鸡兔同笼教学设计一等奖(优质15篇)

格式:DOC 上传日期:2023-11-14 10:05:34
鸡兔同笼教学设计一等奖(优质15篇)
时间:2023-11-14 10:05:34     小编:梦幻泡

总结可以帮助我们更好地认识自己的优点和不足。在总结中,我们可以使用例如归纳、分类、分析等方法,来展现我们的思考能力。总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。如何培养良好的学习习惯是写一篇完美总结的关键。以下是小编为大家整理的最新热门总结范文,欢迎参考借鉴。

鸡兔同笼教学设计一等奖篇一

教材分析:

本节是尝试与猜测活动之一。本活动的目的是通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。在“鸡兔同笼”的活动中,通过列表方法解决鸡与兔的数量问题。

教学目标:

1、通过对日常生活中现象的观察和思考,发现一些特殊的规律。

2、从不同角度分析,掌握列表解题的策略与方法。

3、培养学生分析的能力,初步渗透假设的数学思想。

教学重难点:

从不同角度分析,掌握列表解题的策略与方法。

教具准备:

多媒体课件

教学过程:

一、激趣导入

1、引导学生发现鸡和兔的异同点,学生得出鸡和兔都有一个头,鸡有两条腿,兔有四条腿。

2、通过练习发现问题。

出示多媒体课件:

一只公鸡( )条腿,两只公鸡( )条腿,五只公鸡( )条腿。

一只兔子( )条腿,两只兔子( )条腿,五只兔子( )条腿。

鸡兔共五只,腿有( )条。

3、得出关系式:鸡的数量×2+兔的数量×4=腿的数量。

质疑:如果知道了腿的总数能知道鸡兔各几只吗?

4、引出课题:早在1500多年前,我国古代的数学家就在《孙子算经》中提出了这样有意思的题目,今天我们就一起来研究。(板书:鸡兔同笼)

二、开展活动,探究规律。

1、课件出示题目:笼中鸡兔共8只,腿有22条,鸡兔各几只?

学生猜测鸡兔各几只,按顺序整理所有可能性。

学生根据总结出的关系式,计算找出正确答案。

学生汇报正确答案是鸡5只,兔3只。

小结:像这样把所有情况一一列举出来的方法叫逐一列表法。(板书)

2、质疑:这个方法好不好?

学生感受这个方法要一一列举,比较麻烦。

下面就利用简单的数据总结规律,运用到复杂的情况中。

3、请同学们观察:你发现了什么规律?

同桌互相讨论。

生得出结论:鸡增加1只,同时兔减少1只,腿减少2条。

鸡减少1只,同时兔增加1只,腿增加2条。

腿增加和减少于兔保持一致。

4、游戏练习:

鸡增加2只,同时兔减少2只,腿( )。

鸡减少5只,同时兔增加5只,腿( )。

生得出:鸡兔每对换一次,腿数增加/减少两条。

三、利用规律,实题操作。

利用总结的规律,做一道数目稍大的题,不用逐一列表,试试看。

课件出示:鸡兔同笼,有10个头,28条腿,鸡、兔各有多少只?

生利用规律进行练习。

生汇报,根据汇报总结出取中列表法和跳跃列表法。

四、练习

练习熟练运用取中列表法和跳跃列表法。

1、鸡兔同笼,有20个头,56条腿, 鸡、兔各有多少只?

从鸡兔同笼问题中取得数学学习的方法,这里的鸡兔不仅仅代表鸡和兔,运用所学的方法可以解决生活中类似的问题。

这道题与鸡兔同笼问题有什么联系?

生找出两者的异同点,进行练习。

五、课外延伸

与大家分享小知识。

“鸡兔同笼”是一类中国有名的算术题,最早出现在《孙子算经》中。此书约成书于四、五世纪,作者生平和编写年代都不清楚。先传版本的《孙子算经》共三卷。卷下31题,可谓是后世“鸡兔同笼”的始祖,后来传到日本,变成“龟鹤算”。书中是这样叙述的:“今有鸡兔同笼,上有35头,下有九十四足,问鸡兔各几何?”

[教材简析]

本课时向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用逐一列表法、跳跃式列表法、取中列表法等来解决问题。学生在具体的解决问题过程中,他们可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

[设计理念]

“鸡兔同笼”是我国古代数学的经典趣题,教材借助这个问题向学生提供了有趣、富有挑战性的学习素材,旨在让学生通过合作交流,应用假设法进行探究学习,积累解决问题的经验,掌握解决问题的策略。

[教学目标]

1知识与技能:学会用不同方法解答“鸡兔同笼问题”,比较各种列举法的特点,并让学生体会怎样列举更简便。

2过程与方法:运用假设法通过合作交流探索多种方法解决鸡兔同笼问题并学会用这种方法解决生活中类似的实际问题。

3情感态度与价值观:使学生初步认识“鸡兔同笼”的数学趣题,了解与此有关的数学史,学习我国传统的数学文化。

[教学重点]

借助“鸡兔同笼”这个载体让学生经历列表、尝试和不断调整的过程,从中体会出解决问题的一般策略——假设列表法。

[教学难点]

解决此类问题的调整策略既:在运用“跳跃列举”中的调整幅度的大小,和在使用“居中列举”后巧妙的运用“跳跃列举”。

鸡兔同笼教学设计一等奖篇二

杨海涛。

教学目的:、对日常生活中的现象进行观察和思考,引导学生从中发现规律,使学生掌握用列表的方法来解决问题。、从不同的角度分析问题,掌握解题的策略与方法。、培养学生分析问题的能力,渗透假设的数学思想。

教学重点:

从不同的角度分析,掌握解题的策略与方法。

教学过程:

一、导入。

我们来看看是哪面朝上,你们是怎么知道的呢?(我们是猜的)同学们真会猜,这节课,同学们就大胆的猜一猜(板书课题:鸡兔同笼)。请看大屏幕。

2、课件出示。

二、新课教学:

1、课件出示:(教材中的情景图及例题)师:你能知道哪些数学信息?(有鸡、有兔、16个头、42只腿,鸡有2条腿、兔有4条腿)。

现在同学们就来猜一猜鸡、兔各有多少只?

