2023年七年级下人教版数学教案(热门22篇)

格式:DOC 上传日期:2023-11-13 20:57:15
2023年七年级下人教版数学教案(热门22篇)
时间:2023-11-13 20:57:15     小编:书香墨

通过编写教案,教师可以更好地把握教学进度,适应学生的学习特点。编写教案之前,教师需要充分了解自己所教授的课程内容和教学目标。这些教案范例通过巧妙的设计和布局,能够使学生在活动中主动思考和合作探究,达到更好的学习效果。

七年级下人教版数学教案篇一

2.会用上的点表示有理数,会利用比较有理数的大小;。

3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

教学建议。

一、重点、难点分析。

本节的重点是初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与上点的对应关系。的概念包含两个内容,一是的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用解决问题的方法,为今后充分利用“”这个工具打下基础.

二、知识结构。

有了,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:

定义。

三要素。

应用。

数形结合。

规定了原点、正方向、单位长度的直线叫。

原点。

正方向。

单位长度。

帮助理解有理数的概念,每个有理数都可用上的点表示,但上的点并非都是有理数。

比较有理数大小,上右边的数总比左边的数要大。

在理解并掌握概念的基础之上,要会画出,能将已知数在上表示出来,能说出上已知点所表示的数,要知道所有的有理数都可以用上的点表示,会利用比较有理数的大小。

三、教法建议。

小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念.是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是的根本依据。与它所在的位置无关,但为了教学上需要,一般水平放置的,规定从原点向右为正方向。要注意原点位置选择的任意性。

关于有理数与上的点的对应关系,应该明确的是有理数可以用上的点表示,但上的点与有理数并不存在一一对应的关系。根据几个有理数在上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。

四、的相关知识点。

1.的概念。

(1)规定了原点、正方向和单位长度的直线叫做.

这里包含两个内容:一是的三要素:原点、正方向、单位长度缺一不可.二是这三个要素都是规定的.

(2)能形象地表示数,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数.

以是理解有理数概念与运算的重要工具.有了,数和形得到初步结合,数与表示数的图形(如)相结合的思想是学习数学的重要思想.另外,能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小.因此,应重视对的学习.

2.的画法。

(1)画直线(一般画成水平的)、定原点,标出原点“o”.

(2)取原点向右方向为正方向,并标出箭头.

(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。

(4)标注数字时,负数的次序不能写错,如下图。

3.用比较有理数的大小。

(1)在上表示的两数,右边的数总比左边的数大。

(2)由正、负数在上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

(3)比较大小时,用不等号顺次连接三个数要防止出现“”的写法,正确应写成“”。

五、定义的理解。

1.规定了原点、正方向和单位长度的直线叫做,如图1所示.

2.所有的有理数,都可以用上的点表示.例如:在上画出表示下列各数的点(如图2).

a点表示-4;b点表示-1.5;。

o点表示0;c点表示3.5;。

d点表示6.

从上面的例子不难看出,在上表示的两个数,右边的数总比左边的数大,又从正数和负数在上的位置,可以知道:

正数都大于0,负数都小于0,正数大于一切负数.

因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用,表示是正数;反之,知道是正数也可以表示为。

同理,,表示是负数;反之是负数也可以表示为。

3.正常见几种错误。

1)没有方向。

2)没有原点。

3)单位长度不统一。

七年级下人教版数学教案篇二

本环节主要是创设情境,在实际问题中引出本节课题.

【设计意图】。

引导学生发现:可以借助游戏创设情境,导入新课.

(二)探究新知。

1、利用丹凤地图的实际情境探索点的平移与坐标变化的规律.

2、如图,已知a(c2,c3),根据下列条件,在相应的坐标系中分别画出平移后的点,写出它们的坐标,并观察平移前后点的坐标变化.

(1)将点a向右平移5个单位长度,得到点a1;

(2)将点a向左平移2个单位长度,得到点a2;

(3)将点a向上平移6个单位长度,得到点a3;

(4)将点a向下平移4个单位长度,得到点a4;

教学过程中注重让学生明确:将哪个点沿着什么方向,平移几个单位后,得到的是哪个点.

3、在此基础上可以归纳出:点的左右平移点的横坐标变化,纵坐标不变。

点的上下平移点的横坐标不变,纵坐标变化。

4、点的平移的应用.(见课件)。

5、比一比看谁反应快。

(1)点a(c4,2)先向右平移3个单位长度后得到点b,求点b的坐标.

(2)点a(c4,2)先向左平移2个单位长度后得到点b,求点b的坐标.

(3)点a(c4,2)先向下平移4个单位长度后得到点b,求点b的坐标.

(4)点a(c4,2)先向上平移3个单位长度后得到点b,求点b的坐标.

