每个人都需要总结,以更好地认识自己、规划未来。在写总结时,不要忽视团队的贡献和合作,要适当表扬和感谢他人。阅读这些总结范文,我们可以对不同领域的总结有更深入的了解。
人教版数学可能性教学设计篇一
教学目标:
2、通过丰富的游戏活动和对生活中几种常见游戏(或现象)剖析与解释,使学生初步体会数学与生活的紧密联系。
教学重点:体验事件发生的等可能性以及游戏规则的公平性,会用分数表示事件发生的可能性。
教学难点:能按要求设计公平的游戏方案。
教学具准备:多媒体课件,硬币,实验记录表,骰子,六个面上分别写上数字1-6的长方体,透明塑料桶,乒乓球等。
教学过程。
一、故事导入。
师:同学们,喜欢听故事吗?在课前我们一起来回忆一个经典的成语故事--《守株待兔》,请同学们认真的观看,看完后回答老师所提出的问题。(出示故事视频)。
学生认真观看故事。
师:农夫天天在这里等着捡兔子,他可能会等来什么样的结果呢?(生发表自己的看法,教师预设学生可能会出现说“什么都等不到”或者是“可能会再捡到兔子”。)。
师:农夫能否等到兔子,这是一件不确定的事,生活中许多事情的发生是不确定的,发生的可能性有大有小,我们在生活中经常会遇到应用可能性来决定输赢或者先后顺序的情况,今天我们就来进一步研究不确定事情发生的可能性。(揭题:可能性)。
二、探究新知。
1、动手体验,获取数据。
师:同学们喜欢运动吗?(喜欢)看过足球赛吗?
(课件出示:例1情景图)。
师:足球场上的裁判员在干什么?(抛硬币)为什么抛硬币?(决定谁先开球)。
师:那么大家觉得用抛硬币的方法决定谁先开球,这样公平吗为什么。
(学生发表自己的看法,教师预设生1:公平,因为硬币可能是正面朝上,也可能是反面朝上,所以公平;生2:公平,因为硬币可能是正面朝上,也可能是反面朝上,它们各占一半,所以公平……)。
师:既然认为是公平的,那么大家想一想正面朝上的可能性是多少?(学生发表自己的看法,教师预设生1:1/2;生2:50%;生3:0.5。)。
师:你是怎样想的?
师:那掷出反面的可能性是多少?为什么?(板书:正面:1/2,反面:1/2。)。
师:大家想一想,如果我抛掷10次,正面大约可能出现多少次?(5次)。
师:为什么?(正面出现可能性是1/2。)。
师:同意他的说法吗?(同意)。
师:那么正面朝上的可能性和反面朝上的可能性都是1/2,就进一步说明了用抛硬币的方法决定谁先开球,是公平的。为了深入探讨这个问题,我们先来做个试验,(出示课件实验要求):
2、试验完成后思考:正面朝上的次数与总次数有什么关系?
记录表格:。
试验次数抛硬币次数正面朝上次数。
第一次10。
第二次10。
第三次10。
第四次10。
总计40。
师:大家试验做完了吗?请各小组汇报。
课件出示统计表根据学生的汇报教师填入数据。
2、分析数据,初步体验。
师:大家来观察一下这些数据,你有什么发现?(学生发表看法,教师预设生:有些小组正面朝上的次数是总次数的一半,有些小组少一点,有些小组多一点,但是全班加起来接近总次数的一半。)。
师:同学们观察的都很仔细有这么多的发现,我们会发现有些小组正面朝上的次数不一定是总次数的一半,有些小组少一点,有些小组多一点,但是全班加起来正面朝上的次数就比较接近总次数的1/2。
3、阅读材料,加深体会。
师:其实在历史上,为了验证这一点有很多数学家也做过这样的实验,我们来看一看他们实验的结果是怎么样的(出示统计数据)。
历史上一些著名数学家做抛硬币试验的数据。
试验者抛硬币次数正面朝上的次数。
德.摩根40922048。
蒲丰40402048。
费勒100004979。
皮尔逊240001。
罗曼若夫斯基8064039699。
师:随着抛掷次数的不断增加,正面朝上的次数会怎样?(正面朝上的次数会越来越接近总次数的1/2。)。
师:那么反面朝上的次数呢?(也一样,会越来越接近总次数的1/2。)。
三、应用拓展,体验可能性。
游戏活动一:三色转盘。
师:刚才同学们表现的非常好,接下来我们轻松一下,同学们喜欢做游戏吗?(出示飞行棋游戏)。
师:玩过这种游戏吗?怎么玩?(学生发表自己的看法生,教师预设生1:掷骰子,掷出几就走几步,先到终点为胜利;生2:补充,棋盘上有一些要求,要根据要求走;生3:最后如果超出终点要退回等。)。
师:好,我把全班分成3个队,左边为红队,中间的为蓝队,右边的为白队,。
师:哪个队愿意先走(所有学生都举手)既然大家都想先走,我们就用转转盘的方式决定好吗?(出示转转盘)。
(生:不公平)。
师:刚才不是说行吗?怎么又不行了?(生:红色的可能性大,而白色和蓝色的可能性小。)。
师:你能用今天所学的知识解释一下吗?(生:红队占4份中的两份,可能性是1/2,所以红队可能性大,蓝队和白队的可能性都是1/4,因为它们都占4份中的一份)。
师:那么大家认为公平吗?(不公平)。
师:看来的确是不公平,谁能想个办法,把它变的公平(生:把这个圆平均分成3份,每种颜色一份,就公平了。)(出示平均分成3份的转盘。)。
师:这样公平吗?(公平)。
师:为什么这样就公平了?(生:每个队现先走的可能性是1/3)师:是相等的,是不是?那么我们来决定一下哪队先走的次序,同学们喊停我就停。
(确定走的次序后准备玩游戏并出示骰子.)游戏活动二:掷骰子。
师:决定了要走的次序了,那这有两个骰子看清楚了吗?每队再上来一位代表选择骰子。(学生都选择正方体的骰子)师:如果是你会选哪个?为什么?(生:长方体1,2出现的可能性大,别的面出现的可能性小,正方体6个面出现的可能性都一样是1/6,所以选正方体。)。
师:大家想为什么这个正方体每个面出现的可能性是一样呢?(生:因为这个正方体每个面的面积都一样,所以每个面出现的可能性都一样。)。
师:都是多少?(1/6)。
师:正方体每个面出现的可能性都是1/6相等的,那么这个长方体的每个面出现的可能性也一样吗?(不一样)。
师:为什么?(因为面积大小是不一样的)。
师:好了,同学们和我们这3个队的队长都选择了用这个正方体骰子做游戏那我们就用它来做游戏!(师生共同做完游戏)。
师:为什么呢?(每个队赢的可能性都是1/3,所以有可能会赢)。
师:那就是说每个队输赢的可能性能不能确定啊?(不能)。
四、思维拓展。
师:刚才同学们已经能够应用今天所学的知识来解决游戏中的问题了,非常好.请大家再看老师这有一个不透明塑料桶,猜一猜里面有什么?(出示不透明塑料桶)。
师:我来告诉大家,里面是乒乓球,一种是黄色的,一种是白色的,如果我从里面随意摸出一个乒乓球,摸出白乒乓球的可能性是多少?(学生发表自己的看法,教师预设生1:摸出白乒乓球的可能性是1/2;生2:我认为不对,他们的个数不一定。)。
师:那么你们还能否确定摸出白乒乓球的可能性?(不能)。
师:那么还需要什么条件你想知道什么条件?(生:我想知道黄乒乓球有几个?白乒乓球有几个?)。
师:那么让我们来看看它们的数量。(出示1个白乒乓球,6个黄乒乓球)。
师:现在你认为摸到白乒乓球的可能性是多少?(生:摸到白乒乓球的可能性是1/7)。
师:为什么?那摸出黄乒乓球的可能性是多少?(生:摸到黄乒乓球的可能性是6/7)。
教师:那任取一个,一定能取到黄球吗?
师:那么要使摸到白乒乓球的可能性变成1/9,这应该怎么办?为什么?
师:那么想一想,只可能加两个黄乒乓球吗?(还可以加别的颜色的球)。
师:要使摸到白球的可能性是黄球的1/2,该这么办?
五、全课总结1、师:通过这节课的学习,老师发现同学们都非常善于思考。你学的快乐吗?都有哪些收获?这节课我们学习了一件不确定事件的可能性,可以用一个数来表示,例如抛掷硬币,正面或反面朝上的可能性都可以用1/2来表示,刚才我们投掷骰子,每个面出现的可能性都可以用1/6来表示,那么这些知识在数学上都叫做概率.概率知识在日常生活中有应用广泛,比如天气预报,降水概率,航天发射等等都应用了概率的知识,它是怎么发展来的呢?请同学们来看。
2、阅读概率小史(播发音乐)。
板书设计:。
可能性。
正面:1/2白球:1。
反面:1/2黄球:6。
可能性:1/7。
人教版数学可能性教学设计篇二
教学目标:
知识技能:通过猜球、摸球、装球等游戏活动使学生初步体验有些事件的发生是确定的,有些是不确定的。
能力目标:尝试用“可能”、“不可能”、“一定”等词语来描述事件发生的可能性,获得初步的概率思想,培养初步的判断和推理能力。
情感态度:培养学生学习数学的兴趣,形成良好的合作学习的态度。
活动准备:
全班分成6个小组,每组准备1号、2号袋(分里外2层)、一个小篮。
老师准备一个黑袋子、3个透明袋、得星榜、图片、转盘等。
活动过程:
一、猜球游戏。
谈话:小朋友们,今天这节课刘老师和大家一起来做游戏,好吗?我们还设立了得星榜,要比一比6个小组中,哪个小组得星最多,合人得最默契。先来玩第一个游戏。猜球在哪只手里。
学生有的猜左手,有的猜右手。
提问:一定在右手吗?(不一定)从游戏中,你们发现“猜球”时会出现什么情况?
