数学等差数列教案设计(实用14篇)

格式:DOC 上传日期:2023-11-14 05:29:28
数学等差数列教案设计(实用14篇)
时间:2023-11-14 05:29:28     小编:飞雪

教案包含了教师的整体教学思路和教学方法的选择。编写教案要注意灵活性,根据实际教学情况进行调整。以下教案范文的特点和亮点值得我们仔细研究和借鉴。

数学等差数列教案设计篇一

3.通过参与编题解题,激发学生学习的兴趣.

教学重点是通项公式的认识;教学难点是对公式的灵活运用.。

用具。

方法。

研探式.

一.复习提问。

等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.

二.主体设计。

通项公式反映了项与项数之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求).找学生试举一例如:“已知等差数列中,首项,公差,求.”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.

1.方程思想的运用。

(1)已知等差数列中,首项,公差,则-397是该数列的第______项.

(2)已知等差数列中,首项,则公差。

(3)已知等差数列中,公差,则首项。

这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.

2.基本量方法的使用。

(1)已知等差数列中,,求的值.

若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于和的二元方程组,所以这些等差数列是确定的,由和写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于和的二元方程组,以求得和,和称作基本量.

教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于和的二元方程,这是一个和的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).

类似的还有。

(4)已知等差数列中,求的值.

以上属于对数列的项进行定量的研究,有无定性的判断?引出。

4.研究项的符号。

这是为研究等差数列前项和的最值所做的准备工作.可配备的题目如。

(1)已知数列的通项公式为,问数列从第几项开始小于0?

(2)等差数列从第________项起以后每项均为负数.

三.小结。

1.用方程思想认识等差数列通项公式;

四.板书设计。

1.方程思想的运用。

2.基本量方法的使用。

4.研究项的符号。

数学等差数列教案设计篇二

教科书第71—72页的例1、“试一试”和“练一练”、练习十四的第1-3题。

1.教材让学生在直观的情境中想到转化,并应用图形的平移和旋转知识进行图形的等积,等周长的变形。

2.在解决实际问题过程中体会转化的含义和应用的手段,感受转化在解决这个问题时的价值。

3.进一步积累解决问题的经验,增强解决问题的"转化"意识,提高学好数学的信心。

感受“转化”策略的价值,会用“转化”的策略解决问题。

会用“转化”的策略解决问题。

;学生每人一张例1的格子图。

一、创设情境,感知策略。

1.谈话导入。

(分别演示蝴蝶平移的过程,第二幅图顺时针和逆时针分别旋转一次,第三幅图从左往右顺时针平移一周的过程)。

提问:(1)蝴蝶是按怎样的顺序变化而来的?

(2)花环两次变化又是怎样形成的?

(3)最后一幅又是怎样变化的呢?

学生回答,师依次板书:平移,旋转,顺时针,逆时针。

二、合作交流,探究策略。

1.出示例1。

提问:这两种平面图形,我们以前学过吗?(没有)你觉得它们象什么呢?(生发挥想象力回答,但要说明的是平面图形。)。

2.引导交流。

提问:你能从图上准确地数出它们的面积分别是多少吗?(不能)面积会相等吗?请同学们4人一小组讨论,并可以在刚发下的作业纸上涂涂画画,验证你的结论。

小组交流,教师巡视,并指导。

3.指导验证。

师:你们组是怎么想的?指名回答。你在观察这两幅图的时候有什么发现吗?

学生说想的过程,并投影出示学生的作业纸。

(生可能回答上半圆平移下来就是下半圆,他们的面积吻合;“花瓶”突出来的半圆就是瓶口凹下去的半圆,只要分别把他们旋转180度就可以了)。

教师及时评价并用演示刚才学生说的过程。

提问:这两幅图经过旋转和平移后都变成了什么图形?(生:长方形。)。

提问:变成长方形后它们的面积相等吗?为什么?(生:相等,长和宽一样,所以面积一样。)。

教师再次演示变化过程,提问:在两幅图变化的过程中,什么不变?(面积)都把它变成了谁的面积?(生:长方形。)。

小结:因为我们无法一下子看出这两个平面图形的大小,但分别把它们转化成一个长方形后,我们就能比较这两个图形的大小了。在解决问题的过程中,我们经常会用到这样的策略——转化。(板书:解决问题的策略——“转化”)。

三、应用策略,归纳方法。

1.谈话:刚才,我们运用转化的策略把不规则的图形变成规则图形来比较大小。在有关平面图形的计算中经常会用到“转化”的策略。请同学们试着来解决以下问题。

(1)练习十四第2题的左边两幅图。

学生独立思考后口答,教师相机演示。

(2)“练一练”右边的图形和练习十四第3题的第一幅图。

提问:你能用比较简便的方法快速地求出图形的周长吗?