师:我们来验证他的猜想是否正确呢?(验证)。

师:与条件中的42条比怎么样?(多或少了)(说明什么问题?兔多了鸡少了,那么又该怎么办?)。

生2:猜测鸡是19只,兔是1只。腿:40条。(总腿数少了,又该怎么办?)。

看来同学们还是不能猜出来,想想我们还能用学过的什么方法来找出鸡和兔的只数?(列表的方法)。

请大家想想,如果我们用列表的方法,表中应该有哪些项目呢?(头﹨个;鸡﹨只;兔﹨只;腿﹨条)老师为你们准备了一张这样的表,请各组的组长拿出来,和你的伙伴用老师发的这张表完成你们的猜想。(课件出示要求)。

2、学生小组活动,教师指导。

3、汇报交流:说你们是怎样想的。(有意识的选取几张表,小组代表发言)。

第一张表。

师:谁来解释一下第一栏的各个数字各代表什么意思?谁来说说第二栏的各数的意思?

师:你们认为第一张表是按照什么样的顺序来找到正确答案的?(第一张表,它是先假设鸡有一只,则兔子有19只,看腿的总数是不是54条,腿多了,说明兔子多了,然后依次增加一只鸡,减少一只兔,就这样依次用一只鸡换一只兔,再算腿的总数符不符合条件,直到找到正确答案为止。最后经过了13次计算,终于找到了答案。)。

师:孩子们请你们再观察表,当把一只兔换成一只鸡时,总的腿数会有什么变化?为什么?

小结:从表中我们可以看出每减少一只兔增加一只鸡,腿的总数都减少2只。

下面我们来看第二张表。

第二张表。

师:第二张表的第一栏与第一张表的数据是一样的,为什么第二栏数据就发生很大变化了呢?(引导学生得出,当假设只有1只鸡,19兔时,总腿数与条件中的54条相差太远,由此判断兔子的只数太多了,所以可以把鸡与兔多换一些)。

师:你们看第一次换了鸡只?(4只)你知道总的腿数减少了多少只?为什么?

第三张表。

师:谁来解释一下第三张表是如何来解决这个问题的?(引导得出:先是假设兔子数和鸡的只数各一半,发现总腿数偏多,于是肯定兔的只数多了,应该减少兔子的只数来增加鸡的只数。你能不能很快知道减少几只兔增加几只鸡?怎样想的?)。

4、今天我们学习的内容在教材第80页和81页,请大家打开书看看。

三、巩固练习。

师:现在你会利用表格解决有关鸡兔同笼的问题吗?(81页练一练的题单)。

第1题:学生完成后,请学生在小组内说说制表的过程和想法。在投影仪上出示学生的列表并请学生在全班交流。

大家已经会用表格解决有关鸡兔同笼的问题,请大家思考,能不能用我们学过的其他方法来解答刚才的例题呢?(学生讨论交流:假设、列方程、画图等)。

第三题,难度要大点,可以让学生说说这道题与前两道题的条件有什么不同,谁有办法来确定需要车辆的总数范围。(先估算一下如果全部用大车要用多少辆?如果全部用小车要用多少辆?)。

四、拓展解决问题的方法。

刚开始有同学说用“画图的方法”,还有的说“用假设的方法”

现在请说说怎么用这些方法解决80页这个问题。

五、课内阅读:我们一起来看看“鸡兔同笼”问题的来历。

头:

鸡2条腿:

兔4条腿:

总腿数:

(列表)。

鸡兔同笼教学设计一等奖篇三

教学目标:让学生了解我国的数学问题是源远流长,古代数学问题与现在数学的联系,有能力利用画简笔画的方法解决简单的鸡兔同笼问题,从而让学生从兴趣中掌握知识,热爱我国数学历史。

教学方法:利用画简笔画的方法,解决鸡兔同笼问题教学用具:电脑软件,投影,存钱罐,5分与2分硬币教学过程:

导入:师:今天李老师第一次给大家上课,你们欢迎吗?

你们用什么方式表示对李老师的欢迎呢?掌声。

今天李老师给大家带来两个小礼物,想知道是什么吗?

大家想不想知道李老师带来的第二个礼物是什么呢?(拿出兔子的图片)。

一只兔子一个头,两只眼睛四条腿,还是加上动作,2只兔子呢?(加以评价)。

画数学画,就是用你们喜欢的图形来表示你们所画的东西,如:李老师喜欢圆,那我就用圆形来表示它们的头,我喜欢竖线,我就用竖线来表示它们的腿,画两竖的就是„,画四竖的就是„。下面就用你们最喜欢的图形分别表示动物的头和脚,画出两种动物各有多少?开始。(让学生到黑板上去画,打格,把学生的作品在幻灯片上比较,好的给予高度评价)现在观察:老师先画的都是什么?(鸡)。

动手画画试试,脚多了应该怎么办呢?(展示学生作品)。

我们看看到底是不是?(出示图片,几鸡几兔,订正黑板)。

这时候,数量增加了,我数了数有6个头,18只脚了,问问你有几只鸡几只兔?(提示巩固强化,如果有“多一个头,多四只脚就是兔”的想法,给予评价)。

这时,小兔子有个想法,你们想知道吗?(课件,配音“你是不是学累了啊,想不想和我做一个猜硬币的游戏啊?)。

叙述,一共有多少枚硬币?让学生摇一摇,然后放在实物投影上验证几枚,有2分和5分两种,共2角。你有办法知道到底有几个2分的,几个5分的?(学生动手,展示)。

你们玩得高兴吗?可是小兔子却发愁了,神州6号宇宙飞船成功发射了,看看小兔子说什么?(放配音)。

你们能帮助他们吗?

