民中,比较健康的人群只占33%,其余67%市民都处于亚健康状态。据介绍,通俗来说,亚健康状态,就是身体出现了不适,但还未到某些诊断的标准,因此体检指标是正常的。

中医将身体状态分为9种体质。根据这份大数据报告,平和体质排在第一位,占比33%。平和体质也就是常说的健康状态。其余8种体质人群,按照从高到低的顺序排序依次为气虚体质(约占12.7%)、阴虚体质(约占10.8%)、气郁体质(约占9.3%)、阳虚体质(约占8.3%)、痰湿体质(约占8.1%)、湿热体质(约占7.6%)、血瘀体质(约占6%)和特禀体质(约占4.2%)。

从主要人群分布分析,没有明显的职业和学历差异,但是与测试者的生活习惯密切相关。比如,喜欢高热量高脂肪饮食的人群,在痰湿体质的人群占比中最高;喜欢熬夜的人群,在阴虚体质的人群中占比最高;不爱户外活动的人群,在气郁体质的人群中占比较高。

南京市中西医结合医院治未病中心夏公旭副主任中医师说,平和体质人群的总体特征是阴阳气血调和,体态适中、面色红润、精力充沛,这个样本的.数据主要以体检中心和治未病中心的数据为主,大部分参与测试的人群都不是患者,而是以体检为主的人群。但大部分没有因为疾病到医院就诊的人群中,接近七成的人都是亚健康人群。

在亚健康的8种体质中,气虚高居榜首。夏公旭说,气虚常常是身体出现问题的最开始预警信号,不良生活习惯易致亚健康。针对亚健康状态,选择膏方调理身体,越来越受到人们的欢迎。但是,膏方进补不能盲目,否则不仅不能达到调理身体的目标,甚至事与愿违。今年,针对开具膏方的人群,南京市中西医结合医院均免费提供价值120元一次的中医体质辨识检测,让市民根据不同体质有针对性地选择相应的膏方。

对照一下,你可能属于哪种体质?

为了让市民了解亚健康状态的8种体质,南京中西医结合医院进行了一些临床特征的总结,市民不妨自我对照一下。

气虚质。

性格内向,不喜冒险。不耐受风、寒、暑、湿邪。

阳虚质。

阳气不足,以畏寒怕冷、手足不温等虚寒表现为主要特征。耐夏不耐冬;易感风、寒、湿邪。

阴虚质。

阴液亏少,以口燥咽干、手足心热等虚热表现为主要特征。手足心热,口燥咽干,鼻微干,喜冷饮,大便干燥,舌红少津,脉细数。

痰湿质。

痰湿凝聚,以形体肥胖、腹部肥满、口黏苔腻等痰湿表现为主要特征。面部皮肤油脂较多,多汗且黏,胸闷,痰多,口黏腻或甜,喜食肥甘甜黏,苔腻,脉滑。

湿热质。

湿热内蕴,以面垢油光、口苦、苔黄腻等湿热表现为主要特征。面垢油光,易生痤疮,口苦口干,身重困倦,大便黏滞不畅或燥结,小便短黄,男性易阴囊潮湿,女性易带下增多,舌质偏红,苔黄腻,脉滑数。

血瘀质。

血行不畅,以肤色晦黯、舌质紫黯等血瘀表现为主要特征。肤色晦黯,色素沉着,容易出现瘀斑,口唇黯淡,舌黯或有瘀点,舌下络脉紫黯或增粗,脉涩。

气郁质。

气机郁滞,以神情抑郁、忧虑脆弱等气郁表现为主要特征。神情抑郁,情感脆弱,烦闷不乐,舌淡红,苔薄白,脉弦。

特禀质。

以过敏反应等为主要特征。常见哮喘、风疹、咽痒、鼻塞、喷嚏等。

大数据实践报告篇五

今年,火车票预售期由春节前60天缩短至30天。昨天下午,去哪儿网通过对60多万条飞机航线、50余万条铁路客运线进行大数据计算,对外发布了《春运大交通数据报告》,为回家旅客提供参考。报告显示,20春运期间,预计铁路车票中高铁占比将超4成;航班出发最集中的日期是年1月24日,十大难买票航线中,北京占了一半。同时“怡起回家”福利通道已开启,将为旅客提供最高金额达100元的火车票减免优惠券等多项福利。