学生先独立思考,然后和同桌交流。

个别学生介绍自己的方法,教师相机演示。

小结:在解决这些问题的过程中,我们都用到了怎样的策略?(转化)我们要把复杂的图形转化未为简单的图形,具体地说又是用到了以前学习的哪些知识呢?(平移和旋转)。

四、回顾知识,体验转化。

1.谈话:其实我们以前学过的知识中,很多都运用了转化的策略,哪位同学来说说看。

指名回答,生可能会说:1.推导三角形公式时,把三角形转化成平行四边形。2.推导梯形时把梯形转化成平行四边形。3.推导圆面积时,把圆面积转化成长方形。4.计算小数乘法时把小数乘法转化成整数乘法。5.计算分数除法时把分数除法转化成分数乘法等等。

在学生说的过程中请学生说说推导的过程,并相应演示推导过程。

小结:看来,“转化”的确是一种非常重要的解题策略,在刚才的交流和演示的过程中,你觉得这种策略有什么优点?(学生交流后教师相机板书:化复杂为简单,化未知为已知,化不规则为规则------)。

五、拓展运用,提升策略。

1.出示试一试:计算1/2+1/4+1/8+1/16。

提问:(1)这些分数分别表示什么意思?生根据分数的意义回答,并强调单位“1”相同。(2)相邻的分数是什么关系?(后一个是前一个的1/2)。

师:我们一起来画图表示看看。师根据题目依次画图。

师:这题我们又可以怎样转化呢?学生看图解答。

指名回答。1-1/16=15/16。

(如果学生回答不出,师提示:求阴影部分,空白部分又是多少呢?)。

小结:在解决这个分数加法的计算题时,我们借助图形来分析问题,把复杂的算式变成了简单的算式。这也是运用了“转化”的策略——数形结合。(板书)。

3、出示:比较大小:16/17和35/36。

你准备怎样比?先和同桌说一说,再组织交流。体会:异分母分数大小比较,一般要通分后比较大小,通分很麻烦,现在只要转化成比较1/17和1/36的大小就可以了。

2.谈话:在解决一些稍复杂的实际问题时,有时我们也可以用“转化”的策略思考问题将复杂问题变得简单些。请同学们看这一题:

出示练习十四第1题。

(1)学生读题理解单场淘汰制的比赛规则并看懂图的意思。

(2)提问:什么是单场淘汰制?你能结合示意图来说说淘汰赛的过程吗?你会列式计算吗?(学生列式计算后进行解释。)。

(3)提问:如果不画图,有更简便的计算方法吗?(提示:不管第几轮,每场比赛都要淘汰几支球队?到决出冠军为止,一共要淘汰多少支球队?那么一共要比赛多少场?这样看来求比赛了多少场就转化成了什么问题?)。

(4)如果有64支球队,产生冠军一共要比赛多少场?

3.出示练习十四第2题的第3幅图。

学生先独立思考,然后指名学生交流自己的想法,教师及时评价并演示。

4.出示练习十四第3题的第2幅图。

要求图形中红色部分的周长是多少,你有什么好方法?

学生独立思考后解答(思路:转化成2个圆的周长),集体校对。

小结:谁来说说我们是怎样运用“转化”的策略来解决这两个问题的?

六、课堂小结。

今天我们学习的解决问题的策略是什么?“转化”随时随地都在我们身边,你认为在什么时候采用“转化”的策略能较好地解决问题?生回答。

七、课堂作业:完成补充习题相关内容。

解决问题的策略——转化。

平移转化成体积相等的长方形。

旋转(顺时针,逆时针)不规则——规则。

s三角形——s平行四边形复杂——简单。

s梯形——s平行四边形未知——已知。

s圆——s长方形不熟悉——熟悉。

------。

小数乘法——整数乘法。

分数除法——分数乘法。

数学等差数列教案设计篇三

【知识与技能】能够复述等差数列的概念,能够学会等差数列的通项公式的推导过程及蕴含的数学思想。

【过程与方法】在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,提高知识、方法迁移能力;通过阶梯性练习,提高分析问题和解决问题的能力。

【情感态度与价值观】通过对等差数列的研究,具备主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

【教学重点】。

等差数列的概念、等差数列的通项公式的推导过程及应用。

【教学难点】。

环节一:导入新课。

教师ppt展示几道题目:

1.我们经常这样数数,从0开始,每隔5一个数,可以得到数列:0,5,15,20,252.小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92。

在澳大利亚悉尼举行的奥运会上,女子举重正式列为比赛项目,该项目共设置了7个级别,其中交情的4个级别体重组成数列(单位:kg):48,53,58,63。

教师提问学生这几组数有什么特点?学生回答从第二项开始,每一项与前一项的差都等于一个常数,教师引出等差数列。

环节二:探索新知。

学生阅读教材,同桌讨论,类比等比数列总结出等差数列的概念。

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。

问题1:等差数列的概念中,我们应该注意哪些细节呢?