小结:也就是说,在老师摊开手之前,你们只能是猜测,球可能会在右手,也可能会在左手,这就是我们生活中“可能性”。(板书课题)。
[析:着眼于学生的年龄特点,创设有悬念的“猜球”游戏,让学生初步感受事件发生的可能性,使他们对即将学习的内容产生浓厚的兴趣和强烈的求知欲望,自然地进入最佳学习状态。
二、摸球游戏。
1、用“一定”来描述摸球的.结果,体验事件发生的确定性。
指导学习摸球:先搅几下,摸一个,拿出来。放进去。搅一搅,再摸一个,拿出来……。
引导:为什么在这个口袋中,xxx摸到的都是红球呢?(生猜测)同意他的猜测吗?我们一起业验证一下吧!(请xxx把里袋拎出来)。
小结:对了,你们真聪明,一下就猜到了。袋子里装的都是红球,(出示图)那任意摸一个球,会怎样呢?(板书:一定是红球)。
2、用“不可能”来描述摸球的结果,体验事件发生的确定性。
谈话:你们也想来玩这个游戏吗?好,请组长拿出1号袋子。不过,在摸球之前先扣清楚摸球规则:由组长先摸,摸前手在口袋里搅几下,然后任意摸出一个,并告诉你们小组的同学摸到的是什么球,再把球放入袋中,依次传给其他组员摸,明白了吗?就让我们比哪组合作得最好?开始吧!
(让学生分组摸球,教师巡视指导)。
汇报摸球情况:每组派代表说一说,你们一组摸到了什么球呢?(黄球和绿球)。
提问:那你们能在这个袋子里摸到红球吗?为什么?
提问:请组长拿出里袋,看看是什么球?(黄球和绿球,随即出示图)。
提问:能摸到红球吗?为什么?(板书:不可能是红球)。
(请组长把黄球和绿球倒入小篮中,以供装球游戏中使用)。
3、用“可能”来描述摸球的结理想,体验事件发生的不确定性。
谈话:大家说得真棒!想不想继续摸球?请拿了2号口袋,试试你会摸出什么球呢?记住要按刚才的规则摸啊!
学生分组活动。
汇报摸球情况:你们摸到了什么颜色的球(黄球和红球)。
提问:猜一猜,老师在袋子里装了什么颜色的球请拎出里袋验证一下。
小结:袋子里装有黄球和红球,(出示图)你能摸到红球吗?那一定是红球吗?那会怎样呢?(板书:可能是红球,也可能是黄球)。
小结:通过摸球游戏,我们发现如果袋子里都是红球,任意摸一个,一定是红球。
如果袋子里有黄球和绿球,任意摸一个,不可能是红球。如果袋子里有红球和黄球,任意摸一个,可能是红球,也可能是黄球。
三、练习巩固。
1、练一练。
(2)(出示有2个绿球和3个红球的袋子)那从这个袋子里一定能摸出黄球吗?么?
(3)(出示装有5个黄球的袋子)这个袋子呢?为什么?
小结:让我们来看看现在各小组的得星情况,问:猜一猜哪组有可能夺得今天的最佳合作奖?那这一组一定会是今天的冠军吗?对!在比赛还没有结束前,我们每个小组都有可能获胜,大家可要继续努力啊!
2、转盘游戏。
提问:在转盘转动之前,先猜一猜它会停在哪里呢?请你用力转动转盘,让它自然地停下,看看最后的结果。
提问:通过这个转盘游戏你们发现了什么?
(发现指针可能指在蓝色区域,也可能指在黄色区域或红色区域。
3、装球游戏。
谈话:前面我们玩了摸球游戏,接下来我们要来装球,根据老师出示的要求,请先在小组内讨论,应该放什么球,不应该放什么球。讨论好了请组长把小篮里的球装在透明袋里,比一比哪个小组合作得又好又快!
安排3次装球活动,依次出示要求:
(1)任意摸一个球,一定是绿球。
(2)任意摸一个球,不可能是绿球。
(3)任意摸一个球,可能是绿球。
每次装球后,请组长把透明袋举起,展示本组装球情况,并说说为什么这样装球,老师相机引导、鼓励。
4、联系生活。
谈话:小朋友们,今天我们通过玩一玩、猜一猜、说一说,学会了用“一定”、“可能”、“不可能”来表述游戏中的各种情况,那在我们的生活中,同样有些事情是一定会发生,有些事情是不可能发生,也有些事情可能会发生。下面请小朋友们举例说说!
[评析:安排四个形式各样、有层次,有坡度的巩固练习,通过师生互动、生生互动的合作交流,构建平等自由的对话平台,使学生处于积极、活跃、自由的状态,能够得到始料未及的自我体验,产生思维火花的碰撞,使不同的学生得到不同的发展。
四、总结。
总评:
数学学习是一个动态的过程,《数学课程标准》在课程目标的阐述中使用了“经历(感受)、体验(体会)、探索”等刻画数学活动的动词。强调让学生经历知识的发生、发展,关注学生的学习过程,让学生体验数学。这在“可能性”一课中得到了充分体同。课堂上以学生亲身经历和体验过程为主线,设计了一系列的游戏活动,让他们在有趣的学习活动中,获得对知识的体验、感悟。
一、在活动中体验。
先从学生熟悉的、亲切的猜球游戏中自然引出具有数学意义的关系和特征,让他们兴致盎然地投入学习。然后让学生通过摸一摸(摸球)、猜一猜(袋中装有什么颜色的球)、拎一拎(验证)、练一练(说说摸球的结果)、转一转(转转盘)、装一装(按要求装球)、说一说(生活中有关可能性的事件)等实际操作活动,以此强化学生的自我体验,达到知情合一;让学生真切感受到有些事件的发生是确定的有些事件的发生是不确定的,获得对确定性和不确定性的直观感受;从而能够用语言来描述事件发生的三种情况:“一定”“可能”“不可能”。
二、在活动中思考。
赞科夫提倡:“教会学生思考,这对学生来说,是一生中最有价值的本钱。”在“可能性”的教学中;给予学生克分活动的同时,利用“最近发展区”的原则,设置一些“跳一跳、摘果子”的问题情境,引导学生在活动中思考。在学生进行摸球游戏时,让他们猜一猜:口袋里放有什么颜色的球?然后拎出里袋来验证,再让他们说一说:那任意摸一个球,会怎样呢?让学生经历“体验一猜想一验证一归纳”的过程,为学生提供自主探索、合作交流的的空间,养他们探究的能力以及科学的态度。
三、在活动中应用。
“数学从生活中来;到生活中去”。这个观点充分表明了理解知识、掌握知识的最终目的在于学以致用。而且,学以致用不止于结尾或课后,只要运用得当、合适,同样能收到意想不到的精彩效果。在“可能性”的教学伊始,教师就设立得星榜,看哪组合作得最默契,为新知的应用埋下伏笔。练一练后;教师小结各组得星情况;请学生猜一猜哪组有可能夺得最佳合作奖?这一组一定会是冠军吗?让学生主动尝试着从数学的角度运用所学的知识和方法,寻求解决身边数学问题的策略,而且把所学的知识灵活服务于课堂常规教育,顺势鼓舞每组的士气,树立学生的自信心和挑战欲。课尾时再次小结:今天的冠军是哪组?下次他们也一定是冠军吗?也是起到同样的效果。从而帮助学生更好地理解和运用可能性的知识解决问题,提高分析问题、解决问题的能力。
人教版数学可能性教学设计篇三
教学目标:
知识技能:通过猜球、摸球、装球等游戏活动使学生初步体验有些事件的发生是确定的,有些是不确定的。
能力目标:尝试用“可能”、“不可能”、“一定”等词语来描述事件发生的可能性,获得初步的概率思想,培养初步的判断和推理能力。
情感态度:培养学生学习数学的兴趣,形成良好的合作学习的态度。
活动准备:
全班分成6个小组,每组准备1号、2号袋(分里外2层)、一个小篮。
老师准备一个黑袋子、3个透明袋、得星榜、图片、转盘等。
活动过程:
一、猜球游戏。
谈话:小朋友们,今天这节课刘老师和大家一起来做游戏,好吗?我们还设立了得星榜,要比一比6个小组中,哪个小组得星最多,合人得最默契。先来玩第一个游戏。猜球在哪只手里。
学生有的猜左手,有的猜右手。
提问:一定在右手吗?(不一定)从游戏中,你们发现“猜球”时会出现什么情况?
小结:也就是说,在老师摊开手之前,你们只能是猜测,球可能会在右手,也可能会在左手,这就是我们生活中“可能性”。(板书课题)。
[析:着眼于学生的年龄特点,创设有悬念的“猜球”游戏,让学生初步感受事件发生的可能性,使他们对即将学习的内容产生浓厚的兴趣和强烈的求知欲望,自然地进入最佳学习状态。
二、摸球游戏。
1、用“一定”来描述摸球的结果,体验事件发生的确定性。
指导学习摸球:先搅几下,摸一个,拿出来。放进去。搅一搅,再摸一个,拿出来……。
引导:为什么在这个口袋中,xxx摸到的都是红球呢?(生猜测)同意他的猜测吗?我们一起业验证一下吧!(请xxx把里袋拎出来)。
小结:对了,你们真聪明,一下就猜到了。袋子里装的都是红球,(出示图)那任意摸一个球,会怎样呢?(板书:一定是红球)。
2、用“不可能”来描述摸球的结果,体验事件发生的确定性。
谈话:你们也想来玩这个游戏吗?好,请组长拿出1号袋子。不过,在摸球之前先扣清楚摸球规则:由组长先摸,摸前手在口袋里搅几下,然后任意摸出一个,并告诉你们小组的同学摸到的是什么球,再把球放入袋中,依次传给其他组员摸,明白了吗?就让我们比哪组合作得最好?开始吧!
(让学生分组摸球,教师巡视指导)。
汇报摸球情况:每组派代表说一说,你们一组摸到了什么球呢?(黄球和绿球)。
提问:那你们能在这个袋子里摸到红球吗?为什么?
提问:请组长拿出里袋,看看是什么球?(黄球和绿球,随即出示图)。
提问:能摸到红球吗?为什么?(板书:不可能是红球)。
(请组长把黄球和绿球倒入小篮中,以供装球游戏中使用)。
3、用“可能”来描述摸球的结理想,体验事件发生的不确定性。
谈话:大家说得真棒!想不想继续摸球?请拿了2号口袋,试试你会摸出什么球呢?记住要按刚才的规则摸啊!
学生分组活动。
汇报摸球情况:你们摸到了什么颜色的球(黄球和红球)。
提问:猜一猜,老师在袋子里装了什么颜色的球请拎出里袋验证一下。
小结:袋子里装有黄球和红球,(出示图)你能摸到红球吗?那一定是红球吗?那会怎样呢?(板书:可能是红球,也可能是黄球)。
小结:通过摸球游戏,我们发现如果袋子里都是红球,任意摸一个,一定是红球。
如果袋子里有黄球和绿球,任意摸一个,不可能是红球。如果袋子里有红球和黄球,任意摸一个,可能是红球,也可能是黄球。
三、练习巩固。
1、练一练。
(2)(出示有2个绿球和3个红球的袋子)那从这个袋子里一定能摸出黄球吗?么?