火车票。

超四成人将坐高铁。

铁路向来是春运客运量最高的交通工具,据去哪儿网大数据预测,2017年12月15日将进入旅客春运抢票高峰,此轮去程购票高峰将和去年一样,一直持续到春节前结束。

今年春运,铁路最热门的出发地集中在北京、上海、成都、重庆和杭州。这些城市多属于超一线和新一线城市,外来人口集中,也是多条铁路线路的起始地。一个显著的变化是,购买快速铁路车票的用户比例不断增加,选择乘坐高铁的人数占比达到了41.5%,选择乘坐城际铁路的人群比例也达到了10.3%,整体超过了总数的一半。乘坐上海出发的高铁线路人数最多,杭州、长沙、北京、广州的票量紧随其后。

飞机票。

北京飞佳木斯特难买。

2017年春运出发最集中的日期是2017年1月24日,已经进入了乘飞机回家旅客的人数峰值期,全国重要的机场将进入到繁忙状态,返程高峰则从大年初六即2017年2月2日开始。

北京至成都、深圳至重庆、上海至哈尔滨、北京至三亚、广州至重庆、深圳至成都、成都至北京、重庆至广州、北京至哈尔滨、上海至成都,这十条是往年最热门的空中回家路。据去哪儿网大数据统计,北京至佳木斯的航线,在众多热门航线中并不起眼,但订票时间却比其他航线早很多,平均会提前36天。而从深圳回海口更早,一般提前43天,堪称最难买航线。记者注意到,在“春运期间十大最难买线路”中,北京起飞地就占了一半。

接送站。

4点到11点为乘车高峰。

春运期间,95%的旅客会有行李箱、背包并携带各种礼品,专车接送机/站成为热门出行工具。北京、成都、深圳、上海、三亚、广州、昆明、西安、哈尔滨、厦门等10个城市成为去哪儿接送机使用率最高的城市。

在接送机/站的用户中,25至35岁年龄段人群最高,占比48%,35至45岁占比也超过两成。在预约时间上看,男性一般提前在出发前3.5天至4.1天预订接送机服务;女性用户明显准备更加充分,其预约时间在4.1天至5.6天。

从出行时段上看,4点至11点为旅客乘车去机场、火车站高峰,其中5至6点出发人群最高,高达6.9%;10至11点又会出现小的高峰,出行占比为5.1%。

发福利。

买火车票最高减100元。

由华润怡宝饮料(中国)有限公司和去哪儿网发起的2017“怡起回家”春节活动于昨天正式启动。即日起至2017年2月11日,旅客打开去哪儿网app找到“怡起回家”专题可以参加红包抽奖,覆盖去哪儿网旗下机票、火车票、汽车票、接送机租车、度假、门票、酒店等全线产品。

其中,活动力度最大的是乘坐比例最高的“火车票”,活动为旅客提供了最高金额达100元的火车票减免优惠券,并可直接用于购票抵扣,还有千张“1元机票”秒杀、4000份车车代金券、4万份出游保险等多种优惠。过年期间,旅客还将享受到国内外12条免费度假线路、3万份怡宝定制红包和1万份出游保险的额外奖项。

相关。

北京至昆明高铁首发。

记者从北京铁路局获悉,自2017年1月5日起,北京将首开昆明、福田和绍兴方向高铁列车,北京西至昆明南最快旅行时间较现行直达特快压缩约21小时,实现“朝发夕至”。

铁路部门提示,为了配合此次运行图和下一步春运运行图的调整,12月30日以后的火车票预售期调整为30天。按此计算,今日最远可以买到2017年1月4日的火车票,有出行需求的旅客,可登录中国铁路客户服务中心网站或通过车站窗口、火车票代售处、拨打北京铁路局订票电话(95105105)购买车票。

列车调整。

首开北京西至昆明南g403/4次、g405/6次高铁列车2对;。

首开北京西至福田高铁列车2对,g71/2次、g79/80次;。

首开北京南至绍兴北高铁列车1对,g39/40次;。

增加1对北京南至商丘g1567/8次高铁列车;。

延长3对快速列车运行区段:北京西至桂林北k21/2次延长至南宁;保定至南京k849/52/49、k850/1/0次延长至上海;天津至大同k608/5次延长至朔州;大同至秦皇岛2604/1次改为朔州至秦皇岛。