环节三:课堂练习。

(1)1,2,4,6,8,10,12,……。

(2)0,1,2,3,4,5,6,……。

(3)3,3,3,3,3,3,3,……。

(4)-8,-6,-4,-2,0,2,4,……。

(5)3,0,-3,-6,-9,……。

环节四:小结作业。

关键字:从第二项开始它的每一项与前一项之差都等于同一常数。

作业:现实生活中还有哪些等差数列的实际应用呢?根据实际问题自己编写两道等差数列的题目并进行求解。

数学等差数列教案设计篇四

(二)根据1厘米和1米的实际长度,知道“1米=100厘米”.。

(三)通过同学的合作,能用米尺度量整米长度的物体,培养学生的动手操作能力.。

教学重点和难点。

重点:掌握1米的实际长度.。

难点:用米尺量较长物体的长度.。

教具和学具。

教具:1米的直尺、折尺、卷尺,4厘米、6厘米长的纸条.。

学具:1米的卷尺,1根较长的绳子.。

教学过程设计。

(一)复习准备。

1.提问。

(2)用刻度尺量物体的长度应注意什么?指名两名学生量下面纸条的长度.。

(二)学习新课。

1.认识米。

出示米尺,这是一把米尺,观察它的刻度都是以10厘米为单位.。

让学生观察自己带来的1米长的卷尺,和教师1米直尺的刻度是一样的.。

以小组为单位,量出1米,2米,……给大家看.。

2.厘米和米之间的关系。

同时板书:1米=100厘米。

3.用卷尺量较长的距离。

(三)巩固反馈。

1.两人互相量身高,_______米______厘米。

3.在()内填写合适的长度单位米或厘米.。

教室长6()黑板长2()。

小明身高124()课桌长50()。

课堂教学设计说明。

数学等差数列教案设计篇五

高中数学学习是中学阶段承前启后的关键时期,不少学生升入高中后,能否适应高中数学的学习,是摆在高中新生面前的一个亟待解决的问题,除了学习环境、教学内容和教学因素等外部因素外,同学们应该转变观念、提高认识和改进学法,本文就此问题谈点看法。

1、认识高中数学的特点。

高中数学是初中数学的提高和深化,初中数学在教材表达上采用形象通俗的语言,研究对象多是常量,侧重于定量计算和形象思维,而高中数学语言表达抽象.

2、要提高自我调控的“适教”能力。

一般来说,教师经过一段时间的教学实践后,因自身对教学过程的不同理解和知识结构、思维特点、个性倾向、能力品质、教学观念、职业经历等原因,在教学方式、方法、策略的采用上表现出一定的倾向性,形成自己独特的、鲜明的、一贯的教学风格或特点。作为一名学生,让老师去适应自己显然不现实,我们应该根据教的特点,从适应教的目的出发,立足于自身的实际,优化学习策略,调控自己的学习行为,使自己的学法逐步适应老师的教法,从而使自己学得好、学得快。

3、正确对待学习中遇到的新困难和新问题。

在开始学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,有一种“初生牛犊不怕虎”的精神,愈挫愈勇,千万不能让问题堆积,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题和解决问题的能力。

4、要将“以老师为中心”转变为“以自己为主体,老师为主导”的学习模式。

数学不是靠老师教会的,而是在老师引导下,靠自己主动思维活动去获取的,学习数学就是要积极主动地参与教学过程,并经常发现和提出问题,而不能依着老师的惯性运转,被动地接受所学知识和方法。

5、要养成良好的预习习惯,提高自学能力。

课前预习而“生疑”,“带疑”听课而“感疑”,通过老师的点拨、讲解而“悟疑”、“解疑”,从而提高课堂听课效果。

6、要养成良好的审题和解题习惯,提高阅读能力。

审题是解题的关键,数学题是由文字语言、符号语言和图形语言构成的,拿到目要“宁停三分”,“不抢一秒”,要在已有知识和解题经验基础上,译字逐句仔细审题,细心推敲,切忌题意不清,仓促上阵,审数学题有时须对题意逐句“翻译”,将隐含条件转化为明显条件;有时需联系题设与结论,前后呼应挖掘构建题设与目标的桥梁,寻找突破点,从而形成解题思路。

7、要养成良好的演算、验算习惯,提高运算能力。

学习数学离不开运算,初中老师往往一步一步在黑板上演算,因时间有限,运算量大,高中老师常把计算留给学生,这就要同学们多动脑,勤动手,不仅能笔算,而且也能口算和心算,对复杂运算,要有耐心,掌握算理,注重简便方法。解后要反思,提高分析问题的能力。解完题目之后,要不失时机地回顾:解题过程中是如何分析联想探索出解题途径的?使问题获得解决的关键是什么?在解决问题的过程中遇到了哪些困难?又是怎样克服的?这样,通过解题后的回顾与反思,就有利于发现解题的关键所在,并从中提炼出数学思想和方法,只有勤反思,才能“站得高山,看得远,驾驭全局”,才能提高自己分析问题的能力。

8、要善于交流,提高表达能力,养成纠错订正的习惯。

在数学学习过程中,对一些典型问题,同学们应善于合作,各抒己见,互相讨论,取人之长,补己之短,也可主动与老师交流,说出自己的见解和看法,在老师的点拨中,他的思想方法会对你产生潜移默化的影响。因此,只有不断交流,才能相互促进、共同发展,提高表达能力。如果固步自封,就会造成钻牛角尖,浪费不必要的时间。

9、要勤学善思,提高创新能力。

“学而不思则罔,思而不学则贻”。在学习数学的过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,进行独立思考,注重新旧知识的内在联系,把握概念的内涵和外延,做到一题多解,一题多变,不满足于现成的思路和结论,善于从多侧面、多方位思考问题,挖掘问题的实质,勇于发表自己的独特见解。因为只有思索才能生疑解疑,只有思索才能透彻明悟。一个人如果长期处于无问题状态,就说明他思考不够,学业也就提高不了。