(3)(出示装有5个黄球的袋子)这个袋子呢?为什么?
小结:让我们来看看现在各小组的得星情况,问:猜一猜哪组有可能夺得今天的最佳合作奖?那这一组一定会是今天的冠军吗?对!在比赛还没有结束前,我们每个小组都有可能获胜,大家可要继续努力啊!
2、转盘游戏。
提问:在转盘转动之前,先猜一猜它会停在哪里呢?请你用力转动转盘,让它自然地停下,看看最后的结果。
提问:通过这个转盘游戏你们发现了什么?
(发现指针可能指在蓝色区域,也可能指在黄色区域或红色区域。
3、装球游戏。
谈话:前面我们玩了摸球游戏,接下来我们要来装球,根据老师出示的要求,请先在小组内讨论,应该放什么球,不应该放什么球。讨论好了请组长把小篮里的球装在透明袋里,比一比哪个小组合作得又好又快!
安排3次装球活动,依次出示要求:
(1)任意摸一个球,一定是绿球。
(2)任意摸一个球,不可能是绿球。
(3)任意摸一个球,可能是绿球。
每次装球后,请组长把透明袋举起,展示本组装球情况,并说说为什么这样装球,老师相机引导、鼓励。
4、联系生活。
谈话:小朋友们,今天我们通过玩一玩、猜一猜、说一说,学会了用“一定”、“可能”、“不可能”来表述游戏中的各种情况,那在我们的生活中,同样有些事情是一定会发生,有些事情是不可能发生,也有些事情可能会发生。下面请小朋友们举例说说!
人教版数学可能性教学设计篇四
单元教学目标:
1、通过具体的操作活动,直观感受到有些事件的发生是确定的,有些事件的发生时不确定的。
2、结合具体情境或生活中的某些现象,能够列出简单试验所有可能发生的结果。
3、通过实验操作、分析推理知道事件发生的可能性有大有小。
4、对一些简单事件的可能性进行描述,并和同伴交换想法。
5、结合具体情境,能对某些事件进行推理,知道其结果。
6、获得一些初步的数学实践活动经验,并在和同伴的合作与交流的过程中获得良好的情感体验。
单元教学重点难点:
1、重点:
(1)会借助操作活动,说出某一事件的发生是确定的还是不确定的。
(2)能够将某一简单试验所有可能发生的结果一一列举出来。
(3)能用“可能”“一定”“很少”“不可能”“偶尔”“经常”等词描述事件可能性的大小。
(4)结合具体情境,对某个问题进行推理。
2、难点:将简单试验中所有可能发生的结果一一列举出来。
课时安排:2课时。
摸球游戏。
教学目标::1、通过“猜想――实践――验证”,经历事件发生的可能性大小的探索过程,初步感受某些事件发生的可能性是不确定的,事件发生的可能性是有大有小的。
2、在活动交流中培养合作学习的意识和能力。
教学重点:通过“猜想――实践――验证”,经历事件发生的可能性大小的探索过程。
教学难点:初步感受某些事件发生的可能性是不确定的,事件发生的可能性是有大有小的。
教具准备:小黑板、布袋、一定数量的白球、黄球。
一、创设情境,提出问题:
1、建立学习小组,每个小组一个布袋、9个白球、1个黄球(白球、黄球的大小和轻重一样)。
二、探索研究,得出结论:
1、学生对老师提出的问题进行猜测,并把自己的想法告诉给组内的同学。
2、实践探索。
(1)以小组为单位开展摸球游戏,把每次摸得的结果记录再下表中,然后把球放回去再摸。
第几次12345678910。
颜色。
第几次11121314151617181920。
颜色。
(2)统计摸球的结果,看一看;摸到什么球的次数多?摸到什么球的次数少?
(3)各小组将摸球的结果进行交流,看一看是不是得到同样的结果。实际摸到的结果与原来的猜测是否吻合。初步感受到再日常生活中有些事件发生的可能性是不确定的,事件发生的可能性是有大有小的。
三、解释和应用:
1、下面三个地方的冬天下雪吗?请用“一定”“很少”“不可能”说一说。
海南。
哈尔滨。
武汉。
2、从下面的五个箱子里,分别摸出一个球,结果是哪个?连一连。
8白2红可能是白球。
一定是白球10红。
5白5红一定不是白球。
很可能是白球。
8白2红白球的可能性很小10白。
课后反思:
生活中的推理。
教学目标:
1、经历对生活中某些现象进行推理、判断的过程。
2、能对生活中的某些现象按一定的方法进行逻辑推理,判断其结果。
3、把自己推理的过程和结果与同伴进行交流。
人教版数学可能性教学设计篇五
教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师则是组织者、引导者与合作者。
动手实践、自主探索、合作交流是学生学习数学的重要方式。本节课根据学生的心理特点和教材实际,让学生在猜一猜、摸一摸、想一想、说一说等充满童趣的情景中玩数学、学数学,亲身体验知识的形成过程。
1.重视创设情境,让学生从现实生活中学习数学。
标准中指出,要充分利用学生的生活经验,设计生动有趣、直观形象的教学活动,激发学生的学习兴趣,让学生在生动具体的情境中理解和认识数学。
教学反思。
当学习的内容和学生的生活实际越接近,学生自觉接纳知识的程度就越高。通过情境的创设,不仅使学生对“一定”、“可能”和“不可能”有了初步感受,而且能领悟数学与现实生活的联系。
2.重视操作实践,让学生在数学活动中学习数学。
数学教学是数学活动的教学,因此在教学过程中应十分重视学生的实践活动和直接经验,充分让学生动手、动口、动脑,在活动中自己去探索数学知识与数学思想方法,在活动中体会成功的喜悦。
课堂上,先让学生预测摸出的球的颜色,并用“一定”、“不可能”“可能”来描述摸出的结果,然后让学生亲自摸一摸,体验事件发生的确定性和不确定性,并注重对不确定性和可能性的直观感受。给学生提供了比较充足的活动的空间、探索的空间和创造的空间,使每一个学生都动起来,去感悟、去体验、去认知。
3.关注学生情感与态度,帮助学生获得成功体验,树立学好数学的信心。
标准把情感与态度作为四大总体目标之一,是因为把数学课堂看成是素质教育的课堂,数学教学不仅仅是传授知识,培养能力,更重要的是使学生能积极参与数学学习活动,对数学充满好奇心和求知欲,要获得成功的体验,有克服困难的信心。
4.需加强:合作交流,引导学生自主探索学习。
标准中指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式。”好多教师在课堂上都比较注重学生的合作学习,但合作学习并不是简单地把学生分成几个小组,让学生围在一起坐就行。低年级学生自我管理能力差,还没有形成合作的意识和能力,往往出现分组学习时,学生的参与程度不均衡,学生合作的主动性还不够。
在安排学生进行合作学习时,要重视教给学生合作的策略,及时对合作的好的学生作出公正合理的评价。例如让学生找同伴说说事件发生的可能性,这是两个学生之间的交流;小组讨论可能摸出的是什么颜色的球,这是小组内学生间的交流。通过合作与交流,让学生加深了对所学知识的认知。
5.紧密联系生活。在课的最后,我让学生把今天所学的知识和我们的生活联系起来,想一想生活中哪些事是一定会发生的,哪些事是不可能发生的,而哪些事是可能发生,也可能不发生的,并且举出一些例子,用“一定”“可能”、“不可能”说一说。
人教版数学可能性教学设计篇六
教学目标:
知识与技能:
1、会运用有序搭配列举出事件发生的所有可能的结果。
2、会判断事件的可能性的大小,体验游戏规则的公平性。
过程与方法:经历事件可能性结果的探究分析过程,体验列举分析问题的学习方法。
情感态度与价值观:通过游戏的公平性,培养学生的公平、公正意识,促进学生正直人格的形成。
教学重难点:会判断事件发生的可能性的大小。
教学过程:
一、回顾旧知,引出新知。
1、出示单元主题图:回顾击鼓传花游戏中的公平性。
说明:要判断游戏是否公平,关键是看男女生获得表演节目的可能性是否相等。
2、导入新课,揭示课题。(板书课题)。
二、自主探究,获取新知。
1、出示图,提出问题:
(1)图中的小朋友在玩什么游戏呢?(跳房子)。
(2)他们用什么游戏来决定谁先跳?(玩石头、剪子、布)。
2、通过游戏方式理解游戏规则。
两名学生玩“剪子、石头、布”的游戏感受这种游戏的多种情形。
3、判断游戏是否公平:
(1)你认为用“石头、剪子、布”决定谁先跳公平吗?
(2)怎样判断这个游戏是否公平呢?
4、自主探究,验证规则公平性。
(1)小组讨论:一共有多少种可能的结果?
讨论之后,完成表格。
(2)汇报交流。
你罗列出了几种可能的结果?(多生汇报)。
哪9种?
指名汇报。(根据学生填表情况汇报交流)。
预设:
a无序排列的所有可能的结果。
b有序排列出所有可能的结果。
结合课堂生成,灵活处理。
(3)说明:像这样有序思考,能很快列举出所有可能的结果,并能做到既不重复、不遗漏。
5、对比例2与例3,今天学习的可能性与例2有什么不同?
小结判断游戏公平性的方法和步骤。
三、应用、拓展。
1、教材第103页“做一做”
(1)引导学生读题,理解题意。
(2)学生独立解答,交流、订正。
预设:
1、列举法。
2、直觉判断。
2、拓展:练习二十二第1题。
四、小结。
通过今天的学习,你们有什么收获?
人教版数学可能性教学设计篇七
教学目标:
2、培养学生初步的判断和推理能力;
3、培养学生学习数学的兴趣,让学生建立良好的合作学习的态度;
教学重点:让学生初步体验事件发生的可能性;
教学难点:有“一定”、“可能”和“不可能”等词语来描述生活里的事情;
教具学具:布袋子两个,透明袋子10个,红球、白球若干个,篮子6个,大转盘。
教学过程:
一、新课导入。
师:小朋友,我们先做一个游戏,什么(球)?猜球在哪只手里?
师:(左手)有不同意见吗?(右手)你认为呢?