大数据实践报告篇六

随着科技的不断发展,大数据已经渗透到人们生活和工作的方方面面。作为一个从事大数据劳动实践的人员,我深感这一领域的重要性和挑战性。在过去的一段时间里,我不断探索和实践,积累了一些心得体会。下面我将从三个方面来谈谈我的心得体会:数据的收集与处理、数据的分析与挖掘以及数据的应用与价值。

首先,数据的收集与处理是大数据劳动实践的第一步。在实际工作中,我发现数据的收集要素多且多样,涉及到数据源的选择、数据的采集和数据的传输等环节。因此,我首先需要明确需求,确定数据类型和规模,然后选择合适的数据源进行采集。在数据的采集过程中,我发现了一些问题和解决方法,比如数据源的选择要权衡多方面的因素,对于不同类型的数据源可能需要采用不同的方式进行采集。而数据的传输则需要考虑速度和安全性等因素,有时需要通过使用传统的传输方式或者借助新技术手段来解决。

其次,数据的分析与挖掘是大数据劳动实践的核心环节。在分析与挖掘数据的过程中,我学到了一些重要的方法和技巧。首先,数据的预处理和清洗是保证数据质量和准确性的关键。在数据量较大的情况下,我学会了使用数据挖掘工具和算法来处理和分析数据,以快速筛选出重要信息。在数据分析的过程中,我发现了一些规律和趋势,通过对数据进行可视化处理,使得分析结果更加直观和易懂。此外,我也学会了使用统计学方法和机器学习算法进行数据建模和预测,为决策提供有力的支持。

最后,数据的应用与价值是大数据劳动实践的最终目标。经过数据的收集、处理和分析,我们得到了有意义和有用的信息。但是,数据的应用和价值并不仅仅限于分析结果报告或预测模型,更重要的是将数据应用到实际工作和生活中,帮助我们做出正确的决策和改进工作效率。在我实践的过程中,我积极探索数据的应用场景,包括金融、医疗、交通、能源等领域。通过数据的应用,我发现了一些问题和挑战,并找到了相应的解决方案。此外,我也深感到数据的价值,它不仅为企业的业务发展提供了有力的支持,还为社会的进步和人们的生活带来了更多便利和可能性。

综上所述,大数据劳动实践对于我来说是一次宝贵的经验和成长机会。通过参与实践,我学到了许多实用的方法和技巧,并积累了丰富的经验。在数据的收集与处理、数据的分析与挖掘以及数据的应用与价值等方面,我都取得了一些成绩和心得。但是,我也深感到在这一领域中还有很多问题和挑战需要我们去解决和克服。因此,我将继续努力学习和探索,提升自己在大数据劳动实践中的能力和素质。希望通过我的工作和努力,能够为大数据产业的发展和社会的进步做出更大的贡献。

大数据实践报告篇七

1)熟悉和掌握所管辖维修区域内的一切电气设备,应保持经常处于完整无损,清洁整齐正常安全运转。

2)按预修计划进度对电气设备进行预防性检修,经常检查电动机,加油清理及清除现有或将发生的故障,更换不良的电气部件等。

3)经常监督对各种电气设备的运行情况,发现不合理操作时应及时纠正,或制止操作,随时宣传电气设备运行的安全知识,保证安全用电。

4)保持工作地点和电工室的清洁,所有器具应有秩序的放置和保持完整无损,运行的设备发生故障时应尽快设法修理。

5)经常检查调和上的电气安全设施,积极主动提也不安全因素,属本区域的立即组织实现,属本区域以外的应报告有关部门和安全环保部门协助解决。

6)禁止违章作业,不得乱拉临时线和乱接临时设备,接拉临时线应按如下规定执行:

(1)临时线的范围是为某一临时特定需要的轻型500伏以下电气设备电线,随着任务的完成必须立即拆除。

(2)根据需要临时线由维修电工安装,但必须经申请批准。

(3)临时线必须符合安全要求,做好可接地线,保持清洁,对可能遭受机械损伤和污脏地点应加适当掩扩物。

巡视检查。

1)对本区域内的配电线路,电门箱、机床电气设备及其他电力传动和照明等设备,每班应巡视检查一次。

2)检查站配电线路和设备时,禁止接触带电部分,注意电线接头,各部导线,电门箱的开关闭合动作是否良好。

3)检查传动设备时应注意电机的接线板各种制动和起动装置,电机和电器乖设备的运行情况,各部接线点的温度,润滑轴等是否正常。

4)各种照明设备是否安全可靠,照明灯的电压是否合乎规定,安全变压器插座,接地是否合乎要求。

运行维护。

1)对本区域内的配电板,电门箱等到开关的合闸必须由什班电工进行,但属于某一机床或设备的开关可由该岗位的工人操作,但电工应对所管;辖电门经常进行安全检查。

2)禁止非电工人员打开配电箱开关等门或私自更换保险丝。电工在换熔丝时应正确选定保险丝容量,绝对不允许用铜、铁丝代替。

3)未经生产技术科同意不得在自己维护的区域内进行移置改装或新设电气设备和线路。

4)对运行中电机和转动设备进行维修时,不许在转动时进行其他工作。如必须工作应有保证安全的防护措施。

5)电气发生事故应迅速检查和处理。如系电源停电检查所有的手动起动设备是否已恢复到起动位置或零位,如本区域内部应立即切断故障点的电源,立即报告生产技术科。

6)要防止各种冷却液及润滑油等浸入电气设备,注意电源线或接地线是否移动,各种安全设施是否齐全可靠,禁止在电机开关和其它电器设备附近堆放材料或杂物,更不准在开关箱内放置其他东西。

安全培训。

1)检修前要先切断要修的线路和设备的电源,并用试电笔进行试验证实列电后才可进行检修。高空作业必须绑好安全带。

2)在特殊情况下,如实在不能切断电源,又必须检修时允许带电工作,但必须遵守下列各项规定:

(1)必须用绝缘板将邻近各项予以隔离,穿好绝缘鞋,戴好绝缘手套和帽子,经检查认为可靠后方可工作。

(2)各项带电工作需经车间主任同意并报生产技术科批准,由技术高的电工监督下进行。

(3)工作场地附近各种与地相连的金属物必须隔开或用绝缘材料加以隔离。

(4)绝对禁止非电工人员一起进行电气设备的修理,更不能乱用电气设备。工作时应合理使用各种检修工具。

(5)修完后进行详细检查,线路是否正确,质量是否良好以及绝缘等是否符合安全要求。

大数据实践报告篇八

大数据分析已经成为当今企业决策和发展的重要工具。作为一个市场研究员,在实践大数据分析过程中,我积累了许多宝贵的经验和体会。在接下来的文章中,我将分享其中的一些实践心得。

第二段:正确选择数据源。

要进行有效的大数据分析,首先要正确选择数据源。在过去,很多企业只关注内部数据,却忽视了外部数据的重要性。然而,如今的大数据时代,外部数据的价值已经变得不可忽视。对于市场研究而言,外部数据源如社交媒体、行业报告以及消费者调研数据等都是宝贵的研究资料。因此,我们在进行大数据分析时,要广泛收集各种类型的数据源,以获取更全面的信息。

第三段:合理构建模型。

在进行大数据分析时,一个合理的模型是必不可少的。模型的构建要从问题出发,而不是从数据出发。在实践中,我们发现,只有将问题清晰明确地定义出来,才能找到合适的模型。此外,模型的选择要根据具体的情况来进行。有时候,简单的线性回归模型可能就能解决问题;而有时候,可能需要更复杂的算法模型,如神经网络或支持向量机等。因此,在实践中,我们要灵活运用各种模型,以满足不同问题的需求。

第四段:合理分析结果。

大数据分析的最终目的是为了得出有价值的结论和洞察。然而,在实际情况中,我们常常陷入“数据迷信”的陷阱里。数据可以支持我们的决策,但并不意味着数据就是决策的全部。我们要善于从数据中发现规律和感知趋势,但同时也要结合自己的经验和直觉来做出决策。此外,分析结果也要具有可解释性,要能够清楚地向各方解释分析方法和结果,以增强决策的信任度。

第五段:不断学习与提升。

大数据分析是一个不断发展和演进的领域。为了保持竞争力,我们必须保持持续学习和提升。在实践中,我们要关注行业的最新趋势和技术,学习新的工具和算法,以不断提升自己的分析能力。同时,我们还要参与行业的研讨会和学术交流,与同行分享心得和经验。只有不断学习和提升,我们才能在这个竞争激烈的领域中保持领先。

总结:

通过实践大数据分析,我了解到选择合适的数据源、构建合理的模型、分析结果以及不断学习和提升是进行有效大数据分析的关键要素。大数据分析的未来发展前景广阔,只有不断学习和实践,我们才能与时俱进,并为企业的发展做出更准确和有价值的贡献。