6、逆向思维:由点的变化探索点的方向和距离。

(1)如果a,b的坐标分别为a(-4,5),b(-4,2),将点a向___平移___个单位长度得到点b;将点b向___平移___个单位长度得到点a。

(2)如果p、q的坐标分别为p(-3,-5),q(2,-5),将点p向___平移___个单位长度得到点q;将点q向___平移___个单位长度得到点p。

(3)点a′(6,3)是由点a(-2,3)经过__________________得到的.点b(4,3)向______________得到b′(4,5)。

7、应用平移解决简单问题在平面直角坐标系中,有一点(1,3),要使它平移到点(-2,-2),应怎样平移?说出平移的路线。

七年级下人教版数学教案篇三

1知识与技能:

使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

2过程与方法:

通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。

3情感态度与价值观:

让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。

教学重难点。

1教学重点:

掌握用整十数除的口算方法。

2教学难点:

理解用整十数除的口算算理。

教学工具。

多媒体设备。

教学过程。

1复习引入。

口算。

20×3=7×50=6×3=。

20×5=4×9=8×60=。

24÷6=8÷2=12÷3=。

42÷6=90÷3=3000÷5=。

2新知探究。

1.教学例1。

有80面彩旗,每班分20面,可以分给几个班?

(1)提出问题,寻找解决问题的方法。

师:从中你能获取什么数学信息?

师:怎样解决这个问题?

(2)列式80÷20。

(3)学生独立探索口算的方法。

师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。

学生汇报:

预设学生可能会有以下两种口算方法:

a.因为20×4=80,所以80÷20=4这是想乘算除。

b.因为8÷2=4,所以80÷20=4这是根据计数单位的组成。

为什么可以不看这个“0”?(80÷20可以想“8个十里面有几个二十?”)。

这样我们就把除数是整十数的转化为我们已经学过的表内除法。

(4)师小结:

同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?

把你喜欢的方法说给同桌听。

(5)检查正误。

师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)。

(6)用刚学会的方法再次口算,并与同桌交流你的想法。

40÷2020÷1060÷3090÷30。

(7)探究估算的方法。

出示:83÷20≈80÷19≈。

师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。

生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。

师:谁想把你的方法跟大家说一说。

预设:83接近于80,80除以20等于4,所以83除以20约等于4。

19接近于20,80除以20等于4,所以80除以19约等于4。

2.教学例2。

(1)创设情境引出问题。

师:谁会解决这个问题?

150÷50。

(2)小组讨论口算方法。

(3)你是怎么这样快就算出的呢?

a.因为15÷5=3,所以150÷50=3。

b.因为3个50是150,所以150÷50=3。

这一题跟刚才分彩旗的口算方法有不同吗?

都是运用想乘算除和表内除法这两种方法来口算的。

师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。

口算练习:150÷30240÷80300÷50540÷90。

3.估算。

(1)探计估算的方法。

师:你能知道题目要求我们做什么吗?

你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。

(2)谁想把你的方法跟大家说一说。

(3)总结方法:把被除数和除数都看作与原数比较接近的整十数再用口算方法算。

(4)判断估算是否正确:122÷60=2349÷50≈8为什么不正确?

3巩固提升。

1.独立口算。

观察每道题,怎样很快说出下面除法算式的商?

如果估算的话把谁估成多少。

2.算一算、说一说。

(1)除数不变,被除数乘几,商也乘几。

(2)被除数不变,除数乘几,商反而除以几。

3.解决问题。

(1)一共要寄240本书,每包40本。要捆多少包?

你能找到什么条件、问题。你会解决吗?

240÷40=6(包)。

答:要捆6包。

(2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。

出示条件:一共有120个小故事,每天看1个故事。

问题:看完这本书大约需要几个月?

问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?

120÷30=4(个)。

答:看完这本书大约需要4个月。

课后小结。

这节课你有什么收获?还有什么问题?

本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

板书。

口算除法。

有80面彩旗,每班分20面,可以分给几个班?

80÷20=。

七年级下人教版数学教案篇四

一、选择题:(本题共24分,每小题3分)。

在下列各题的四个备选答案中,只有一个答案是正确的,请你把正确答案前的字母填写在相应的括号中.

1.若一个数的倒数是7,则这个数是().

a.-7b.7c.d.

2.如果两个等角互余,那么其中一个角的度数为().

a.30°b.45°c.60°d.不确定。

3.如果去年某厂生产的一种产品的产量为100a件,今年比去年增产了20%,那么今年的产量为()件.

a.20ab.80ac.100ad.120a。

4.下列各式中结果为负数的是().

a.b.c.d.

5.如图,已知点c是线段ab的中点,点d是cb的中点,那么下列结论中错误的是().

a.ac=cbb.bc=2cdc.ad=2cdd.

6.下列变形中,根据等式的性质变形正确的是().

a.由,得x=2。

b.由,得x=4。

c.由,得x=3。

d.由,得。

7.如图,这是一个马路上的人行横道线,即斑马线的示意图,请你根据图示判断,在过马路时三条线路ac、ab、ad中最短的是().

a.acb.abc.add.不确定。

8.如图,有一块表面刷了红漆的立方体,长为4厘米,宽为5厘米,高为3厘米,现在把它切分为边长为1厘米的小正方形,能够切出两面刷了红漆的正方体有()个.

a.48b.36c.24d.12。

二、填空题:(本题共12分,每空3分)。

9.人的大脑约有100000000000个神经元,用科学记数法表示为.