二、新授教学。
活动一:摸球比赛。
师:希望他摸到什么球?我们一起来“黄球、黄球……”
师:哎呀!可惜!
师:女生,做得真端正,你来!“黄球、黄球……”
师:我宣布第一次女生赢了。
师:第二次,想来吗?男生,加油哟!哎!
师:女生,“黄球、黄球……”女生又赢了。
师:还想比吗?
师:啊!男生的运气太不好了!
师:女,想再赢吗?
师:还是女生赢!
师:我宣布(女生获胜)。
师:男生,有什么想要说的?你认为呢?女生,有什么要说的?
师:你们都对袋子里的球都产生了质疑,想看看吗?(慢慢抽出袋子)。
师:这个袋子里的球怎样?(全这个字用得好,都是用得不错,全部也不错哟)。
师:当袋子里全是黄球时,我们任意摸一个,会怎样?你说?你来?你?
师:当袋子里全是黄球时,我们任意摸一个,一定是黄球。(板书:黄球)。
师:刚才男生从这个袋子,摸到黄球了吗?一次也没有,要看吗?(慢慢抽出袋子)。
师:谁会说?你来?你认为呢?
师:为什么是可能?这个袋子里有?也有?所以摸到的可能是?也可能是?
活动二:选择。
师:请选择。几号?为什么?同桌之间相互看一眼,选对的举手,有错的起立。
活动三:装球比赛。
师:第三个要求,开始!组长!怎么都是黄球?
活动四:说话小结。
电脑出示:1、太阳()从东方升起。
师:这件事是一定。太阳每天都从东方升起。
2、下个星期一()会下雨。
师:想一想,小组讨论一下!对吗?能填一定吗?
师:有些事情还没有发生,我们谁也不知道会怎么样?
3、在扬州春天过后()是冬天。
师:想一想,会填得举手?
师:为什么?能把它改成“在扬州春于过后一定是……”一起说。
4、将来,人类()会登上火星。
师:你也能用一定、可能和不可能说一说你身边的事情吗?先和同桌谈一谈。
三、巩固练习。
大转盘。
师:谁还想试一试。谁坐得最正呢?恭喜你,猜对了!
师:我们换一个转盘来转一转。指针会指向哪?猜一猜?肯定吗?
师:猜一猜?
师:咦!三次全停在红色,怎么会这样?
四、总结:
人教版数学可能性教学设计篇八
知识技能:通过猜球、摸球、装球等游戏活动使学生初步体验有些事件的发生是确定的,有些是不确定的。
能力目标:尝试用“可能”、“不可能”、“一定”等词语来描述事件发生的可能性,获得初步的概率思想,培养初步的判断和推理能力。
情感态度:培养学生学习数学的兴趣,形成良好的合作学习的态度。
全班分成6个小组,每组准备1号、2号袋(分里外2层)、一个小篮。
老师准备一个黑袋子、3个透明袋、得星榜、图片、转盘等。
一、猜球游戏。
谈话:小朋友们,今天这节课刘老师和大家一起来做游戏,好吗?我们还设立了得星榜,要比一比6个小组中,哪个小组得星最多,合人得最默契。先来玩第一个游戏。猜球在哪只手里。
学生有的猜左手,有的猜右手。
提问:一定在右手吗?(不一定)从游戏中,你们发现“猜球”时会出现什么情况?
小结:也就是说,在老师摊开手之前,你们只能是猜测,球可能会在右手,也可能会在左手,这就是我们生活中“可能性”。(板书课题)。
[析:着眼于学生的年龄特点,创设有悬念的“猜球”游戏,让学生初步感受事件发生的可能性,使他们对即将学习的内容产生浓厚的兴趣和强烈的求知欲望,自然地进入最佳学习状态。
二、摸球游戏。
1、用“一定”来描述摸球的结果,体验事件发生的确定性。
指导学习摸球:先搅几下,摸一个,拿出来。放进去。搅一搅,再摸一个,拿出来……。
引导:为什么在这个口袋中,xxx摸到的都是红球呢?(生猜测)同意他的猜测吗?我们一起业验证一下吧!(请xxx把里袋拎出来)。
小结:对了,你们真聪明,一下就猜到了。袋子里装的都是红球,(出示图)那任意摸一个球,会怎样呢?(板书:一定是红球)。
2、用“不可能”来描述摸球的结果,体验事件发生的确定性。
谈话:你们也想来玩这个游戏吗?好,请组长拿出1号袋子。不过,在摸球之前先扣清楚摸球规则:由组长先摸,摸前手在口袋里搅几下,然后任意摸出一个,并告诉你们小组的同学摸到的是什么球,再把球放入袋中,依次传给其他组员摸,明白了吗?就让我们比哪组合作得最好?开始吧!
(让学生分组摸球,教师巡视指导)。
汇报摸球情况:每组派代表说一说,你们一组摸到了什么球呢?(黄球和绿球)。
提问:那你们能在这个袋子里摸到红球吗?为什么?
提问:请组长拿出里袋,看看是什么球?(黄球和绿球,随即出示图)。
提问:能摸到红球吗?为什么?(板书:不可能是红球)。
(请组长把黄球和绿球倒入小篮中,以供装球游戏中使用)。
3、用“可能”来描述摸球的结理想,体验事件发生的不确定性。
谈话:大家说得真棒!想不想继续摸球?请拿了2号口袋,试试你会摸出什么球呢?记住要按刚才的规则摸啊!
学生分组活动。
汇报摸球情况:你们摸到了什么颜色的球(黄球和红球)。
提问:猜一猜,老师在袋子里装了什么颜色的球请拎出里袋验证一下。
小结:袋子里装有黄球和红球,(出示图)你能摸到红球吗?那一定是红球吗?那会怎样呢?(板书:可能是红球,也可能是黄球)。
小结:通过摸球游戏,我们发现如果袋子里都是红球,任意摸一个,一定是红球。
如果袋子里有黄球和绿球,任意摸一个,不可能是红球。如果袋子里有红球和黄球,任意摸一个,可能是红球,也可能是黄球。
三、练习巩固。
1、练一练。
(2)(出示有2个绿球和3个红球的袋子)那从这个袋子里一定能摸出黄球吗?么?
(3)(出示装有5个黄球的袋子)这个袋子呢?为什么?
小结:让我们来看看现在各小组的得星情况,问:猜一猜哪组有可能夺得今天的最佳合作奖?那这一组一定会是今天的冠军吗?对!在比赛还没有结束前,我们每个小组都有可能获胜,大家可要继续努力啊!
2、转盘游戏。
提问:在转盘转动之前,先猜一猜它会停在哪里呢?请你用力转动转盘,让它自然地停下,看看最后的结果。
提问:通过这个转盘游戏你们发现了什么?
(发现指针可能指在蓝色区域,也可能指在黄色区域或红色区域。
3、装球游戏。
谈话:前面我们玩了摸球游戏,接下来我们要来装球,根据老师出示的要求,请先在小组内讨论,应该放什么球,不应该放什么球。讨论好了请组长把小篮里的球装在透明袋里,比一比哪个小组合作得又好又快!
安排3次装球活动,依次出示要求:
(1)任意摸一个球,一定是绿球。
(2)任意摸一个球,不可能是绿球。
(3)任意摸一个球,可能是绿球。
每次装球后,请组长把透明袋举起,展示本组装球情况,并说说为什么这样装球,老师相机引导、鼓励。
4、联系生活。
谈话:小朋友们,今天我们通过玩一玩、猜一猜、说一说,学会了用“一定”、“可能”、“不可能”来表述游戏中的各种情况,那在我们的生活中,同样有些事情是一定会发生,有些事情是不可能发生,也有些事情可能会发生。下面请小朋友们举例说说!
[评析:安排四个形式各样、有层次,有坡度的巩固练习,通过师生互动、生生互动的合作交流,构建平等自由的对话平台,使学生处于积极、活跃、自由的状态,能够得到始料未及的自我体验,产生思维火花的碰撞,使不同的学生得到不同的发展。
四、总结。
人教版数学可能性教学设计篇九
1、通过摸球、摸珠、涂色等活动,让学生初步体验事件发生的确定性和不确定性,能用“一定”、“不可能”、“可能”来描述生活中一些事情发生的可能性。
2、经历猜想、验证等数学活动过程,培养学生初步的判断推理能力。
3、主动参与数学活动,在活动中获得积极的情感体验,并具有一定的求实态度和合作意识。
能用“一定”、“不可能”、“可能”来描述生活中一些事情发生的可能性。
培养学生初步的判断推理能力。
纸盒、布袋、白球、黄球、红球、白珠、红珠、蓝珠若干个。
一、故事引入,初步感受。
师:同学们,你们喜欢听故事吗?今天老师就给大家带来一个有趣的故事。
师:对,大家用了一个词:可能。就是可能摸到“生”,也可能摸到“死”,两种结果都有可能。
师:看来大家都替他担心了,两张纸条上全都写着“死”,任意摸一张,必定是“死”字,看来这个奴隶一定死,不可能生了。
师:大家说得太好了。因为他吞了一张纸条,剩下的是“死”,吞下的当然就是“生”了,他不可能死了。
小结:故事里的奴隶经历了“可能生,也可能死”,到“一定死”,最后是“不可能死”的过程,是他用智慧赢得了生命。
引入课题:生活中的.事情就像故事中的一样,有些我们不能肯定它的结果,有些就可以肯定它的结果,类似的例子还有很多。今天我们就来一起研究事情发生的可能性。(板书课题:可能性)。
人教版数学可能性教学设计篇十
三年级的学生,正处在抽象逻辑思维初步形成的阶段,他们的抽象思维需要在感性材料的支持下才能进行,直观演示或游戏切入较容易被他们所接受。以下是小编整理的三年级数学可能性教学设计,希望可以提供给大家进行参考和借鉴。
教学目标:
1、通过“猜测—实践—验证”,让学生经历事件发生的可能性大、小的探索过程,感受某些事件发生的可能性是不确定的,理解并掌握事件发生的可能性的大小规律。
2、能对一些事件发生的可能性大小进行描述,结合具体情境,能对某些事件进行推理,知道其结果可能性的大小。
3、获得一些初步为数学实践活动经验,并在和同伴的合作与交流的过程中培养学生的合作学习的意识和能力。
教学重点:
感受某些事件发生的可能性大、小,理解并掌握事件发生的可能性的大小规律。
教学难点:
通过动手操作,分析推理,得出事件发生的可能性的大小规律。
教学过程:
一、游戏激趣,谈话引入(飞镖)。
1、引出“可能”
今天老师要请大家一起玩个游戏,你们喜欢吗?(出示转盘)。
请两个学生上来比赛,猜猜谁会赢?