老师这里有几个要求,比比谁做的快。

1、先从学具盒里拿出7个小圆球。

2、再拿出18条小竖棒。

今天我们研究的问题就是我国古代著名的数学问题—鸡兔同笼(板书课题)它出自我国古代译本著名著作叫孙子算经,实际上鸡兔同笼问题在算经中的解法,更为巧妙!你们想知道吗?课下可以到图书馆,或是在网上查一查。

鸡兔同笼教学设计一等奖篇四

一、教学目标:

1.引导学生尝试用不同的方法解决“鸡兔同笼”问题,掌握解决“鸡兔同笼”问题的一般方法,并体会其一般性。

2.在解决问题的过程中,渗透化繁为简等数学思想方法,培养学生的逻辑推理能力。

3.在学习活动中感受古代数学问题的趣味性,体验探究的乐趣。

二、教学重点:掌握解决“鸡兔同笼”问题的一般方法。

三、教学难点:用假设法解决“鸡兔同笼”问题。

四、教学过程课前游戏:

师:同学们,屏幕上有哪两只小动物啊?师:你们了解他们吗?

师:谁能在数量上介绍一下他们的头和腿?

女生:一只小鸡2条腿。

男生:两只小兔8条腿。

女生:两只小鸡4条腿。

„„。

„„。

(一)激情引入。

师:他以文言文的方式表述的,你想了解他的意思吗?(课件展示)。

师:请大家齐读一遍,谁能尝试猜测笼子里鸡和兔的只数呢?【预设1:学生会猜。师:我们一起来验证一下?】师:错了,那我们要猜到什么时候啊?好,我们今天就一起来探索“鸡兔同笼”的数学奥秘吧!由于题目中的数字比较大,在数学里有一种思维方法是:化繁为简,那我们就把数字改小一点吧!

(二)探究学习师:齐读一遍,【出示课件】。

师:读完题目你能得到什么数学信息?说明笼子里有几只动物?

师:完成的,同桌互相交流各自的成果和方法。

师:好!那我们现在就用假设法计算出鸡和兔的只数,如果笼子里全部是鸡,也就是我们假设全是„„鸡。

师:哪两位愿意来分享一下你们的成果?(请大家注意倾听他的发言,解释、质疑)。

师引出学生说出:假设全是鸡,先求出了兔的只数,再求出鸡的只数。

师:既然可以假设全是鸡,那我们也可以假设全是兔,如果假设全是兔的话。师:腿的数量又会发生什么样的变化呢?那多算的6条腿应该是什么动物的腿?【鸡】为什么会多算鸡6条腿?【因为鸡把翅膀放下去当成了4条腿】哦!师:假设全是兔,先算出谁的只数?现在请大家小组合作完成学案探究三。师:哪一组愿意来分享一下你们的成果?(请大家注意倾听他的发言,解释、质疑)。

师引导学生说出:假设全是兔,先求出了鸡的只数,再求出兔的只数。

师:同学们,刚刚我们运用假设全是鸡或假设全是兔这两种方法也解决了鸡兔同笼的问题,像这两种方法我们统称为假设法。当假设全是鸡时,就先算出兔的只数;而假设全是兔时,就先算出鸡的只数,让我们一起齐读一遍这两种方法吧。

(三)当堂练习。

师:老师真为你们感到高兴,因为通过今天的学习,你们解决了《孙子算经》中的数学难题,真了不起!

(四)提升练习(只分析)。

(这就是日本的龟鹤问题,日本的龟鹤问题就是从我国的鸡兔同笼问题演变来的)。

师:同学们,在生活中像鸡和兔关在一个笼子里并不常见,通过无数位数学研。

师:想一想租船问题与鸡兔同笼问题有什么相似的地方?能不能运用鸡兔同笼的方法来解答呢?也就是说哪个信息相当于鸡,哪个信息相当于兔,哪个信息相当于腿数,哪个信息相当于头数?现在你会解答吗?课后大家试试吧!

(五)拓展阅读。

师:通过今天的学习,我们知道运用列表法、假设法解决鸡兔同笼问题,那古时候的人们是怎么解决《孙子算经》中鸡兔同笼的问题呢?让我们一起去看看吧。(课本105页:阅读资料)古人运用了什么方法啊?师:古人的解法巧妙吗?看来我们解决数学问题有时还真需要点“奇思妙想”!

(六)、归纳总结。

鸡兔同笼教学设计一等奖篇五

陈胜芝。

教学目标:1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。

3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。教学重点:用假设法解决“鸡兔同笼”问题。教学准备:课件、表格教学过程:

一、铺垫复习。

看谁算得又对又快(课件出示)。

1只鸡()头()脚,1只兔()头()脚。

2只鸡()头()脚,2一只兔()头()脚3只鸡3一只兔一共()头()脚。

4只鸡4一只兔一共()头()脚。

二、揭示课题。

1、师:同学们今天老师将和大家一起来学习一道我国古代非常有名的数学趣题,“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”(ppt投影展示原题)这四句话是什么意思呢?抽生回答。(ppt展示今意))。

三、展示情境,尝试探究。

(一)出示情景,获取信息。

1.“鸡兔同笼”这四个字什么意思呀?(鸡和兔关在同一个笼子里)。

为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”(说明:为了便于分析时叙述,把“26只脚”改成了“26条腿”课件出示)。

2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了什么信息?学生理解汇报:(课件出示)。

2、怎样才能确定同学们猜的对不对?(把鸡的腿和兔的腿加起来看等不等于26。)。

3、和学生一起验证,找出正确的答案。(只有这一个正确答案吗?)。

4、我们把这种方法叫做列举法。(板书:列表法)。

5、你们觉得用猜想列表法解决鸡兔同笼问题怎么样?

6、那我们还有研究新方法的必要。

(三)尝试假设法。

3、上面的过程能用算式表示出来吗?请同学们试试看。

4、假设全是鸡:(板书)。

8×2=16(条)。

4-2=2。

10÷2=5(只)。

兔,所以10÷2=5就是兔的只数。

8-5=3(只)鸡。

5、算出来后,我们还要检验算的对不对,谁愿意口头检验。

6、假设全是兔怎么算?