大数据实践报告篇九

前几年,上面还动不动将九亿农民挂嘴边,未来,我相信,上面也会经常说:九亿城市人。或者,更多。

我相信,就在不远将来。

世界正经历城市化,中国更是如火如荼。不久的将来,更大的城市,城市群,更多的人口,会成为常态。这盛况,我有生之年,应该能看到。

更大的城市,更多的人,绝大多数的人将生活在城市里。人们于是关心城市,关心它的一切。当然,也包括它的半径。

有意思的是,目前,中国的城市半径,普遍“不约而同”:约30km。

无论北京的16410km,上海的6340km,还是厦门的1699km,(岛内128km),半径都在30km左右(厦门稍微小,主岛太小),这背后的原因,其实简单:尖端科学的运用,以及科学的可复制型。

以前只有一线城市拥有的地铁,现在在二线基本全面开花,甚至,有些三线也大干快上。究其原因,不过是科学的发明,运用到一定时间后,其成本不断被降低,从而让其他规模较小,财力叫弱的城市,也能造得起。

90年代的地铁,以及建筑其上的销品贸,现在,二线能够“轻易”地复制,且因为经验和时间的积累,建造更先进、科学,搭配更合理,技术更先进。北京、上海的地铁一号线乘坐体验,运营速度,技术应用,未必有苏州、杭州的三号线好。

每一次技术的突破和革新,都让城市半径得到拓展。地铁发明以前,是公路、铁路时代,城市半径远没有现在大,公路、铁路发明之前,是马车时代,繁华的长安城,老百姓靠马车在城市里运行,东到西,十公里已经是极限。再大,活动极不方便(以马车的平时速度计算)。

汉长安城面积达36平方公里,是古代面积最大的都城遗址之一。

现在城市的半径得到极大提升,到达30km左右,地铁功劳不可磨灭。地铁不再是一线的标配,很多城市拥有地铁,并且大干快上。中国城市的半径,因此“不约而同”地扩展到同一长度。

地铁已是城市最高级的技术,最前沿的科技运用。在新的革命性技术还未到来之前,城市的半径,再难以突破。

那么,未来,城市的半径到底怎样呢?真的一直无法突破了?

在几十年前,公交车是人们出行的重要交通工具,当然现在也是,那时的公交车,不但破旧,而且速度、载客量、技术都不如现在。

这是必然,技术在前进。

公交最明显的变化,其实不是这些,而是运行方式。

开始公交都是首发尾至,一条条线路定好,一站一站站点定牢,司机早上出发,沿着线路,有序按序逐站停靠,到点,回到起点,下班。

后来,公交单独划出车道:公交专用,再后来,brt快速公交系统,不但线路专用,而且不再三五公里一站,而是拉长距离,提高速度,专程车道。

北京公交线路图。

这,大大提高了公交的运行速度和效率。长路途的人,可以较快时间到达目的地。当然,其他的线路,还是按原计划的行驶、停靠。

当一个城市的公交普及到线路全覆盖,站点全覆盖,还不能满足市民出行要求时,专线,长距离的公交运行系统出现了。

郑州brt。

其实,地铁也会遵循这个规律。目前,绝大多数的地铁网,还远远不够做到线路全覆盖,站点全程性。

纽约地铁图。

伦敦地铁图。

东京地铁图。

全国的城市,都在大干快上地,继续建地铁。

上海地铁未来效果图(2020)。

北京地铁未来效果图(2020)。

当大多数的城市地铁网,像公交网一样,全程覆盖,并且全站点覆盖时,地铁的进化,就会朝公交的专车道,brt快速公交系统进发:长站点,专业性,快速度的地铁,将不断诞生。

那时,天安门到通州,30分钟,南京路到临港,30分钟。

再以后,天安门到燕郊,30分钟,南京路到昆山、太仓,30分钟,------。

随着地铁的升级和改进,城市的半径进一步被扩大。城市在不断扩大,城市间的边界,越来越模糊。在960万平方公里上,除了几片土地建满高楼大厦,绝大多数的地方,将回归森林。

地球一片绿海,“原始社会”再现。

因而,环保是个伪命题,保护生态就是扯淡,退耕还林根本就没有必要。

作者:皮特。

公众号:peter。

大数据实践报告篇十

如今说起新媒体和互联网,必提大数据,似乎不这样说就out了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典著作——舍恩佰格的《大数据时代》。

维克托·迈尔舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和ibm等全球企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。