教师小结:刚才这两位同学在没有比赛之前,我们是不能确定他们的输赢情况,在这种不确定的情况下,可以用“可能”来描述。(板书:可能—不确定)。
现在谁能用可能一次来说说他们两个的输赢情况。(_可能会赢,_可能会输,从不同角度说说)。
2、引出“不可能”、一定。
比赛开始,规则每人投5次,等到第一位同学投完第5次,随机再让学生猜猜他们的输赢情况,并说说理由。从而引出“一定”、“不可能”
(板书:(一定--确定)。
(不可能--确定)。
3、小结:刚才我们所讲到的“可能、不可能、一定”它是判断一件事情会不会发生的三种情况。其实像这样的例子在我们生活中还有许多,有些事情它可能发生,有些事情它不可能发生,而有些事情则一定发生,下面的事情请你用“可能、不可能、一定”来说一说。
4、练习(课件出示)。
(1)小红说:“出生到现在我没有吃过一点东西。”
(2)太阳从西边出来。
(3)吃饭时,有人用左手拿筷子。
(4)世界上每天都有人出生。
5、教师说学生用手势进行判断。
(1)两个因数相乘,积是两位数。
(2)三位数除以两位数的商是两位数。
(3)一个人身高10米。
(4)角有一个顶点两条边。
二、操作活动探索规律。
1、出示活动要求。
(1)每人摸3次,摸的时候要按顺序,不能抢。
(2)摸之前将棋子摇一摇,任意摸出一个,小组长记录是什么颜色,然后把棋放回袋子再摸。
(3)小组长统计一共摸了几次,白棋几次,黑棋几次。
2、小组活动,教师巡视指导。
2、汇报摸球情况。
3、猜猜袋子里装有什么颜色的棋子,以及两种棋子数量的多少。
4、验证猜测结果。
5、师小结:通过再一次的实验证明,可能性的大小与什么有关?(数量)数量。
多的可能性就大,数量少可能性就少。那么两者的数量相等或差不多时,它们的。
可能性就差不多了。
三、生活应用。
我们掌握了可能性大小的规律,利用它可以解决生活中的很多问题。
1、现在我们再来玩玩这个飞镖游戏吧(请两位学生上来)。
(1)猜猜他们两个投在那个地方的可能性大一些。
(2)学生投了几次之后,猜猜谁赢的可能性大一些(随机察看情况)。
2、定分。
老师这儿有一个没有定分的飞镖,请你运用今天所学的知识,你觉得如何定分最合理?
3、摸奖。
瞧,元旦马上到了,一百商店举行摸奖活动,规定凡是摸到白球均可获得价值100元的精美礼品。你会选择那一只摸奖工具箱。(说说你的理由)。
一、教材分析。
《新课程标准》在小学第一学段安排的“概率”学习内容主要有:初步体会有些事件的发生是确定的,有些则是不确定的,对所有可能发生的结果进行简单的实验。本节课是北师大版三年级上册第八单元“可能性”的第一课时。学生在学习这部分内容之前,在二年级上册已经对某些事件发生的不确定性有所认识,本节课进一步学习事件发生的可能性有大有小,并能对这些可能性的大小用语言进行描述,是为下一学段学习概率知识打下基础。
事件发生可能性的大小是由事件的各种因素决定的。同样摸球,如果某种颜色的球数量多一些,那么摸出这一颜色的球的可能性就大一些。对于这些道理,既不能由教师直接告诉学生,也不能在活动中刻意去追求,一定要引导学生在自己的活动过程中悟出其中的道理。因此,本目标实施的重点是通过一系列活动,逐步让学生悟出事件发生的可能性的大小。
二、教学目标。
1?通过“猜测—实践—验证”的摸球游戏,让学生经历事件发生的可能性大小的探索过程,初步感受事件发生的可能性是不确定的,体会事件发生的可能性是有大有小的。
2?在活动交流中培养合作学习的意识和能力,获得良好的情感体验。
三、教学重难点。
感受事件发生的可能性有大有小。
四、教法学法。
三年级的学生,正处在抽象逻辑思维初步形成的阶段,他们的抽象思维需要在感性材料的支持下才能进行,直观演示或游戏切入较容易被他们所接受。基于以上理解,我在选择教学方法时,以学生发展为立足点,以自主探索为主线,以求异创新为宗旨,采用多媒体辅助教学,运用设疑激趣,实际操作等教学方法,引导学生动手操作、观察辨析、自主探究,让学生全面、全程地参与到每个教学环节中。
本堂课,我设计了四个教学环节,“猜想——验证——推理——运用”。首先,我将学生分成若干学习小组,亲自参与“猜想——验证——推理”这一完整的科学探究过程,感知可能性大小与哪些因素有关,加深对知识的理解,再通过运用这一环节将数学知识与实际生活相联系,真正做到学以致用。
1、创设情境,激趣猜测。
一开课,通过“师猜生摸”的摸球游戏,很容易就达到师生互动,从而调动学生的学习兴趣。在玩中教会学生用“一定”“不可能”“可能”来表述事件发生的确定性和不确定性。这一活动唤起了学生对旧知的记忆,为新知的学习做好铺垫。
2、组织活动,验证猜测。
学生进行了猜测,但猜测的对不对呢?实验是的老师,这个谜底还是让学生自己通过实验来揭晓。学生通过自己的实验,在亲历、体验的过程中感悟、体会到事情发生的可能性的大小。合作学习的形式既能发挥集体的智慧,又能展示个人多方面的才能。此环节通过学生的合作学习,使他们体会与他人交流的快乐,同时促进学生个人的完善与发展。学生才是真正的主人,这种共同研讨的学习模式,培养了学生的合作意识和科学研究态度。
3、实验分析,大胆推理。
4、综合运用,服务生活。
新课标指出数学学习要联系生活实际,学有用的数学。可能性问题在儿童的生活中接触还是比较多的。从转盘游戏到摇奖设计,让学生初步具有信息收集、整理、分析的能力,更让学生感受到数学知识就在自己的身边,使学生联系生活实际,体验可能性。这样的设计充分让学生自己做主,学生有了更宽广的思维空间,个性化思维将得到充分展现。
详细教案。
一、激趣引入。
师:同学们,你们喜欢做游戏吗?其实在游戏中有很大的学问也有很多的数学奥秘,今天我们就来玩摸球游戏,比一比谁最会玩,看看谁从中发现的数学知识多。
二、探究体验。
(一)活动一。
生:信!
生:不信!
师:有的同学已经有了自己的想法,有的不信,不如我们摸一摸!
(分别找几位学生摸,教师猜)。
师:我猜你摸的一定是白球。
这次摸的不可能是黄球。
(每次教师猜的都完全正确)。
生:老师,盒子里一定都是白球!
师:是这样吗?我们来看一看。(打开盒子,里面装的果然都是白球)你们真聪明!这么快就猜到了盒子中的秘密!
(二)活动二。
师:现在盒子中有9个白球,我再加一个黄球进去,摇一摇,摸时会出现什么情况?
生:很可能摸到白球。
生:可能摸到黄球,也可能摸到白球。
师:猜一猜,摸到哪种球的可能性更大一些呢?(可能性)。
生:白球。
师:这只是我们的猜测,实际摸的时候是这样吗?你们想不想验证自己的猜测?
生:想。
师:下面我们就以小组合作的形式来验证,在实验的时候要注意以下几点。
(课件出示“实验”的操作步骤)。
(1)小组内有序的轮流摸球,每人摸4次,要先猜后摸。
(2)每摸出一个球在记录纸上记录球的颜色,然后把球放回盒内再摸。
(3)小组交流:实验结果与你的猜测一致吗?为什么会出现这样的实验结果?
提出要求:安静、迅速,按步骤操作。
(各学习小组愉快地摸球、统计,讨论。教师巡视学生实验结果。)。
师:哪个小组汇报实验情况?小组汇报,老师填总的统计表。
师:仔细观察统计表,说说你发现了什么。
生1:摸出的白球次数多,黄球次数少。
生2:我猜对了,摸出白球次数多、黄球次数少。
生3:和我的猜测一致。因为盒子里白球多、黄球少,所以摸出的白球次数多、黄球次数少。
师:摸中白球的次数多,黄球的次数少说明了什么?(生回答)。
小组内交流汇报。
2.这是放的两种球,如果放3种球是不是也是这样呢?
如果在盒子中放8个白球、4个黄球和2个红球。摸出一个球,可能出现哪些结果?
生猜一猜说一说。
(小组内再次摸球填统计表,师巡视指导。)。
师:从统计数据看,哪种球摸到的可能性大,哪种球摸到的可能性小?为什么?
生:摸到白球的可能性很大。
生:摸到红球的可能性最小。
生:摸到白球的可能性,摸到红球的可能性最小,摸到黄球的可能性比白球小,比红球大。
生:摸到白球的可能性大,摸到红球的可能性小。
生:(补充)因为盒子中白球多,红球少,所以摸到白球的可能性大,摸到红球的可能性小。
(三)活动三。
师:谁玩过摇奖游戏现在我们也来玩一玩。(出示转盘)。
师:先来猜一猜指针指到哪种颜色的可能性大?
生:蓝色。
找几名学生转一转。
师:转到哪种颜色的可能性大,哪种颜色的可能性小?为什么?
生:转到蓝色的可能性大,转到黄色的可能性小。因为蓝色的范围大,黄色的范围小。(大家鼓掌赞扬)。
师:“如果让你用这个转盘设计摇奖活动,你想让获奖的人多一些,怎么设计?
同位互相说一说。
指名说想法。
三、巩固应用。
1、课件出示第85页第1题。从下面的4个箱子里,分别摸出一个球,结果是哪个?连一连。
学生独立思考,集体交流。
2、你会按要求装球吗?(课件出示要求)。
(1)任意摸一个,不可能是红球。
(2)任意摸一个,可能是红球。
(3)任意摸一个,一定是红球。
学生思考回答并说明理由。
3、用“可能性大、可能性小”说一说生活中的现象。
四、总结:通过本节课的学习有什么收获?