8、先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?同学们能自己解决吗?如果有困难可以同桌边或小组讨论。

8×4=32(条)。

6÷2=3(只)鸡。

8-3=5(只)兔。

小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这是解答鸡兔同笼问题的一种基本方法。(板书:假设法)。

(四)列方程解。

在解决鸡兔同笼问题时,除了假设法外,还有别的方法吗?(方程的方法)。

要用列方程的方法就必须找到等量关系式。通过得到到信息能写出哪些等量关系式呢?(兔的只数+鸡的只数=8;兔的腿+鸡的腿=26条腿)(课件出示)。

1、解:设鸡有x只,兔有(8-x)只。2x+4(8-x)=26在解的时候可以根据等式的性质将减变成加,分别加上4x,再来解。

2、解:设有兔x只,鸡有(8-x)只。4x+2(8-x)=26同样抽生说出自己想法。那种方程好解一点,(设兔的只数为x好解点)所以我们可以设脚数多的兔为x,在解的时候容易一点。

列方程的重点是找出等量关系:设头数,以脚数相等来列出方程;

小结:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?(列表法,假设法和列方程)。

3、还有什么方法?学生讨论交流汇报教师总结。

4、选择自己喜欢的方法解答问题。

四、练习。

2.课件出示“做一做1”

3、课件出示“做一做”第二题。问这道题与“鸡兔同笼”问题有相似的地方吗?有哪些地方相似?(大船相当于“兔”,小船相当于“鸡”)学生独立完成,集体讲评。

4、课件出示拓展练习。

课后总结:本节课你有什么收获?那你知道早在一千五百年前的古人又是怎么解决鸡兔同笼问题的?请同学们自学p114页下面内容。这个内容我们留到下节课进行讲解。

鸡兔同笼教学设计一等奖篇六

1、在解决鸡兔同笼的活动中,通过列表枚举解决鸡兔的`数量问题。

2、在解决鸡兔同笼的活动中,通过列表尝试和不断调整的过程从中体会解决问题的一般策略——列表,让学生学会从不同角度分析,掌握解题的策略与方法。

3、运用学到的解题策略——列表解决生活中的实际问题。

4、培养学生分析问题的能力,渗透假设的数学思想。

让学生经历列表、尝试和不断调整的过程,体会解决问题的一般策略—列表。

运用学到的解题策略解决生活中的实际问题。

一、情境引入,激发兴趣。

今天老师给同学们带来一本书《孙子算经》,其中有这样一道题目。

今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

谁来读一读,你见过这类题吗?

今天我们就来研究这类问题(板书鸡兔同笼)。

二、探索问题。

从图中你能知道哪些数学信息:(有鸡、有兔、20个头、54只腿,鸡有2条腿、兔有4条腿)。

现在同学们就来猜一猜鸡、兔各有多少只?

把你猜想的结果跟你的同桌同学交流交流。

学生交流后:请学生汇报猜想的情况。

教师随机板书。

看到这么多种猜测,你知道哪种答案是正确的吗?你又想说什么。

生:可以按照一定的顺序把他们排列起来看就很清楚。

师:对,按照一定的顺序把他们排列在表格里那会看得更清楚。

那么列表先做什么。

生:

(1)画表。

(2)填写第一行。

师:请你们把猜测的结果按一定的顺序填在表格中,并验证,哪种猜测正确。

出示学习要求。

1、先独立尝试猜测。

2、把尝试的数据在表格中表达出来。

3、在小组内交流自己的想法。

生:尝试列表。

展示学生的表格请学生说一说是怎样做的。

师:一共尝试了几次。

生:13次,尝试出了这道题的答案。

师:我发现刚才同学们在写腿的只数时特别快,观察这张表格,你发现了什么。

生:在头数相同的情况下,增加一只鸡,减少一只兔,腿就少2只。

师:给这种列表法起个名字。

生:起名字。

师:在数学上也有一个名字逐一列表。

师:观察这张表格,你有什么发现。

生:一一列出,肯定能找出答案,但有些麻烦。

师:那还有什么列表方法。

展示学生第二种列表方法出示表格。

生:说这种列表的方法。

师:观察这个表格,你又发现了什么。

生:这种列表,先几个几个的数,再逐渐调整。

师:先几个几个数,再往回调,在数学上也有个名字跳跃式列表。

展示学生第三种列表方法出示表格。

生:说这种列表的方法。

师:观察这个表格,你又发现了什么。

生:这种列表,先假设鸡兔各占一半,再调整。

师:这种列表有直接特点,我们称这种列表方法为取中列表。

想一想,为什么用列表法解决这个问题。

生:简单,能准确计算结果。

师:你更喜欢哪种列表方法,你们在不知不觉中找到解决问题策略,是什么。

生:列表。

师:首先根据信息尝试猜测,再计算验证,最后合理调整。

师:还可以用什么方法计算。

生:计算。

师:想知道古人是怎样解决这道题吗。

课件出示资料。

师:看了这个资料你想说什么。

三、实践运用,巩固深化。

四、总结。

通过这堂课的学习你学会了什么?

鸡兔同笼教学设计一等奖篇七

教学目标:

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、在解决“鸡兔同笼”的活动中,尝试通过列表枚举、假设、画图等方法解决鸡兔同笼问题。锻炼学生的思维能力,体验假设、化繁为简等数学思想方法。

3、在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

教学过程:

一、课前交流:游戏说说你是怎样算出来的。

二、解读问题。

师:看张老师给大家带来了什么问题呢?(媒体出示课题:鸡兔同笼)师:“鸡兔同笼”是什么意思啊?生:就是把鸡和兔关在一个笼子里。

生1:鸡和兔共有8个头,26条腿。师:除此之外还有什么信息啊?

生2:还有1只鸡有2条腿,1只兔有4条腿。三.解决问题。

(一)列表法1.猜测列举。

生:鸡和兔的只数加起来应该是8才行。

师:说的对。那您先猜一个。鸡多少只?兔多少只?生:1只鸡,7只兔。生2:4只鸡,4只兔。生3:2只鸡,6只兔。

师:要知道猜的对不对,需要怎么样?生:验证。师:怎样验证?