10、要养成做笔记的习惯,提高理解力。

为了加深对内容的理解和掌握,老师补充内容和方法很多,如果不做笔记,一旦遗忘,无从复习巩固,何况在做笔记和整理过程中,自己参与教学活动,加强了学习主动性和学习兴趣,从而提高了自己的理解力,也养成归纳总结的习惯。

总之,要养成良好的学习习惯,勤奋的学习态度,科学的学习方法,充分发挥自身的主体作用,不仅学会,而且会学,只有这样,才能取得事半功倍之效。

数学等差数列教案设计篇六

1.使学生通过观察,初步理解简单的同分母分数加法的算理,并能正确计算.。

3.培养学生抽象概括与观察类推的能力.。

教学重点。

1.理解同分母分数加法的算理.。

2.会计算简单的同分母分数加法.。

教学难点。

理解同分母分数加法的算理.。

教学过程。

一、铺垫孕伏.。

复习旧知.。

(1)用分数表示图中涂色部分(投影)。

问:是几个?是几个?是几个?

(2)填空。

是4个是是个是个.。

(3)口算并说明计算理由.。

30+28056+6139+20。

二、探究新知.。

1.导入新授.。

这样的分数加法应该怎样计算呢?这节课我们就来学习简单的分数加法.。

(板书:简单的分数加法)。

2.教学例1.【演示课件简单的分数加、减法】。

(1)出示例1。

一张长方形纸,做纸花用去,做小旗用去,一共用去这张纸的`几分之几?

(2)分析数量关系,列出算式.。

教师板书:

教师提问:这道题应该怎样想呢?(演示动画分数加法例1)。

是2个,是1个,2个加上1个是3个,就是.因此。

(板书:)。

(3)计算并说出思考过程。

3.教学例2.【演示课件简单的分数加、减法】。

(1)(演示动画分数加法例2)。

提问:怎样列式?

(板书:)。

思考:得多少?你是怎么想的?

(2)教师出示图片,板书。

(3)再让学生说的思考过程.。

4.练习.。

(1)口答:

(2)计算并说思考过程.。

提问:1用分数怎样表示?(可表示为、、、)。

小结:可以根据我们的需要写成分子、分母相同的任意分数.。

三、随堂练习.。

1.填空。

(l)2个加上3个,是5个;就是。

(2)3个加上4个,是个,就是。

(3)2个加上7个是个,就是.。

2.判断正误,把不正确的改正过来.。

3.计算.。

4.一块皮子,做皮包用去这块皮子的,做皮鞋用去这块皮子的,一共用去这块皮子的几分之几?(列式计算,并说明理由.)。

四、课堂小结。

今天我们学习了同分母分数加法,你们发现了什么规律吗?

五、课后作业.。

数学等差数列教案设计篇七

“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。

三、1.理解倒数的意义,掌握求倒数的方法。

2.能熟练地写出一个数的倒数。

3.结合教学实际培养学生的抽象概括能力。

四、:理解倒数的意义,掌握求倒数的方法。

五、熟练写出一个数的倒数。

(一)、谈话。

1.交流。

师:我们的黑板是什么颜色?

生:黑色。

师:教室的墙面又是什么颜色?

生:黑色。

师:黑与白在语文上是什么关系?

生:黑是白的反义词。

生:白是黑的反义词。

师:能说黑是反义词或白是反义词吗?

生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。

师:那么,数学上有没有相互依存关系的现象呢?

生:约数和倍数。

师:你能举例说明约数和倍数的相互依存关系吗?

生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。

2.导入今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。

(二)、学习新知。

对数游戏。

1.学习倒数的意义。

我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4说一个数,同学们跟着根据3和4说一个数。

师:4是3的4/3,

生:3是4的3/4。

师:7是15的7/15;生:15是7的15/7。

提问;看我们做游戏的结果,你们有没有发现什么?

生1:第一个分数的分子就是第二个分数的分母,第一个分数的分母就是第二个分数的分子。

生2:两个分数的分子、分母相互调换了位置。

生2:两个分数的乘积是1。

提问:那么怎样的两个数才是互为倒数呢?指导看书。

思考:(1)什么是倒数?满足什么条件的两个数互为倒数?

(2)你能找出互为倒数的两个数吗。请举例。

评析:回答问题。

理解“互为”的意义。怎样的两个数互为倒数。

找朋友游戏(课前每位同学发一张数字卡片)。

练习。

(!)出示卡片(六位同学举着卡片依次站在黑板前)。

7/911/41/5086/599。

(2)规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队。

提问:下面的同学你们找到自己的朋友了吗?那么你们能找到自己的朋友吗?

3教学求一个数倒数的方法。

出示例题:找出下列各数的倒数。

2/37/41/591/7/80.4。

小组讨论指名板演。

提问:1.你是怎么找出2/3的倒数的?

生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3。

生2:因为互为倒数的两个数的分子与分母正好调换位置。2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2。

2.你是怎么找出7/4的倒数的?

……。

提问:我们怎样才能很快地找到一个数的.倒数?为什么?

4.练习请剩下的没有找到朋友的同学继续找倒数。

5.讨论:1的倒数是谁?0的倒数呢?

生:1的倒数是1。

师:能说明一下理由吗?

生1:因为1与1的乘积还是1。

生2:因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。

师:0的倒数呢?