教学目标。
1.使学生初步体验事件发生的确定性和不确定性。
2.使学生学会列出简单试验所有可能发生的结果。
3.使学生知道事件发生的可能性大小是不同的,能对一些简单事件发生的可能性大小进行比较。三、活动过程:
以连环画的形式来展示活动的过程。
(一)示范游戏。
1.体验确定现象与不确定现象,列举所有可能的结果。(运用组合的知识,判断哪些和不可能出现,哪些和可能出现。)。
2.教师提出游戏规则,学生猜想结果。11个可能结果中教师选5个,学生选6个,学生错误地认为赢的可能性比教师大。
3.开始游戏。学生总是输,产生认知冲突,从而引起进一步探索的欲望。
(二)小组内游戏,探索结论。
通过小组内游戏的方式,进行实验,利用统计的方式呈现实验的结果,初步探索教师总能赢的原因。要引导学生在实验的结果中寻找统计学上的规律。
(三)理论验证。
通过组合的理论来验证实验的结果。可以用不同的方式来进行组合,让学生探讨每个“和”所包含的组合情况的多少与这个“和”出现的次数之间的关系。
四、师生共同小结本次活动。
本次活动通过让学生猜想、实验、验证等过程,让学生在问题情境中自主探索,解决问题,既发展了学生的动手实践能力,又充分调动了学生的学习兴趣。
人教版数学可能性教学设计篇十一
下面是本站小编整理的五年级实践活动课《可能性》教学反思,希望对大家有所帮助。
《可能性》是五年级上册数学里的统计与可能性的内容,是一节实践活动课。是我在本学期“金烛杯”活动的参赛课。现代教学理论认为:数学教学应从学习者的生活经验和已有知识的背景出发,提供给学生充分进行数学实践活动和交流的机会,使他们真正理解和掌握数学知识、思想方法,同时,获得广泛的数学活动经验。在数学教学中,必须重视学生的实践活动,充分发挥学生的主体性让学生亲身经历数学过程,感受数学的力量,促进数学的学习。本课依托新课程理念,注重为学生创设生活情景让学生从体验中学习,在体验中自我建构新知,并从中掌握数学方法。努力为学生创设条件,让学生主动参与到发现数学知识的过程中。在整个活动中,我的设想是希望课堂上自然地向学生们渗透了科学研究的基本过程,引导学生们要通过猜想——操作——论证去发现一些规律。这节课主要是学生通过动手实践、自主探索、合作交流等方式学习数学。根据学生的特点和教材实际,让学生在猜一猜、想一想、试一试、说一说等情景中玩数学、学数学,亲身体验知识的形成过程。
实际上整节课只设计了一个与学生生活相关的情景:学校在月底要召开秋季趣味运动会了,为了这次运动会的成功举办,老师们正在认真地设计各种游戏规则,而学生们正在积极地投入到各种比赛活动的练习中,运动会上有各种比赛项目实际上就是学生的学习内容或练习,这样设计层次清楚,思路清析,环节紧凑,便于教师组织教学,学生也感觉到今天的学习好像是在开“运动会”,在运动会中动脑学习一系列的数学内容,这样设计,联系了生活实际,让学生感受到数学就在自己的身边,体会到学习数学的价值,激发了学生学习数学的积极性。
在设计与讲课中,将教材中的“做一做”与练习中的3道题组合成了两道练习,置身于两个情境中“下跳棋”和“老鹰捉小鸡”,引起学生的认知冲突,通过对比,发现必须平均分转盘,必须采用正方体,保证每个面的大小是一样的,才能使游戏公平,这样做突破了教学难点。
在足球赛活动中创设了游戏情境,让学生主动参与做数学实验抛硬币,每组抛40次,观察抛硬币的结果,发现正面朝上或反面朝上的次数都很接近总次数的二分之一,通过“猜想”,如果继续抛下去会出现什么情况?引起学生的好奇心,观察历史上的科学家做的抛硬币的统计表,发现抛得次数越多,正面朝上的次数就越接近反面朝上的次数,让学生亲历了数学知识的形成过程,在与他人的合作过程中,增强互相帮助,团结协作的精神,同时感受到科学家持之以恒和不畏难的精神。在其他活动项目中,我也注重尽量让学生自己发现,让学生说,突出学生的主体地位。
本节课要让学生理解只有做到可能性相等,游戏才公平,在教学中,着重强调:这样公平吗?为什么?培养了学生公正、公平的意识,同时结合摸球游戏联系生活中的中奖,理解摸奖游戏对于参与者来说是不公平的,教育学生不要参加摸奖,促进学生正直人格的形成。
跳棋比赛中应设计成学生喜欢玩的电脑游戏“飞行棋”的形式,在课堂上真正让学生玩一次,由理论到实践,全班学生分为不同的三个队,由队代表来参与到活动,这样既培养了学生的集体主义精神,又能够使课堂气氛异常活跃,提高学生的学习数学的兴趣。
通过讲课发现自己在这次比赛中存在基本功不足的问题,激励性语言较少,课堂上心里紧张,不能灵活运用教学语言组织教学,缺乏一种亲切、自然、清析流畅的感觉;课中语言点拔不到位(抛硬币实验中出现正面朝上的次数与总次数之间有什么关系),导致在这一环节上用了较多时间引导点拔;还有是对学生出现错误状况后反应不够敏感(黑球个数是2,蓝球是20,黑球出现的可能性不是十分之一)。
人教版数学可能性教学设计篇十二
1.知识与技能:了解简单事件发生的可能性,能说出一个简单事件所有可能发生的结果,能根据条件用“一定”“可能”“不可能”等定性描述一些简单事件发生的可能性。
2.过程与方法:经历摸球、摸牌等活动及其分析过程,感受简单的随机现象,理解可能性和可能性大小的含义;感受确定事件和不确定事件发生的原因。
3.情感态度与价值观:通过实验结果的分析,感受随机事件的趣味,逐步形成研究问题的兴趣;在与同学的合作交流中发展相互合作的态度和意识。
1.教学重点:认识简单事件发生的可能结果和可能性的大小。
2.教学难点:体验、了解随机现象及结果。
出示口袋(不透明),让学生观察教师放进1个红球和1个黄球。
活动要求:小组里依次轮流每人任意摸1个,一共摸10次,每次摸完后再放回口袋;。
提问1:你发现每次任意摸一个,摸到的球是怎样的呢?
提问2:如果老师现在再摸一次(拿口袋做摸球状),结果会是怎样的?(板书:可能是红球,也可能是黄球).
追问3:在这个口袋里任意摸一个,结果会怎样?(交流后再集体说一说)。
学生总结:口袋里有1个红球、1个黄球,每次任意摸一个,事先不知道会摸到什么球,结果可能是红球,也可能是黄球;也就是说,每个球都有可能摸出。(板书:可能性)。
一、指导探究。
1.观察分析,认识“一定”
交流:任意摸一个球,摸出的可能是哪个球?你能确定摸出的一定是红球吗?为什么?
理解:这个口袋里两个都是红球,如果把它编成1号红球、2号红球,任意摸一个,有几种可能?(贴出表示红球的并标注有和的红圆片)不管摸出的是哪个球,一定是哪种球?(板书:一定是红球)。
2.思考解释,认识“不可能”
引导:(教师在口袋里装进2个黄球)如果口袋只放了两个黄球,可能摸出红球吗?为什么?和同桌同学互相说一说。
追问:那在不可能的背后,也蕴藏着什么可能吗?说说你们的想法。
指出:如果把口袋里这两个黄球也编成1号和2号,它们都有可能被摸到。也就是说,任意摸1个,不是1号黄球,就是2号黄球,所以不可能是红球。
二、认识可能性的大小。
1.判断可能的结果。
出示例2的4张扑克牌,呈现在黑板上。
引导:如果把这4张扑克牌打乱反扣在桌子上,任意摸出1张,可能是哪一张?摸之前能确定吗?自己先独立思考。
交流:可能是哪一张?摸之前能确定吗?
指出:任意摸一张,每张牌都有可能摸到,摸出的可能是——(红桃a),也可能是——(红桃2、红桃3、红桃4),有4种可能。所以在摸牌之前不能确定摸出的是哪一张。
2.认识可能性大小。
想一想,摸出红桃的可能性大,还是黑桃的可能性大?说说你的想法。
组织活动,出示活动要求:组长负责,把这4张扑克牌打乱次序后反扣在桌上;小组同学每次任意摸出1张,然后放回,再打乱后继续摸,一共摸40次;各人把每次摸到牌的花色,画“正”字记录在自己课本上的表里,并统计出结果;观察记录的数据,小组交流有什么体会。交流各组数据,了解哪种牌摸到的次数多。
提问:现在你发现摸到红桃和黑桃的次数有什么不同?
摸牌的结果能说明什么?说说你的体会。
学生回答:可能性大,摸到黑桃的可能性小。因为红桃有3张,黑桃只有1张,任意摸一张,有4种可能,其中3种是红桃,所以摸到红桃的可能性大。从这里可以看出,事件发生的可能性是有大小的。(教师板书:可能性有大小)。
3.体验可能性相等。
提问:如果要让摸到红桃和黑桃可能性一样大,可以怎样放牌?(让学生自由发表意见,认识需要两种牌的张数相等)。
为什么两种花色的牌张数一样,摸牌的可能性会相等?
指出:因为任意摸一张,每张牌都有可能被摸到,所以当两种牌张数相同时,摸牌的可能性是相等的,可见事件发生的可能性不仅有大小,还可能相等。(板书:可能性相等)。
4.回顾小结。
提问:回顾上面摸牌活动,能说说在摸牌活动中,你又有了什么收获吗?
指出:摸牌时,可能摸出其中的任何一张,但摸之前不能确定摸到哪一张。如果不同花色的牌张数不同,摸到不同花色的可能性就有大小,但如果张数相同,摸到不同花色的可能性就相等。
1.完成“练一练”
学生读题,独立思考后同桌交流。
交流:按顺序说一说,从每个口袋里任意摸出1个球,可能是红球吗?你是怎样想的?
从哪个口袋里摸出红球的可能性最大?为什么?
你能用“可能”“一定”“不可能”说说从每个口袋里任意摸出1个球的结果吗?
指出:任意摸出1个球,前两个口袋里摸出的可能是红球,其中第二个口袋里摸出红球的可能性最大;第三个口袋里摸出的不可能是红球,一定是黄球。
2.做练习十第1题。
学生独立思考。
交流:按顺序说一说,从每个口袋里任意摸1个球,一定是黄球吗?你是怎样想的?