生:根据猜测的鸡和兔的只数算算腿的条数,看是不是等于26。

师:说的太好了!您听明白了吗?

小结:根据鸡和兔的总只数,列举出一些可能,然后根据题目的条件进行适当地调整,总能找到一种情况符合题目要求。我们把这种方法叫做列表法。列表的方法可以解决鸡兔同笼问题,并且一目了然,但当总只数成千上万的时候,就显得太麻烦了,所以列表法不适合数据大的鸡兔同笼问题。

(二)假设法。

1、师:今天,老师教给你们一种解决鸡兔同笼的新方法,你们想学吗?生:想。

2、播放微课。

师:刚才的视频中,老师教给大家了两种方法,一种是画图法,就是用圆圈表示头数,少了加上,多了去掉。当数字较大时,这种方法也是不可用的。另一种方法是把所有的鸡看成兔,也可以把所有的兔看成鸡,这种方法叫作假设法,假设法才是解决鸡兔同笼最基本的方法,也是我们今天学习的重点。请看大屏幕我们一起来回顾一下。

师:我们发现如果假设全是鸡,先算出的是兔的只数。如果假设全是兔,先算出的是鸡的只数。为了大家能够记得更牢,老师把这个过程编了一个顺口溜,“鸡兔同笼并不难,设鸡算出兔,设兔算出鸡,设鸡设兔全由你,正确计算你第一”

过度:那现在我们用学到的假设法来解决一下《孙子算经》中的问题吧。学生解答并集体讲评。

3、想知道古人是怎样解决鸡兔同笼问题的吗?打开书认真阅读105页的小资料。

三、延伸、应用1.课件出示“做一做1”

鸡兔同笼问题传到日本时就变成了“龟鹤问题”,你认为“龟鹤问题”与“鸡兔同笼”有什么相似之处?课件出示(龟相当于兔,鹤相当于鸡)展示学生作业,并抽生说说思路。

四、课后总结:

同学们,我们今天解决了一个什么问题?用到了什么方法?其实解决鸡兔同笼问题,我们还有别的方法,如方程法。下面老师要送给同学们一句话:“没有大胆的猜想,就做不出伟大的发现。——牛顿”希望同学们都能做个爱思考,善于发现的孩子。

五、板书设计:

鸡兔同笼教学设计一等奖篇八

1、对日常生活中的现象进行观察和思考,引导学生从中发现特殊规律,使学生掌握用列表的方法来解决“鸡兔同笼”的问题。

2、从不同的角度分析问题,掌握解题的策略与方法,从而感受到数学思想的运用和解决实际问题的联系。

3、培养学生分析问题的能力,渗透假设的数学思想,在解题中数形结合,提高学生对数据的再认识,再分析,将列表的过程更优化。

从不同的角度分析,掌握解题的策略与方法。

1、谈话:“同学们,自我介绍一下,我姓周,你们可以称呼我?今天需要我们共同配合,在这里上一节数学课,为了表达谢意,我为你们带来了一些礼物,快来猜一猜,有多少?(5只)太少了?(50只)多了,(40只)少了(45只)差不多了,(46只)恭喜你,答对了,下课就由你发给同学们。

2、喜欢数学吗?数学不但可以开阔我们的`视野,增长我们的知识,还可以锻炼我们的思维。在我国古代就有许多有趣的数学名题,你们了解吗?今天,。老师就向你们推荐一种有趣的问题,鸡兔同笼。

1出示问题:“鸡兔同笼,有5个头,14条腿,鸡兔各有几只?”

(1)你从中获取什么信息?

(2)请你们猜一猜将鸡、兔可能是几只?

(3)把你猜的过程给大家说一说。

(4)板书学生的过程。

鸡123。

兔432。

腿181614。

(4)评价:从尝试简单的开始,一个一个的试,最终找到了正确的答案,方法多么简单啊?如果我们再横竖加上几条线,就成了美观的表格。看来,列表来解决这类问题还确实简单,如果现在将鸡兔的数量增加,还能解决吗?(重点引入列表)。

2、出示:“鸡兔同笼,有20个头,54条腿,鸡兔各几只?”

(1)自己先想一想如何利用列表来解决?

(2)小组内交流一下自己的想法。

(3)独立完成列表。

(4)汇报想法和过程。

小组1:逐一列表,假设鸡有1只,兔子有19只,那么就有78条腿,(腿多了,说明什么?兔子多了,怎么办?)鸡有2只,兔子有18只,那么就有76条腿,一只一只地试,学生把试的结果列成表格。

通过表格引导学生观察:发现了什么?(每多一只鸡,少一只兔子,相应减少2条腿。)。

小组2:跳跃式列表,假设鸡有1只,兔子有19只,那么就有78条腿,要比54条腿多的多,因此,兔子的只数也可能多了很多,但是鸡的只数可以不用一只一只依次递增,而是从猜一只到猜5只(或者其它几只),当腿的条数在50到60之间,(提出问题:兔子可能是几只?到底是谁估计的更加接近呢?)。

引导发现:这样就减少举例的次数。并通过数据的调整来优化解题策略。

小组3:取中列表,假设鸡兔各有10只。

小组4:方程。

小组5;奥书班中学习过算术方法(让孩子清楚表达出自己的想法)。

1、观察三种列表的方法,比较异同?

2、谈一谈;你们有什么感受?

1、课后练习1、2、3(比较不同,答案是否唯一)。

2、通过今天的学习,有什么收获?

鸡兔同笼教学设计一等奖篇九

人教版课程标准实验教科书四年级下册第103105页内容。

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、尝试用不同的方法解决“鸡兔同笼”问题。

3、在解决问题的过程中培养学生逻辑推理能力。

尝试用假设法解决“鸡兔同笼”这类问题。

1、出示原题:

师:同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作。《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题,让我们一起去看看吧!