生1:0的倒数是0。因为1的倒数是1,所以0的倒数是0。

生2:因为0与任何数相乘都得0,所以0的倒数是任何数。

生3:0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。

生4:0可以写成0/1,0/1的倒数是1/0。

生5:不对,1/0分母是0,没有意义,所以0是没有倒数的。

6.完善求一个数的倒数的方法。

三、巩固练习。

(一)填空。

1.因为5/3*3/5=1,所以()和()互为();

2.因为15*1/15=1,所以()和()互为();

3.4/7与()互为倒数;

4.()的倒数是6/11。

5.()的倒数是2。

6.1/8的倒数是()。

7.1/2/7的倒数是()。

8.0.3的倒数是()。

(二)判断。

1.得数是1的两个数互为倒数。()。

2.互为倒数的两个数乘积一定是1。()。

3.1的倒数是1,所以0的倒数是0。()。

4.分数的倒数都大于1。()。

(四)思考。

4/5*()=()*8。

四、总结:今天我们学习了什么知识?你有什么收获?还有什么问题吗?

五、布置作业。

简评:

一、自主学习中让学生勇于创新。

新课程标准指出:“学生是学习的主人。”“有效的数学学习活动不能单纯地依赖模仿与记忆。动手实践,自主探索,合作交流是学生学习数学的重要方式。”因此,教师在课堂上应相信学生、大胆放手,引导学生主动地进行自学、思考、讨论、合作交流等活动,发现规律,掌握知识,提高能力。让学生在讨论交流中力图创新,学习创新。本案里例中“你有没有发现什么?”“怎样求一个数的倒数”“1的倒数是几,0的倒数呢?”等处的交流促进了学生对知识的感悟与理解。特别是对“0的倒数呢?”一问的回答,学生各抒几见,有的用推理的方法解释0的倒数是谁;有的用旧知识来解决新问题;也有的用反证法来阐述理由。虽然有对也有错,但用不同的方式或不同的角度来思考问题,无疑体现了学生学习方法上的创新,进而实现知识上的统一。

二、在游戏活动中实现新知的推进。

游戏是小学生喜闻乐见的活动方式。游戏可以使学生的注意力更持久,积极性更高。可以让学生在轻松愉快的气氛中学到知识。这节课设计的两个游戏贯穿了新授内容的始终。第一个对数游戏让学生通过听一听,想一想,说一说来感受倒数的特征,即互为倒数的两个数分子与分母调换了位置。为后面学习“求一个数的倒数的方法“打下基础。第二个找朋友游戏,首先,让学生通过找朋友巩固了怎样的两个数互为倒数这一知识点;其次,在剩下的数中选取典型让学生通过讨论想办法找到朋友。并概括出求一个数的倒数的一般方法。这样使学生在不知不觉中接受新知;再次,在剩下的数中继续找朋友,起到了“做一做”的效果;最后,想办法找1和0的朋友,完善找一个数的倒数的方法。本节课上设计的游戏不仅在教学上实现了合理、自然的过度,而且让学生学到了知识,还使学生品尝到游戏带来的快乐。

数学等差数列教案设计篇八

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

一、片头。

(30秒以内)。

前面学习了数列的概念与简单表示法,今天我们来学习一种特殊的数列-等差数列。本节微课重点讲解等差数列的定义,并且能初步判断一个数列是否是等差数列。

30秒以内。

二、正文讲解(8分钟左右)。

第一部分内容:由三个问题,通过判断分析总结出等差数列的定义60秒。

第二部分内容:给出等差数列的定义及其数学表达式50秒。

三、结尾。

(30秒以内)授课完毕,谢谢聆听!30秒以内。

本节课通过生活中一系列的实例让学生观察,从而得出等差数列的概念,并在此基础上学会判断一个数列是否是等差数列,培养了学生观察、分析、归纳、推理的能力。充分体现了学生做数学的过程,使学生对等差数列有了从感性到理性的认识过程。

读书破万卷下笔如有神,以上就是为大家带来的4篇《高中数学数列教案:等差数列》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在。

数学等差数列教案设计篇九

1.使学生进一步理解乘数是两位数的连续进位乘法的算理,掌握两位数的进位乘法的计算方法。

2.培养学生的分析推理能力。

理解乘数是两位数的连续进位乘法的`算理。

掌握两位数的进位乘法的计算方法。

一、自主探索,领悟知识。

1.创设情景,提出问题。

一个牌子写着“门票每人48元”,有7名同学进入博物馆参观展览。

(1)学生根据以上情景提出数学问题。

2.改变情景,引出新课。

改变条件:一共进72人。学生根据新情景提出问题。

(1)教师根据学生提出的问题有选择性地解答并板书:48×72。

(2)小组研究计算方法。

(3)小组汇报。

(4)教师根据情况,重点指出以下两个方面:

计算方法与前面的相同,相同的数位要对齐。不同的是48×72需要连续进位,要特别注意。

(5)练习:683745。

×34×82×46。

2.学习例4。

出示例题。

(1)让学生读题理解题意,再口头列出算式。

(2)让学生独立试做。

(3)请一名学生展示计算过程,并说一说算理。

(4)其他学生补充完整,必要时教师给予指导。

(5)练习215309。

×32×25。

二、巩固反馈,深化知识。

1.第11页的做一做。

2.判断。

(1)57(2)306(3)193(4)403。

×35×35×36×35。

25515301158215。

17112043791612。

196513570494816335。

板书:用两位数乘(连续进位)。

48×72=3456114×59=6726(分)。

48114。

×72×59。

961026。

336570。

34566726。

答:要用6726分。

数学等差数列教案设计篇十

1.进一步认识图形的轴对称,探索形成轴对称的本质特征。

2.在方格纸上画出一个图形的轴对称图形,初步学会运用对称的方法在方格纸上设计图案。

3.在欣赏图形变换所创造出的美过程中,感受对称在生活中的应用,体会数学的价值。

教学重难点。

[教学重点]探索形成轴对称图形的特征及画轴对称图形的方法。[教学难点]在作图中探索轴对称的本质特征。

教学过程。

一、创设情境,激发兴趣。

1、欣赏轴对称图形。

在我们生活中,有这样一些美丽的图形,你知道它们是什么吗?(播放轴对称图形)。

学生观察欣赏。

2、你们知道它的对称轴在哪里吗?你还见过哪些轴对称图形?

(1).轴对称图形的意义:。

(2).这类图形有什么共同的特征?

3、小结:

(1)如果一个图形沿着一条线对折,两侧的图形能够完全重合,这样的图形就是轴对称图形。

(2)折痕所在的直线就是轴对称图形的对称轴。

下面哪些图形是轴对称图形。

4、激发兴趣,引出课题。

看看说说,下面哪些图形是轴对称图形。

哪大家想不想把这么美的图形画下来呢?这节课我们一起来研究学习“轴对称”。

5、(板书揭题:轴对称)。

指出下列轴对称图形的对称轴,每个轴对称图形的对称轴有几条?

二、自主探究,掌握新知。

【设计意图:激发学生兴趣,引导学生的自主学习。】。

2.数一数?

把图形标上几个点,它们和对称轴有没有什么关系?你们看一看有什么发现?(课件出示a,a’、b,b’、c,c’)。

先在小组内和同桌说一说。

汇报交流:a、点a和a’到对称轴的距离都是2小格,点b和b’到对称轴的距离都是3小格,点c和点c’到对称轴的距离都是5小格。b、点a和点a’连起来和对称轴是垂直关系,点b和点b’连起来点c和点c’连起来都和对称轴是垂直关系。

小结:a、点a、b、c在数学上叫它原点,点a’、b’、c’叫它对应点。b、原点和对应点到对称轴的距离都相等,它们的连线和对称轴成垂直关系。

3.画一画。

拿出方格纸,动手画一画。

小结方法:首先,要先标好原点,再找出原点的对应点。再画出连线。

4.剪一剪动手剪一剪课本p4的做一做,小组同学合作,先猜一猜,再剪一剪,看谁剪得又快又好。

【设计意图:通过操作让学和加深体会,进一步掌握轴对称图形的知识。】。

1、你生活周围有哪些物体的面是轴对称图形?

(长方形、正方形、等边三角形、等腰三角形、等腰梯形、圆形、平行四边形等)平面图形让学生辨认哪些是轴对称图形,并找出对称轴。着重让学生辨析平行四边形,并画图说明理由。

【设计意图:加深理解轴对称的平面图形,体会轴对称图形的本质特征。】。

2、你会画出下列轴对称图形的对称轴吗?

拿出方格纸,根据今天的学习内容,设计一个美丽的图案。

把自己的作品展示给大家看,并说一说你是如何设计?(把学生的作品贴在黑板上)。

3、判断:下面的数字哪些是轴对称图形?它们分别有几条对称轴?

4、判断:下面的字母哪些是轴对称图形?它们分别有几条对称轴?

6、开心测试:

7.拓展题。

(1)、推理:根据自己发现的规律,画出下一个图形的形状?

【设计意图:应用轴对称的知识,创造、体会数学的美】。

四、总结提高,延伸感受。

五、作业设计。

用轴对称知识设计一幅题为“美丽的房子”的作品。

板书设计:轴对称。

数学等差数列教案设计篇十一

在三年级上册中,教材专门安排了一个单元让学生直观认识四边形,其中也初步认识了平行四边形,学生已经能够从具体的实物或图形中识别出平行四边形通过活动知道了平行四边形两组对变相等这一特征。而梯形是第一次出现。本节课的重点是引导学生通过观察、操作活动发现平行四边形和梯形的特征,从而抽象概括出它们各自的定义,分析四边形内在的关系。

我设计这节课的过程中,我力图体现以下理念:

一、关注知识形成的过程,关注学生的探究能力。

用发展的眼光来设计学习活动,让学生在探究中亲历知识形成的过程,远比让学生直接但却被动地获取现成知识结论要更加具有深远的意义和影响,学生的观察、猜想、探索和创新等其他各方面能力都能得到有效地开发和锻炼。“纸上得来终觉浅。”以听、记忆背诵接受而来的知识,理解较肤浅也易遗忘。而在体验中自身感悟的东西理解深刻、印象久远。创新能力、实践能力是不可能靠讲授、听而得来的,“能力”要在有效的活动中、探究中、应用中、实践中锻炼而成。

对平行四边形的特征研究,我本着让学生亲历知识的形成过程的方法,先让学生看课本上的主题图,对平行四边形的特征有一个初步的感知,然后让学生以四人小组为单位有序探究,自己量一量、比一比、想一想,从而得出平行四边形的特征。学生在汇报和补充的过程中,逐步把知识点完善起来,得到了有效地学习。