从每个口袋里任意摸出1个球,摸到黄球的情况可以怎样说?请同学们说说看。
提问:通过今天的学习,你对可能性有哪些认识?对今天的学习活动还有什么体会?
人教版数学可能性教学设计篇十三
教学内容:
1、初步体验事件发生的等可能性以及游戏规则的公平性,会用。
分数表示事件发生的可能性;
2、通过丰富的游戏活动和对生活中几种常见游戏(或现象)剖。
析与解释,使学生初步体会数学与生活的紧密联系。
教学重点:
体验事件发生的可能性以及游戏规则的公平性,会用分数表示。
事件发生的可能性。
教学难点:
能按要求设计公平的游戏方案。
学具准备:
扑克牌若干张;课件。
教学过程:
一、感知:
(生:抛硬币)。
师:这种方式公平吗?为什么?
(生:公平。因为一枚硬币只有正面和反面,每一个足球队都有50%的先发球的机会;……)。
2、引出课题:用分数表示可能性的大小。
师:谁都不吃亏。这节课我们就要来研究(指)读“用分数表示可能性的大小”。
师:看到这个课题你想到了什么问题?
3、提出问题:
生1:都有什么分数呢?
生2:可能性有多大?……(根据学生说的重点圈出字眼)。
二、认识:
(一)活动一:
师:大家想一想,如果我抛掷10次,正面大约可能出现多少次?为什么?
师:同意他的说法吗?抛掷20次呢?
师:那么正面朝上的可能性和反面朝上的可能性都是1/2,是公平的。那么大家想一想如果我们实际操作的时候又是怎么样的呢?想不想试一试?下面我们来做一个实验。请看实验步骤:
1.每组抛20次,并把结果记录下来;
2.选择合适的统计方法正面朝上的次数。
3.试验完成后思考:正面朝上的次数与总次数有什么关系。
1、两张牌中有一张红桃a,从中任摸一张,摸到红桃a的可能性是几分之几?
生:1/2。(齐说)。
师:声音这么宏亮,怎么想的?
生:……。
2、三张牌中有一张红桃a,从中任摸一张,摸到红桃a的可能性是几分之几?(1/3)。
师:为什么会出现不同的分数?
3、四张牌中有一张红桃a,从中任摸一张,摸到红桃a的可能性是几分之几?(1/4)。
4、要使摸到红桃a的可能性为1/6,那怎么办?
(二)活动二:
1、问:现在轮到你们了,要按游戏规则来。看看你们找到的相关可能性的分数多还是教师多,开始吧。
2、生汇报:
师:哪个组派代表先来说?
组2:(几分之一)我们找到了……。
组3:(几分之几)我们找到了……。
组4:(几分之几)先说分数,再说是什么牌。……。
组5:还用不同的分数表示几一个可能性的问题。……。
3、师小结:从活动中看到大家能互相帮助,互相关心,互相提醒,做到我会你也会,我明白的你也要明白,真是不易。
三、实践:
1、圆饼图。(自做)。
安盛超市:袋里装9个球(其中有3个红球)。
永信超市:袋里装4个球(其中有2个红球)。
3、选一选。
4、3个正方体。
四、归纳。
1、师:这节课你学会了什么?
2、师:是啊,你们的表现让听课老师和我都认为你们特智慧、特勤奋、特精彩。我相信智慧和勤奋会让你们攻克一个又一个的数学问题,成就你们一次又一次的精彩。祝愿孩子们课课有精彩,一生精彩!下课。
人教版数学可能性教学设计篇十四
1、经历猜测、试验、统计、分析数据等体验事件发生可能性大小的过程。
2、会求一些简单事件的可能性,知道事件发生的可能性是有大小的。
3、了解可能性是描述随机事件的数学模型,感受数学和生活的密切联系。
求一些简单事件的可能性,知道事件发生的可能性是有大小的。
知道事件发生的可能性是有大小的`。
:课件、色子、水槽等。
一、情景引入,熟知目标。
师生游戏:猜色子。
看来可能性知识在生活中有着广泛的应用,这节课我们就对可能性知识进行整理和复习(板书课题)。
生读学习目标。
二、复习旧知。
口袋里有标着1、2、3、4、5、6、7、8、9的9张数字卡片,每次摸出一张。
(1)摸出“3”的可能性是()。
(2)摸出偶数的可能性是(),摸出奇数的可能性是()。
(3)摸出合数的可能性是(),摸出质数的可能性是()。
(4)摸出的数小于6的可能性是()。
你还能提出哪些有关可能性的问题?
先独立完成,然后组内交流。
请目前的每组5号同学展示。
展示后,学生提问,对抗组回答。
三、自主探究。
1、游戏探究,发现现象。
每组桌面有两个色子,在表面上分别有1—6各点数。同组同学一起做游戏。两人同时抛掷这两个色子,把两个朝上面的数加起来。记录抛掷30次的结果。(指学生读题)。
同学们猜猜正面朝上的两个数的和中哪个出现的次数比较多?
学生开始游戏,并做好记录。
各小组出一个代表汇报统计的结果(学生整理在电子表格里面)。
2、画图表示,总结发现。
3、解释现象,理解原因。
为什么有的和出现的次数多,有的出现的次数少呢?老师这有一个表,帮大家理解理解。这一排表示第一个色子面朝上的数,这一列表示第二个色子面朝上的数,中间的数表示两个数的和。
让学生说说“2”“3”是怎么得来的,然后小组交流:有的和出现的次数多,有的出现的次数少的原因。
请一名同学展示,其他同学补充。
四、解决问题。
顺达。
东安。
学生自己读题,思考,准备展示。
2、如果你是顺达老板,你打算怎么办?
小组讨论设计方案,准备展示。
五、全课小结。
人教版数学可能性教学设计篇十五
1、知道有些事情的发生是确定的,有些则是不确定的,并能用“一定”、“可能”、“不可能”等词语来描述。
2、知道事情发生的可能性是有大有小的,可能性的大小与物体数量有关。
3、培养学生的表达能力和逻辑推理能力。
二、教学重难点。
教学重点:体验事件发生的可能性。
教学难点:会用“一定”、“可能”、“不可能”正确地描述事件发生的可能性。
三、教具学具准备:
多媒体、纸盒子、白色和黄色的小球。
四、教学过程。
1.创设情境,引入课堂。
师:同学们,你们喜欢听故事吗?今天老师就给大家带来一个有趣的故事。希望同学们配合老师把故事讲完整。
相传古代有个王国,国王非常阴险而多疑,一位正直的大臣得罪了国王,被叛死刑,这个国家世代沿袭着一条奇特的法规:凡是死囚,在临刑前都要抽一次“生死签”(写着“生”和“死”的两张纸条),犯人当众抽签,若抽到“死”签,则立即处死,若抽到“生”签,则当场赦免。
你们认为这个大臣摸纸条时会出现什么结果?
预设生:奴隶可能摸到生,也可能摸到死。
师:对,大家用了一个词“可能”。就是两种结果都有可能。
预设生:一定死,不可能生。
预设生:一定生。
师:剩下的当然写着“死”字,不知真相的人们以为他吞下的是生,国王“机关算尽”,想让大臣死,反而搬起石头砸自己脚,让机智的大臣死里逃生。
(引入课题)师:生活中的事情就像故事中的一样,有些我们不能肯定他的结果,有些则可以肯定它的结果,类似的例子还有好多。这就是今天我们要一起研究的内容,事情发生的可能性。(板书:可能性)。
2.动手操作,探究新知。
师:和老师一起玩一个摸球游戏。游戏规则:老师和男生代表以及女生代表进行摸球游戏,如果摸出黄球,则该组加1分,否则不得分。每摸出一次后放回进行下一次,累计摸球5次,得分高的队伍获胜。
注意事项:每摸一次,老师在黑板上用“正字法”纪录一次,纪录完毕后放回去进行下一次,在下一次摸之前为了公平起见先摇一摇。
(预设结果:男生摸不到黄球,老师每次都摸到黄球,女生可能黄球。)。
师:游戏结束了,老师宣布老师获得了游戏的胜利,同意么,有什么质疑?
预设生:我们根本不知道盒子里装的什么颜色的球?
师:那我们一起验证一下,通过验证,我们发现3号盒子里面的球都是白色,1号盒子中的球都是白色,所以我们能确定摸出球的颜色,这时候我们可以用一定或者不可能来描述它的结果。(板书:一定不可能)。2号盒子中既有黄球,又有白球,所以我们不能确定摸出球的结果,这时候我们就应该用可能出现什么情况来判断它。(板书:可能)。
师小结:因此事物发生的可能性我们可以用一定,不可能以及可能三种情况来判断它。
3.走出游戏,走进生活。
师:除了游戏中,我们的.生活以及大自然中也蕴含着许多与可能性相关的问题,大家跟老师一起看一看。(出示图片)。
师:大家知道太阳从天空中的哪边升起时来是确定的么?
预设生:太阳一定从东边升起来,不可能从其他地方升起来。
师:一年有几个季节?一年有几个月?一个星期有几天?
预设生:一年一定有4个季节,一年一定有12个月,一个星期一定有7天。
师:今天下雨么?那三天后会不会下雨这个事情能确定么?
预设生:今天不下雨,三天后可能会下雨。
师总结:因此对于确定的事情我们就用一定或者不可能来描述,但是对于天气我们谁都不能很准确的说三天后会下雨还是下雪,亦或者是晴天,因此对于不确定的事情我们就用可能来描述。
4.巩固练习,深化提高。
师:通过前面的学习,同学们已经能很准确的判断游戏以及生活中发生的可能性,并且知道不确定事件发生的可能性有大有小,下面你们能通过本节课学习的知识根据老师的想法和要求自己设计一个转盘游戏么,互相交流讨论,合作完成。
(老师选取几个有特点的作品和同学互相交流讨论)。
5.课堂小结。
这节课你学到了什么新的知识?有什么收获和疑问呢?
师总结:生活中处处有数学,希望大家将学到的数学知识应用到生活实际中去,使我们的数学学习变得更加有意义。
6.作业布置。
将本文的word文档下载到电脑,方便收藏和打印。
人教版数学可能性教学设计篇十六
1.知识与技能:使学生初步体验有些事件的发生是确定的,有些是不确定的。初步学会用“一定”、“可能”、“不可能”的词语来描述生活中一些事件发生的可能性。
2.情感态度与价值观:通过各种活动增加学生的体验,体验学习的数学解决问题的快乐,使学生感受到生活与数学的联系,培养学生学习数学的兴趣,形成良好的合作学习的态度。
让学生感受某些事件发生的可能性是不确定的,能对一些事件的可能性做出正确判断。
(一)互动导入。
生1:出题,哪个小组最先做出来就选哪个小组。
师:每个小组的情况不一样,有的做题快有的慢,不是很公平。
生2:组长猜拳。
师:猜拳公平了,但是12个小组有点费时间,有没有更好的方法呢?