(电脑出示)今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

2、理解题意:

师:大家同意吗?

(电脑出示)笼子里有若干只鸡和兔,从上面数有35个头,从下面数有94只脚,鸡和兔各有多少只?(全班齐读)。

3、揭示课题:

师:这就是著名的‘鸡兔同笼’问题,也是这节课我们要研究的问题。

2、分析并理解题意:

(1)从上面数,有8个头就是说鸡和兔的头一共有8个。(也就是说鸡和兔一共有8只。)。

(2)从下面数,有26只脚就是说鸡脚和兔脚总数一共是26只脚。

(3)问题是什么?(鸡和兔各有多少只?)。

3、猜一猜:随学生猜想板书并验证。

4、介绍列表法:

师:刚才我们是随意猜的,其实我们还可以有顺序的猜。“(电脑出示空的表格)。

小结:这种按顺序列表的方法我们称之为列表法。这样我们也就用列表法解决了这个问题。

5、介绍假设法:

当数字较大时,列表法就太麻烦了,能不能有其他更简单的方法呢?请同学们仔细观察表格,从表格中你能发现什么?小组之间交流一下。

(1、)假设全是鸡:在鸡兔总只数不变的情况下,每增加一只兔减少一只鸡,脚的只数就会增加2只。同学们,想想看我们应该增加几只兔,脚的只数会变成26只脚。同学们这个过程你们能用算式表示出来吗?请同学们试着用算式表示看看。

小结:刚才通过列表法我们想到了两种算术方法。回头看看这两种方法的第一步,一个是假设全是鸡,一个假设全是兔。我们把这两种方法起个名字?板书(假设法)。

6、介绍孙子算经(抬脚法)。

课本做一做“龟鹤问题”。

这节课你学到了什么?

鸡兔同笼教学设计一等奖篇十

教学目标:

1、对日常生活中的现象进行观察和思考,引导学生从中发现特殊规律,使学生掌握用列表的方法来解决“鸡兔同笼”的问题。

2、从不同的角度分析问题,掌握解题的策略与方法,从而感受到数学思想的运用和解决实际问题的联系。

3、培养学生分析问题的能力,渗透假设的数学思想,在解题中数形结合,提高学生对数据的再认识,再分析,将列表的过程更优化。

教学重点:从不同的角度分析,掌握解题的策略与方法。

教学流程:

1、谈话:“同学们,自我介绍一下,我姓周,你们可以称呼我?今天需要我们共同配合,在这里上一节数学课,为了表达谢意,我为你们带来了一些礼物,快来猜一猜,有多少?(5…)太少了?(50…)多了,(40…)少了(45…)差不多了,(46…)恭喜你,答对了,下课就由你发给同学们。

2、喜欢数学吗?数学不但可以开阔我们的视野,增长我们的知识,还可以锻炼我们的思维。在我国古代就有许多有趣的数学名题,你们了解吗?今天,。老师就向你们推荐一种有趣的问题------鸡兔同笼。

1出示问题:“鸡兔同笼,有5个头,14条腿,鸡兔各有几只?”

(1)你从中获取什么信息?……。

(2)请你们猜一猜将鸡、兔可能是几只?(……)。

(3)把你猜的过程给大家说一说。

(4)板书学生的过程。

鸡123。

兔432。

腿181614。

(4)评价:从尝试简单的开始,一个一个的试,最终找到了正确的答案,方法多么简单啊?如果我们再横竖加上几条线,就成了美观的表格。看来,列表来解决这类问题还确实简单,如果现在将鸡兔的数量增加,还能解决吗?(重点引入列表)。

2、出示:“鸡兔同笼,有20个头,54条腿,鸡兔各几只?”

(1)自己先想一想如何利用列表来解决?

(2)小组内交流一下自己的想法。

(3)独立完成列表。

(4)汇报想法和过程。

小组1:逐一列表------假设鸡有1只,兔子有19只,那么就有78条腿,(腿多了,说明什么?兔子多了,怎么办?)鸡有2只,兔子有18只,那么就有76条腿,一只一只地试,学生把试的结果列成表格。

通过表格引导学生观察:发现了什么?(每多一只鸡,少一只兔子,相应减少2条腿,)。

小组2:跳跃式列表------假设鸡有1只,兔子有19只,那么就有78条腿,要比54条腿多的多,因此,兔子的只数也可能多了很多,但是鸡的只数可以不用一只一只依次递增,而是从猜一只到猜5只(或者其它几只),当腿的条数在50到60之间,(提出问题:兔子可能是几只?到底是谁估计的更加接近呢?)。

引导发现:这样就减少举例的次数。并通过数据的调整来优化解题策略。

小组3:取中列表------假设鸡兔各有10只。

小组4:方程。

小组5;奥书班中学习过算术方法(让孩子清楚表达出自己的想法)。

1、观察三种列表的方法,比较异同?

2、谈一谈;你们有什么感受?

1、课后练习1、2、3(比较不同-----答案是否唯一)。

2、通过今天的学习,有什么收获?

鸡兔同笼教学设计一等奖篇十一

3、在解决问题的过程中培养学生逻辑推理能力。

尝试用假设法解决“鸡兔同笼”这类问题。

1、出示原题:

师:同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作。《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题,让我们一起去看看吧!

(电脑出示)今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

2、理解题意:

师:大家同意吗?