这位被誉为:大数据时代的。预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,才能能与之进行一场思想上的对话。

舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。

在第一部分”大数据时代的思维变革“中,舍恩伯格旗帜鲜明的亮出他的三个观点:

一、更多:不是随机样本,而是全体数据。

二、更杂:不是精确性,而是混杂性。

三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。

我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。

我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。”大数据的简单算法比小数据的复杂算法更有效。“更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。”不是因果关系,而是相关关系。“不需要知道”为什么“,只需要知道”是什么“。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。

世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出”不是因果关系,而是相关关系。“这一论断时,他在书中还说道:”在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的“为什么”。“由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。

大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可”量化“,大数据的定量分析有力地回答”是什么“这一问题,但仍然无法完全回答”为什么“。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。

在风险社会中信息安全问题日趋凸显。如何摆脱大数据的困境?舍恩伯格在最后一节”掌控“中试图回答,但基本上属于老生常谈。我想,或许凯文·凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:”大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。

大数据为我们提供的不是最终答案,只是参考的答案,帮助是暂时的,而更好的方法和答案还在不久的未来。“谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考的答案。

此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。

大数据实践报告篇十一

随着信息技术的不断发展,大数据已经成为我们时代最炙手可热的话题。在大数据时代,对海量数据的分析和应用成为重要的竞争力和发展思路。在我所从事的工作中,我也亲身体会到了大数据技术的应用与实践。通过这些实践,我不仅深刻认识到了大数据的重要性,也积累了一些关于大数据技术实践的心得体会。

第二段:技术应用的价值。

在大数据的应用中,我体会到了技术的价值。大数据技术的应用可以帮助我们更快速、准确地从海量数据中提取有价值的信息,从而为决策提供更可靠的依据。在工作中,我们使用了大数据技术来分析市场趋势、用户需求、产品表现等各个方面的数据。通过大数据技术的应用,我们能够更好地了解市场和用户,从而及时调整策略和提供更贴合需求的产品。这种技术的应用为我们提供了更快速、灵活的数据分析能力,提高了工作效率和决策水平。

第三段:技术挑战与解决方案。

然而,在大数据技术应用的过程中,我们也面临着各种技术挑战。首先,海量数据的处理和存储需要大量的计算资源和存储资源。其次,数据的质量和可靠性对分析结果和决策的准确性有着重要影响。最后,数据隐私和安全问题也需要我们关注和解决。针对这些挑战,我们采取了一系列的解决方案。例如,我们引入了云计算技术和大数据平台来提供更强大的计算和存储能力。同时,我们设计了数据质量检测和处理的流程,通过数据清洗、合并和验证等方式来确保数据的质量和有效性。在数据隐私和安全方面,我们制定了严格的权限管理和数据加密措施,确保数据的安全性和可信度。

第四段:实践中的经验与教训。

在大数据技术的实践中,我们也积累了一些宝贵的经验与教训。首先,数据分析不仅仅是科学,也是一门艺术。在进行数据分析和挖掘时,我们不能只看到数据的表面现象,而是要深入思考背后的原因和关联。其次,数据的质量要始终放在第一位。无论数据多么庞大,质量不可靠的数据都是无用的。因此,我们要通过严格的数据检测和处理流程来提高数据质量。最后,随着大数据技术的发展,我们也应不断学习和更新知识,保持对新技术的敏感性和应用能力。

第五段:结尾。

通过大数据技术的实践,我深刻认识到了技术的价值和应用的挑战。大数据技术的应用带来了更高效、准确的数据分析和决策能力,极大地推动了企业的发展。然而,我们也要面对庞大的数据处理和安全保障等挑战,需要不断学习和提升自身能力。大数据技术的实践使我不仅认识到了技术的重要性,也让我体会到了技术与应用的无限可能。作为从业者,我们应该保持学习的态度,不断追求创新与进步,将大数据技术应用到工作中,为企业的发展和决策提供更好的支撑。

大数据实践报告篇十二

去年的“云计算”炒得热火朝天的,今年的“大数据”又突袭而来。仿佛一夜间,各厂商都纷纷改旗换帜,推起“大数据”来了。于是乎,各企业的cio也将热度纷纷转向关注“大数据”来了。有一张来自《程序员》微博的漫画很形象。我觉得这张图,很真实地反映了现实中小企业云计算,大数据的现状。