考虑到梯形的特征比较简单,而且把梯形与平行四边形放在一起探究比较重复累赘,就在判断中使学生产生矛盾,通过争论中得出梯形的特征和定义。

二、数学来源于生活、应用于生活。

新的课程标准更多地强调学生用数学的眼光从生活中捕捉数学问题,主动地运用数学知识分析生活现象,自主地解决生活中的实际问题。因此,在数学教学中应重视学生的生活体验,把数学教学与学生的生活体验相联系,把数学问题与生活情境相结合,让数学生活化,生活数学化。

课始,我选取了与学生生活最贴近的材料——校园,让学生在校园里找熟悉的四边形,让学生体会到数学的资源来源于生活。

课末,我让学生思考学习了平行四边形的用处,截取了一些实际生活中的视频图,让学生感受到数学与日常生活的紧密联系,许多生活中的现象都是可以用数学知识来解决的。

数学等差数列教案设计篇十二

1、使学生理解约分和最简分数的意义,并掌握约分的方法和能正确熟练地进行约分。

2、培养学生综合运用已有知识解决问题的能力。

3、渗透恒等变换思想。

4、培养学生良好的书写习惯。

约分的意义和方法。

训练学生很快看出分子、分母的公约数,并能准确判断约分的结果是否是最简分数。

操作法、合作学习、归纳法。

正方形纸、练习题。

一、创设情境。

4/86/1515/2030/4540/6084/96105/120。

提问:能被2、3、5整除的数的特征是什么?

2、写出28和42的公约数。

3、说出下面各组数的最大公约数。

45和1530和1228和42。

13和3936和2729和30。

4、下面哪几组数中的两个数是互质数?

3和812和1815和16。

13和2625和4021河2。

5、口答。

3/4=9/()=()/208/24=()/6=1/()。

你做这道题的依据是什么?

今天我们就根据分数的基本性质,把分数改变成一个与原分数大小相等的另一个分数,看谁最会善于开动脑子。

二、探究新知。

(一)教学例1。

2、请学生用涂色的方法进行验证。

观察这三幅图,什么发生了变化?什么又没有变?(等分的份数发生了变化,涂色部分的面积没有变)。

则说明这三个分数相等。那你知道18/24是怎样变成9/12的,又是怎样变成3/4的呢?请你们相互讨论,说说自己的想法。

3、学生汇报。

学生汇报时老师进行板书。

4、揭示约分的意义。

刚才把18/24化成9/12,又化成3/4,这个过程就叫约分。什么叫约分呢?(引导学生观察这三个分数,分子的大小怎样,它的分子、分母变的比原来怎么样?)。

把一个分数化成同它大小相等,但分子、分母都比较小的分数,叫做约分。

你读了这句话,认为什么词最重要?

约分的依据是什么呢?(分数的基本性质)。

3/4还能化简吗?为什么?什么叫最简分数?

像3/4这样的分数,分子和分母是互质数的分数,叫做最简分数。

5、即时训练。

112页顶上的做一做。

指出下面哪些分数是最简分数。

4/76/93/108/105/1215/40。

(二)、教学例2化简12/30。

1、你看见这个题目知道了什么?

2、怎样化简呢?请你们讨论。

3、汇报(约分时我们尽量用口算)。

(2)、一次约分法(用分数的分子、分母的最大公约数去除分子分母,一次就能得到最简分数)。

这两种方法,你喜欢哪一种?为什么?(做题时,如果能很快看出分子分母的最大公约数,就直接用他们的最大公约数去除分数的分子分母,这样比较简便;如果不能很快看出它们的最大公约数,就用分子分母的公约数1除外去除分子、分母,一般要得出最简分数为止)。

三、反馈练习。

1、112页下面的做一做(把下面的分数约分)。

4/69/125/1024/3012/1621/28。

2、练习二十四3题。

3、判断正误,并说明理由。

(1)36/48=36/48=3/8。

(2)54/72=54/72=7/9。

(3)把一个分数化成和它相等的最简分数,叫做约分。

(4)把一个分数化成大小和它相等,但分数的分子分母都比较小的分数叫做约分。

四、反思质疑。

今天我们学习了什么内容?你收获最大的是什么?

值得注意的又是什么呢?还有不懂的吗?

五、拓展训练。

1、写出分子是18的所有最简分数。

2、写出分母是12的所有最简分数。

六、作业:练习二十四的2题。

数学等差数列教案设计篇十三

教学重点是等差数列的前项和公式的推导和应用,难点是获得推导公式的思路.教学用具。

实物投影仪,多媒体软件,电脑.教学方法。

讲授法.教学过程一.新课引入。

问题(幻灯片):设等差数列的首项为,公差为,由学生讨论,研究高斯算法对一般等差数列求和的指导意义.思路一:运用基本量思想,将各项用和表示,得,有以下等式,问题是一共有多少个,似乎与的奇偶有关.这个思路似乎进行不下去了.思路二:

上面的等式其实就是,为回避个数问题,做一个改写,两。

于是得到了两个公式(投影片):和2公式记忆。

公式中含有四个量,运用方程的思想,知三求一.例1.求和:(1);

(2)(结果用表示)。

解题的关键是数清项数,小结数项数的方法.例2.等差数列中前多少项的和是9900?