(电脑出示)笼子里有若干只鸡和兔,从上面数有35个头,从下面数有94只脚,鸡和兔各有多少只?(全班齐读)。

3、揭示课题:

师:这就是著名的‘鸡兔同笼’问题,也是这节课我们要研究的问题。

2、分析并理解题意:

(1)从上面数,有8个头就是说鸡和兔的头一共有8个。(也就是说鸡和兔一共有8只。)。

(2)从下面数,有26只脚就是说鸡脚和兔脚总数一共是26只脚。

(3)问题是什么?(鸡和兔各有多少只?)。

3、猜一猜:随学生猜想板书并验证。

4、介绍列表法:

师:刚才我们是随意猜的,其实我们还可以有顺序的猜。“(电脑出示空的表格)。

小结:这种按顺序列表的方法我们称之为列表法。这样我们也就用列表法解决了这个问题。

5、介绍假设法:

当数字较大时,列表法就太麻烦了,能不能有其他更简单的方法呢?请同学们仔细观察表格,从表格中你能发现什么?小组之间交流一下。

(1、)假设全是鸡:在鸡兔总只数不变的情况下,每增加一只兔减少一只鸡,脚的只数就会增加2只。同学们,想想看我们应该增加几只兔,脚的只数会变成26只脚。同学们这个过程你们能用算式表示出来吗?请同学们试着用算式表示看看。

小结:刚才通过列表法我们想到了两种算术方法。回头看看这两种方法的第一步,一个是假设全是鸡,一个假设全是兔。我们把这两种方法起个名字?板书(假设法)。

6、介绍孙子算经(抬脚法)。

课本做一做“龟鹤问题”

这节课你学到了什么?

鸡兔同笼教学设计一等奖篇十二

1、通过对日常生活中现象的观察和思考,发现一些特殊的规律。

2、从不同角度分析,掌握列表解题的策略与方法。

3、培养学生分析的能力,初步渗透假设的.数学思想。

从不同角度分析,掌握列表解题的策略与方法。

多媒体课件。

一、激趣导入。

二、开展活动,探究规律。

三、利用规律,实题操作。

四、练习。

五、课外延伸。

鸡兔同笼教学设计一等奖篇十三

生1:鸡一个头,两条腿。

生2:兔一个头,四条腿。

(学生游戏,体验鸡兔同笼)。

师:谁来说说你们刚才是怎样数出有多少只脚的?

生:用鸡数乘以2,用兔数乘以4。

板书:鸡数2+兔数4。

师:通过刚才的游戏你有什么发现?

生:当头数相同,而鸡和兔的只数不同,脚数就会发生变化。

师:如果头数和脚数都不变,鸡兔同笼,数头20个,数脚54只,你能猜出有多少只鸡和兔吗?现在请同学们大胆地猜测,并在小组内说一说。

(小组讨论)。

师;可以用什么办法把你们刚才猜测的过程记录下来。

生发言:可以用画图或制成统计表的方法。

师:今天我们主要来学习用统计表的方法解决鸡兔同笼的问题。

师:谁来说说,统计表中每栏要表示什么?

师:现在请同学们独立地把你们猜测的过程记录下来,然后在小组内交流不同的方法。

(小组活动)。

师:谁来说说你是怎样记录的?

反馈总结:同学们记录的方法大致可纳成三种情况;逐一列举法、跳跃列举法、取中列举法。谁能说说这三种方法各自的特点?(学生发言)。

生:我们可以采用取中列表法,再结合跳跃列表法进行调整。

师:如何调整?

生:当发现在尝试过程中所算出的腿数比已知的腿数多,那么腿多的小动物要减少,当尝试过程中所算出的腿数比已知的腿数少,腿多的小动物要增加。

板书:猜测列举调整。

师:刚才我们通过了猜测列举调整等过程,解决了鸡兔同笼的问题,你们学会了吗?

师:鸡兔同笼的问题很有意思吧。早在1500年前我国古代的《孙子算经》里这记载着这样问题,后来传到日本,演变成龟鹤算。古代人真值得我们骄傲,可是今天你们是老师的骄傲,你们想出这么多解决鸡兔同笼的问题的方法,甚至有的同学还会自己设计问题,实在是了不起,希望同学们要把这种善于发现问题的精神发扬下去,将来成为一个了不起的人。

对于我班多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。本人本想以游戏为开端想去激发学生的学习兴趣,但由于本班学生学习基础差,参与意识不强,因此本人对本堂课不是很满意。

我认为我做的比较成功的地方是,在这节课当中我主要借助教材上的列表法,再让学生进行大胆的尝试与猜测,去弄懂鸡兔同笼问题的基本解题思路。师生共同经历了和得出三种不同的列表方法:逐一列表法、、跳跃式列表法、取中列表法。

1、在创设完情景引导学生用什么方法解这个问题时,学生的参与意思被动,是我没有预想到的。如果把前一部分改成让学生动手画图,可能效果会更好。情景创设上有漏洞,需进一步完善。

2、我在假设之后怎么验证结果是否正确分析得较细,但对怎么假设觉得没有引导好,过程中出现了学生只假设了鸡的只数,然后根据腿的数量去推算出兔的只数,误解了题意。

3、在总结规律是我如果能让学生自己多动嘴说一说,也许课堂效果会更好。

4、由于时间练习量不多,最后一个练习题应有多种结果,也没有一一罗列。今后教学中要紧凑课堂结构,要少讲,留更多的时间给学生于练习。

鸡兔同笼教学设计一等奖篇十四

今天我们一起来研究数学上非常有名同时也非常有趣的数学问题鸡兔同笼问题。(板书课题)。

首先我们来看这节课我们的学习目标。

2、出示学习目标。

这是一道典型的鸡兔同笼问题。:要求鸡和兔各有几只,咱们不妨先来猜一猜,好吗?(学生猜教师板书)。

这几个答案到底有没有正确答案呢?谁有办法验证一下?