不过话又还得说回来,《大数据时代》是本好书。

当然,很多it知名人士也大力推荐,写了好多读后感来表述对这本书的喜欢没看此书之前,对所谓大数据的概念基本上是一头雾水,虽则有了解关注过现在也比较火热的bi,觉得也差不多,可能就是更多的.数据,更细致的数据分析与数据挖掘。看过此书后,感觉到之前的想法,只能算是中了一小半吧—。

巨量的数据,而另一前:着眼于数据关联性,而非数据精确性,或许才是大数据与现时bi的不同,不仅仅是方法,更多的时思想方法。不过坦白讲,到底是数据的关联性重佳,还是数据的精确性更好,还真的需要时间来检验一下,至少从现在的数据分析方法来论,更多的倾向于数据的精确性。

看完此书,我心中的一些问题:

1、什么是大数据?

查了查百度百科,是这样定义的:大数据(bigdata),或称巨量资料,指的是所涉及的`资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4v特点:volume、velocity、variety、veracity这个好像是ibm的定义吧。

以个人的观点来看:数据海量,存储海量都是大数据的基本原型吧。

2、大数据适合什么样的企业?

诚然,大数据的前提是海量的数据,只有拥有巨量的数据资源,方能从中查找出数据的关联性,才可以让通过专业化的处理,让其为企业产生价值。针对电信运营,互联网应用这样海量用户的数据的大企业,也是在应用大数据的道路上拥有得天独厚的条件,但是针对中小企业呢?销售订单数据?若非百年老店,估计数据也是少得可怜,能用的可能只有消费者数据了吧。貌似大多数厂商,用来举例的也就是消费都购买行为分析为最多。

1)预测未来书中以google成功预测了未来可能发生流感的案例来开篇,表明通过大数据的应用,可以为我们的生活起一个保驾护航的指向标。实质很简单,技术改变世界。

2)变革商业大数据所带来的商机,同时会衍生出一系列与大数据相关的商业机遇与商业模式,数据的潜在价值会源源不断地发挥作用可以容易想到的是未来有专门的数据收集,数据分析,数据生成的一条数据产业链产生。影响的,当然是it公司。

3)变革思维书中所说:因为有海量的数据作基础,未来,我们可能更关注数据的相关,而非精细度。对这条,本人还是持保留意见的。

大数据实践报告篇十三

读完《大数据》,我才意识到这并不是一本枯燥无味的书籍。作者运用案例和讲故事的方式,把美国数据开放、收集、使用背后的立法故事、公民故事、技术故事、商业故事娓娓道来,引人入胜,令我大开眼界。

我在想,大数据概念对于教育来说会产生什么样的实用价值呢?一直以来,中国教育在研究教育的数字化,比如数字化校园,这个思路就是把我们教育的内容进行数字化,其结果指向的就是电子教材的研发或者是教学过程的数字化。美其名曰,这是教育技术的重要内涵。

在教学过程中,学生的行为表现都可以被数据化,而这项研究不是任何一个专业可以深入下去的,它的专业性太强,所以我才会想到,所谓教育技术与其研究教育的数字化,不如研究教育的数据化来得实在,来的有意义。长期以来,我们并不了解教育对一个人的影响具体会如何表现,我们有的只是一个轮廓,我们也并不确定一个教师的行为对学生具体产生了哪些影响。

所以,人们对教育一直有一个深深的质疑,它是不是科学的?大数据概念至少提出了关注“是什么”比“为什么”要有实际意义得多。

而我们的教育恰好需要把注意力从“为什么”转移到“是什么”上面来,只有如此,才能把教育从为什么发展成“可能成为什么”上来,这会是一次思想上的革命。而对于现在地位岌岌可危的教育技术来说,把研究的重点从数字化转移到数据化上面,这才是它的出路。

如何将数据融入教学,教育者首先通过标准化全科教学处方,实现了教师授课模板和教学内容的标准化,保证每个教学过程和内容是可控的,然后结合每天的教学内容,处理好面对的数据,处理好数据,自然也就处理好了课堂的反馈,最终形成了既注重教学体验又以教学结果为导向的教学体系。

与此同时,不仅要注重课上的学生资源,在课后还要对这些资源进行跟踪处理。这与过去的教育教学显然是不同的,面对大数据时代的到来,教学有所改变是必然的。所以,无论环境怎么变换,数据如何复杂,我们都不能不去改变自己的`教学去迎合将来的这个大数据时代。

【本文地址:http://www.xuefen.com.cn/zuowen/11978270.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档