生3:抽签。
师:抽签既能保证每个小组可能被抽中,也能节省时间,是个不错的方法。
师:在老师抽签之前,你们心里在想什么?
生:会不会抽到我们小组。
师:一定会抽到他们小组吗?
生:不一定,每个小组都有可能被抽中。
师:都可能被抽中,但是结果能确定吗?
生:不能。
师:像这样结果能预测但是不能肯定的现象,我们数学上叫不确定现象或是随机现象。今天我们就来研究事件的可能性。(板书可能性)。
师:那老师开始抽签了...
师:第6小组是今天的幸运小组,组长站起来,让大家认一认。
(二)联系实际,探索新知。
1.引出“可能”“不可能”“一定”
师:小助手选好了,那我们就正式开始今天的课程,做好准备没有?
生:准备好了。
生:蓝球。
师:一定是蓝色吗?
生:不一定,可能是也可能不是。
师:我们现在让小助手们上台摸摸看。
(幸运小组上台)。
师:1号助手能摸到什么颜色的球?为什么?
生:三种颜色的球都有可能。因为他们的大小形状都一样,每个球被摸到的几率一样。
师:可能,这个词用的很棒!也就是说他摸出的结果确定不确定?
生:不确定。(板书:不确定:可能)。
生:...
师:一定能摸出来吗?
生:不一定。
师:好,开始摸吧,看看你能不能心想事成。
(假设:摸出黄色的球)。
师:现在2号助手摸,他能摸到什么颜色的球?
生:可能是红球,可能是蓝球。
师:能摸到黄球吗?
生:不可能,因为黄球已经被摸走了,盒子里已经没有黄球了。
师:我们知道确定摸不出黄球,可以用“不可能”来描述。(板书:确定:不可能)。
2号助手摸球。(假设摸出红球)。
师:现在3号助手摸。
生:不用摸了,他摸出来的一定是蓝球。
师:你们用了一定这个词为什么?
生:因为盒子里只有1个蓝球,所以他摸出的一定是蓝球。
师:我们让他摸摸看,验证一下是不是你们说的那样。
师:看来我们大家理解的非常正确。一定摸到蓝球(板书:一定)。
生:想。
2.体验“可能”
师:老师给每个小组准备了3个横球和3个黄球。我们先来看摸球规则:
(1)小组先分工好,1人摇盒子,1人记录,摸之前摇几下,不许偷看;
(2)每个人连续摸两次,摸之前自己先猜摸出来的是什么球,再拿出来给大家看一看;
(4)比一比,看哪个小组最有秩序,最文明。
小组活动,汇报:
师:现在观察统计结果,你有什么发现?你们摸的有什么相同的地方吗?
生:就是每组都是既摸到黑球又摸到黄球。
每个人的情况都不能确定,摸出的颜色都不确定,可能是黑色可能是黄的。再给机会摸结果还是不能够确定。
每个小组的情况都不样,第一次摸出黑球,第二也不能确定是什么颜色。
3.体验“不可能”
(1)抽奖活动。
生:想。
生1摸出黄球...(连续5人都摸出黄球时有学生举手)。
师:你有什么想说的?
生:我觉得里面红球太少甚至可能就没有红球。
师:我们来验证一下...正如你们所想里面只有黄球。
师:能摸出红球中奖吗?
生:不可能。
师:你怎么看抽奖这件事?(思想道德教育)。
生:这个老板就是骗人的。
师:怎么骗你们的?
生:明明没有红球还让我们摸红球,太黑心了。
师:这也就告诉我们,天下不会掉馅饼,我们要脚踏实地认真学习,认真工作,不要想着有什么大奖,那种可能性很小。
(2)讲故事。
将军抛硬币,鼓舞士气保家卫国。
师:对于商店老板和将军你有什么想法?
生:他们的手段都一样,都是只有一种情况。但是他们的目的不同。老板是为了挣钱,将军是为了保家卫国。我们要向将军学习。
师:数学来源于生活,我们要有正确的价值观把数学运用于我们的生活。刚才,我们一起认识了“一定”、“不可能”、“可能”这三个词,并且知道了“一定”、“不可能”用来描述能确定的事情,而对于不能确定的事情则用“可能”来描述。接下来,我们就试着用这三个词来说一说我们生活中的事情。
(三)检测导结。
师:将军会灵活运用数学知识,你会吗?
生:会。
师:那我们来完成下面的题。看谁完成的又快又好。
师:通过今天的学习,大家课下一定会有同学继续去寻找我们生活中能够用上“可能”、“不可能”和“一定”来描述的一些事情。
人教版数学可能性教学设计篇十七
摸球游戏教学目标::1、通过“猜想——实践——验证”,经历事件发生的可能性大小的探索过程,初步感受某些事件发生的可能性是不确定的,事件发生的可能性是有大有小的。2、在活动交流中培养合作学习的意识和能力。教学重点:通过“猜想——实践——验证”,经历事件发生的可能性大小的探索过程。教学难点:初步感受某些事件发生的可能性是不确定的,事件发生的可能性是有大有小的。教具准备:小黑板、布袋、一定数量的白球、黄球。教学设计:一、创设情境,提出问题:1、建立学习小组,每个小组一个布袋、9个白球、1个黄球(白球、黄球的大小和轻重一样)。2、将9个球放入袋内,创设摸球游戏的情境。小组内每个人依次轮流摸球,请想一想:摸到的球可能是什么球?摸到的什么球的可能性更大些?二、探索研究,得出结论:1、学生对老师提出的问题进行猜测,并把自己的想法告诉给组内的同学。2、实践探索。(1)以小组为单位开展摸球游戏,把每次摸得的结果记录再下表中,然后把球放回去再摸。
第几次。
1
2
3
4
5
6
7
8
9
10。
颜色。
第几次。
11。
12。
13。
14。
1516。
17。
18。
19。
20。
颜色(2)统计摸球的结果,看一看;摸到什么球的次数多?摸到什么球的次数少?(3)各小组将摸球的结果进行交流,看一看是不是得到同样的结果。实际摸到的结果与原来的猜测是否吻合。初步感受到再日常生活中有些事件发生的可能性是不确定的,事件发生的可能性是有大有小的。三、解释和应用:1、下面三个地方的冬天下雪吗?请用“一定”“很少”“不可能”说一说。海南哈&,nbsp;尔滨武汉2、从下面的五个箱子里,分别摸出一个球,结果是哪个?连一连。8白2红可能是白球一定是白球10红5白5红一定不是白球很可能是白球8白2红白球的可能性很小10白课后反思:
人教版数学可能性教学设计篇十八
1、初步感受事件发生的可能性是有大小的,了解影响可能性大小的因素,会比较事件发生的可能性大小。
2、学会记录事件发生的结果;形成动手操作能力,以及归纳、判断能力。
3、经历观察、猜想、实验和分析实验结果的过程,体验事件发生的。
4、进一步感受数学与实际生活的紧密联系,体会数学在现实生活中。
的应用。
重难点:理解事件发生的可能性是有大小的并会根据影响因素判断可。
能性大小。
教法:引导演示法。
学法:合作交流,实验验证法。
教学准备:课件、扑克牌等。
一、复习铺垫,迁移导入。
课件出示图片:
生:从a盒摸。
师:为什么不建议我从b盒或者c盒摸呢?
生:b盒与c盒可能摸出白球,但都不一定一次就能摸出白球。
(生独立思考,小组交流)(生可能回答b盒白球更多一些)。
师:真的如此吗?可能性真的有大小吗?可能性大小又与什么有关呢?今天我们就来研究这个问题。
二、探索新知。
1、体验可能性是有大小的。
(1)课件出示教材第45页情境图。
师:今天老师带来了一个盒子,盒子里有四个红棋子和一个黑棋子。
问:从中摸出一个棋子,可能是什么颜色?
生:可能是红色,也可能是蓝色。
师:摸出一个棋子,那摸出哪种颜色的可能性大呢?
学生思考,猜测。
师:刚刚只是同学们的猜测,而猜测并不能作为依据,我们需要通过实验来证明。我们来试一试吧!
(2)安排实验过程。
请一名学生摸棋子,底下的同学们将棋子的颜色大声说出来,一名学生记录。所有学生边观察边思考。
要求:摸出一个棋子,记录它的颜色,然后放回去摇匀再摸,重复20次。
讲解记录方法:制作像这样的一个表格(出示表格),在记录这一竖列用“正”字笔画去记次数,在次数一列用数字写出记录的总结果。
(3)交流记录结果。
师:通过实验结果,你们现在有什么想法?
学生交流、讨论。
(4)小结:取出红棋子的次数要多些,也就是取出红棋子的可能性要大一些。
(5)讨论:再取一次取出哪种颜色的可能性最大?
2、进一步证实、总结规律。
(1)提出猜想。
在每一小组,老师都放了十张扑克牌,其中八张黑的,两张红的,从中摸出一张,摸出的是红色可能性大还是黑色可能性大?为什么?(学生猜想)。
(2)实验证明。
这仅仅只是同学们的猜想,还需要大家用实验来证明它。
实验要求:组内同学做好分工,其中一个人负责洗牌,一人负责记录,一个人负责汇报,其他组员轮流抽牌,共抽20次。
(3)汇报实验结果。
(4)引导小结:从这些实验结果中,你发现了什么规律?
(学生独立思考,小组交流)。
教师小结:因为黑桃在总数中占得多一些,所以取出黑桃的可能性要大些。
3、知识总结师设疑:可能性大小与什么因素有关?
(生思考回答)。
师总结:以摸棋子为例,可能性的大小与在总数中所占数量的多少有关,在总数中占得数量越多摸到的可能性也就越大;占得数量越少,摸到的可能性越小。
三、巩固练习(课件出示)。
四、课堂小结学完这节课后,你们能否准确判断可能性的大小?
可能性(2)。
可能性的大小与在总数中所占数量有关。
多大。
少小。
【本文地址:http://www.xuefen.com.cn/zuowen/11773044.html】