咱们班的同学就是聪明,就这么随便一猜就给猜出来了。给这个方法起个名字我们叫它什么好——猜测法(板书)在数学上解决鸡兔同笼这类问题还常用到列表法、假设法、列方程等方法。(边说边板书)。

下面我想请大家通过自学教材来学习这些方法,不知道大家有没有信心?下面请参照大屏幕上出示的自学指导开始自学比赛。

3、出示自学指导(课件出示)。

4、尝试应用。

自学时间到请看检测题(分三组用三种不同方法解决问题)。

1、同组对比纠错。

2、讨论提升。

(1)首先我们先来看列表法,请板演同学说思路,有不同思路可以补充。问:有比他列的数据少就找到答案的吗?是怎么想的?看老师的列法?有什么发现?(重点讨论可以从中间数据开始列)。

(2)请用假设法解题的同学说思路,说出两种假设方法。不知道大家听明白了没有?从大家的眼神里我看到有些疑惑,这样我们在一起来整理整理思路。

学生说完老师转述结合课件出示图例分析两种假设方案,看两种假设方案下的到答案的式子分析每个数表示的不同意义从而总结出用总腿数的差除以单个差就得到其中一个的只数,得到的具体是那个要看假设与所得的规律。

(3)请用方程法同学说思路。教师结合学生出示课件。重点说依据(等量关系)以及设兔为未知数列方程在解方程时比较方便的原因。

1、巩固练习。

同学们用三种不同的方法都能把问题解决了,看来大家都非常聪明。这个难题是我国民间广为流传的古代名题。在大约1500年前,我国有一本数学名著《孙子算经》,书中记载了这样一道题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”

这道题换用今天的话来说就是(出示)“有若干鸡和兔,它们共有35个头,94条腿。鸡和兔各有几只?”:以前就是用这道题来测小孩子是否聪明,现在我们就用刚才学到的方法来解决这道题。

(1)学生解答后汇报(实物投影)。

问:多少人做对了?看来我们班上的孩子都非常聪明。有没有人用列表法解决这个问题的?为什么?引导学生发现列表法的局限性。

有多少同学用“假设全是鸡”的方法?为什么喜欢这种方法呢?(计算简便)。

有多少同学用“假设全是鸡”的方法?为什么喜欢这种方法呢?(计算简便)。

老师发现有几位同学还没有完成,你们是用什么方法?(图示)老师相信如果今天的时间足够的话,你们也一定能解决这道题。

2、今天我们喜欢用这种方法,在古时候古人也想了许多巧妙的方法。想不想了解一下,请看大屏幕(课件出示)古人提出了大胆的设想,他假设每只鸡都抬起一条腿做“金鸡独立”,每只兔抬起两条腿做“玉兔拜月”。现在的总腿数就变成了原来的一半,这个思路非常新颖独特,我们把它叫做“抬腿法”。

这个方法被美国数学家波利亚想象成了更为美妙的动作,他假设看到:笼中的鸡和兔都在作一种古怪的动作,每一只鸡都用一条腿站着,而每只兔子都用两条后腿站着跳舞。这个不寻常的情况下,也只用了半数的腿,这种方法被称为“玻利亚跳舞法”“砍足法”和“玻利亚跳。舞法”解题思路是一样,他们都把鸡和兔的总腿数减半,使计算更加简便。这些都是古今中外数学家们的奇思妙想,为我们今后解决数学问题提供了很好的策略。感兴趣的同学也可以在课后对这个方法进行研究。

2、拓展练习。

3、大小钢珠问题问:你能找到这道题与“鸡兔同笼”问题相似的地方吗?

(在刚才的练习中选择任意二题完成)。

鸡兔同笼教学设计一等奖篇十五

教学目标:

1、了解鸡兔同笼问题,掌握用列表法、假设法的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。

2、让学生在自主探索、尝试、合作学习的过程中,经历用不同方法解决鸡兔同笼问题的过程,使学生体会用方程解鸡兔同笼问题的一般性。

3、了解我国古人解鸡兔同笼问题的方法,感受其趣味性。

教学重点:

尝试用不同的方法解决鸡兔同笼问题,在尝试中培养学生的思维能力。

教学难点:

在解决问题的过程中,培养学生的逻辑思维能力。

教法:分析、引导。

学法:自主探究。

课前准备:多媒体。

教学过程:

一、定向导学:2分钟。

生:……(课件演示)。

师:这就是有趣的“鸡兔同笼”问题。(板书课题)今天我们就一起研究这一问题。

2、学习目标:

掌握用列表法、假设法或列方程的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。

二、自主探究:8分钟。

内容:课本p104例1的(1)。

时间:5分钟。

方法:边看书边完成下面要求:

1、“鸡兔同笼”这四个字是什么意思?

2、书上用了()种方法来解决这个问题。

3、我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些信息?

生理解:

(1)鸡和兔共8只;

(2)鸡和兔共有26只脚;

(3)鸡有2只脚;

(4)兔有4只脚;

(5)兔比鸡多2只脚。(课件演示)。

师:那问题是什么?

生:鸡和兔各有多少只?

3、猜一猜:

师:请同学们猜一猜鸡和兔可能各有多少只?(学生猜测)还有其它的猜测吗?

4、介绍列表法:

师:你们猜出的结果鸡和兔的总只数都是8只,但是你们猜想的结果都正确吗?到底哪个是正确的呢?下面请同学们把你们的猜想整理到这张表格中,并进行调整,看看哪个结果才是共有26只脚。(学生活动)。

5、观察发现,列式计算。

三、合作交流:5分钟。

假设全是兔,怎样解决?试一试。

四、质疑探究:5分钟。

五、小结检测:20分钟。

1、小结方法:

同学们真了不起,刚才我们在解决鸡兔同笼的问题时,用到了多种方法:列表法,假设法。

2、检测:

a、问答:

(1)如果老师让你们解决《孙子算经》中的原题,你会选哪种方法解决呢?

为什么不选择列表法?难?为什么难?(要列举的情况很多)有没有好的办法?(有没有不用列举那么多就能找到答案呢)。

(2)如果一定要你用列表法解答你有什么办法?学生讨论。(教师引导列表折半调整。)。

(注:如果前面出现了折半列表,就把这个环节提前讲。)。

b、解决问题。

(1)有龟和鹤共40只,龟的腿和鹤的腿共112条,龟和鹤各有多少只?

作业:p106;1、2、3。

板书:

假设全是鸡,就有脚8×2=16(只)。

比实际少26—16=10(只)。

一只鸡比一只兔少4—2=2(只)。

兔子:10÷2=5(只)。

鸡:8—5=3(只)。

将本文的word文档下载到电脑,方便收藏和打印。

【本文地址:http://www.xuefen.com.cn/zuowen/11895974.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档