本题实质是反用公式,解一个的一元二次函数,注意得到的项数必须是正整数.三.小结。

2.公式的应用中的数学思想.

数学等差数列教案设计篇十四

教科书第58页的“用数学”。

1.使学生会用学过的数学知识解决简单的实际问题。

2.培养学生用不同的方法解决同一个问题的能力。

3.初步感受数学在日常生活中的作用。

引导学生通过分析数量关系选择正确的计算方法解决问题。

教具学具准备。

课件,实物投影仪,展台,屏幕,练习用的图片。

教师:同学们,鹿老师组织了一个旅游团要到大森林里去游玩。你们想参加吗?

生:想。

师:坐上我们的小火车,准备出发了。(放音乐;火车开了。学生以小组为单位做律动)。

出示课件:美丽的大森林。

师:瞧,美丽的大森林到了,有这么多可爱的小动物,你们喜欢吗?

生:喜欢。

师:今天小动物们要请喜欢数学的同学去他们中间玩,你们谁想去呀?

生:……(争先恐后地说想去)。

生:行。

师:我们先去看看草坪上的小动物都有什么问题呀?(课件拉近第一幅画面,并演示)。

师:你都看到了什么?

生:我看到了草地上原来有9只小鹿在吃草,后来走了3只。(课件出示:大括号和9只)。

师:那你能帮助小鹿提出一个数学问题吗?

生:草地上还剩几只鹿?(课件出示:?只)。

师:你的问题提得真好。谁能用学过的数学知识解决这个问题呢?先请你们集中五人的力量分小组研究一下。研究完以后,把算式写在小黑板上。然后进行汇报和订正。

师:哪个小组愿意来展示一下你们小组研究的结果?

生:我们组列的算式是:9—3=6,草地上还剩6只鹿。

师:谁有问题要问他们?(引导学生提问题)。

生提问:请问你们为什么要用减法计算?

生解答:因为原来草地上有9只小鹿,跑了3只,求草地上还有几只就是求还剩几只。这3只小鹿是从9只里面跑掉的,所以用从9只里面去掉3只,就是剩下的6只。

生提问:9-3为什么等于6?

生解答:因为9能分成3和6。或因为3+6等于9,所以9-3=6。

师小结:同学们真是太聪明了,这么快就帮助小鹿解决了问题,你们数学学得真好。老师真是太高兴了。

过渡:看着这幅画面,你还能发现什么数学问题?(引导学生看草地上的蘑菇)。

学生可能出现三种情况:

1.生提问:草地上一共有8个蘑菇,左边有6个,右边有几个?

师:谁能解决这个问题?

生解答:8-6=2。

生提问:你为什么用减法?

生解答:因为知道了一共有8个蘑菇,左边有6个蘑菇,从8个里面去掉左边的6个就是右边的2个,所以用减法。

师引导:还有发现不同问题的吗?

2.生提问:草地上一共有8个蘑菇,右边有2个,左边有几个?

师:谁能解决这个问题?

生解答:8-2=6。

生提问:你为什么用减法?

生解答:因为知道了一共有8个蘑菇,右边有2个蘑菇,从8个里面去掉右边的2个就是左边的6个,所以用减法。

师引导:还有发现不同问题的吗?

3.生提问:左边有6个蘑菇,右边有2个蘑菇,一共有几个蘑菇?

师:你发现的问题真好,同学们听清楚了吗?我们再请他说一遍,好吗?

(生说,课件依次出示:6只,大括号,?只)。

师:这个问题我们请同学们分小组来解决,好吗?

请一个小组来汇报。提要求:要说清楚你们小组采用的是哪种计算方法,为什么?怎样列的算式。

生汇报:我们小组采用的是加法,因为这个问题得求总数,我们只要把左边的6个和右边的2个合起来就行了,所以用加法。列的算式是:6+2=8。

(课件出示鸭子图。)。

师:你会解决这个问题吗?不告诉别人,自己把算式写在纸上。

学生独立完成,然后集体订正。

师小结:大家帮助小鸭子解决了问题,听它们在谢你们呢?(课件演示鸭子叫)。

课件演示声音:小鸭子的问题解决了,我们还有问题呢?

师:这是谁的声音呀?(课件出示猴子图)原来是小树林里的猴子们等急了,你们能解决猴子们的问题吗?自己完成。

学生写出算式,然后集体订正。

(一)做题小竞赛。

师过渡:同学们,你们还想不想继续帮助小动物们解决问题呀?

生:想。

学生独立做题。

集体订正。(指名直接说算式,集体判断,最后挑出一个题让学生说一说想法)。

(对全做对的同学进行奖励。)。

学生随意说。(教师相继进行热爱大自然,保护小动物的教育)。

让我们开启小火车回家吧。

(二)完成教科书第62页的第13、14题。

让学生独立完成,然后在小组里订正。最后集体订正。

(三)请学生想一想在日常生活中能用数学知识解决哪些实际问题。

学生随意说。

师:数学知识真重要呀,他能帮我们解决这么多实际问题,我们一定要学好它。

【本文地址:http://www.xuefen.com.cn/zuowen/11804381.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档