10.在钟表的表盘上四点整时,时针与分针之间的夹角约为度.

11.一个角的补角与这个角的余角的差等于度.

12.瑞士的教师巴尔末从测量光谱的数据,,,…中得到了巴尔末公式,请你按这种规律写出第七个数据,这个数据为.

三、解答题:(本题共30分,每小题5分)。

13.用计算器计算:(结果保留3个有效数字)。

14.化简:

15.解方程。

16.如示意图,工厂a与工厂b想在公路m旁修建一座共用的仓库o,并且要求o到a与o到b的距离之和最短,请你在m上确定仓库应修建的o点位置,同时说明你选择该点的理由.

拓展知识。

七年级下人教版数学教案篇五

1、《在山的那边》,作者王家新。

2、《走一步,再走一步》作者莫顿?亨特,美国作家。

3、《紫藤萝瀑布》选自《铁箫人语》,作者宗璞。

4、《童趣》节选自《浮生六记?闲情记趣》,作者沈复,字三白,清代文学家。

5、流沙河,原名余勋坦,四川金堂人,现代诗人。

6、玛丽?居里,波兰人,后加入法国国籍,的物理学家、化学家。1903年,她与居里、贝可勒尔共获诺贝尔物理奖,1911年获诺贝尔化学奖。

7、孔子(前551-前479),名丘,字仲尼,春秋鲁国(山东曲阜)人。我国古代伟大的思想家、教育家。《论语》是记录孔子和他的x行的一部书,共20篇,是儒家经典著作之一。

8、《春》选自《朱自清全集》,作者朱自清,原名自华,字佩弦。散文家、诗人、学者、民主战士。有诗文集《踪迹》,散文集《背影》《欧游杂记》。

9、《济南的冬天》,选自《老舍文集》,作者老舍,原名舒庆春,字舍予,作家。

10、《夏感》作者梁衡。

11、《秋天》作者何其芳,现代诗人、评论家。

12、《观沧海》选自《乐府诗集》,曹操,字孟德,东汉末年政治家、军事家、诗人。他的诗以慷慨悲壮见称。

13、《次北固山下》选自《全唐诗》,作者王湾,唐代诗人。

14、《钱塘湖春行》选自《白氏长庆集》,作者白居易,字乐天,晚年又叫香山居士,唐代大诗人。

15、《天净沙秋思》选自《全元散曲》,作者马致远,元朝戏曲作家。

16、法布尔,法国昆虫学家,著有《昆虫记》这部昆虫学巨著。

17、蒲松龄,字留仙,世称'聊斋先生',号柳泉居士,清代文学家。《聊斋志异》是一部文言短篇小说集。

18、《风筝》作者鲁迅,原名周树人,字豫才,浙江绍兴人。我国伟大的文学家、思想家、革命家。著作有小说集《呐喊》、《彷徨》;散文集《朝花夕拾》;散文诗集《野草》;杂文集《坟》、《华盖集》、《二心集》等。

19、《羚羊木雕》作者张之路。

20、《散步》作者莫怀戚。

21、《金色花》作者泰戈尔,印度文学家。著作有诗集《新月集》、《飞鸟集》,长篇小说《沙子》、《沉船》等。1913年获得诺贝尔文学奖。

22、《荷叶》作者冰心,原名谢婉莹,福建长乐人,诗人、作家,代表作有《繁星》、《春水》、《寄小读者》等。

23、安徒生,丹麦童话作家,主要作品有《卖火柴的小女孩》、《海的女儿》、《丑小鸭》等。

语文学习方法。

1、运用想象和联想。想象和联想伴随着语文学习的始终,听说读写都离不开想象和联想。比如:再看课文《春》的过程中可以联想到以前学过的描写春的古诗词,再现课文的内容和情景。在阅读过程中,有意识的把语言文字的内容与自己的生活经历和感悟结合起来。这样的锻炼会大大提高学生的阅读能力、和理解能力。如果把它运用到写作中,会有效地提高学生的写作水平。

2、积极主动的参与课堂活动。在课堂上老师对课文的理解是老师的理解,融入了老师的知识积累和生活经验,而同学们也许会有自己的理解,是站在一个未成年人的角度来理解课文,也许学生的理解会更好,所以学生要敢于在课堂上发表自己的见解。这些课堂活动可以激发学生的思维,锻炼他们都种能力。所以,同学们应该多思考,多提问,多研讨,使课堂活动丰富多样,精彩纷呈。

3、养成自控式的良好学习习惯。语文学习尤其要养成良好的学习习惯:字要规规矩矩的写,课文要仔仔细细的读,练习要踏踏实实的做,作文要认认真真的完成;要用心听讲、作业书写规范、独立完成作业、主动制定学习计划、多读、多背、多思考、经常练笔、看报等。这些都会帮助我们在不知不觉中提高语文水平。

语文学习方法有哪些。

1.把握课堂。

上课一定要认真听,因为你的语文老师会在课上讲什么重点,易错点,写作技巧等等,这些很重要。可以准备一个积累本,平时不认识的字,不熟悉的成语,文学常识都可以写上去。不懂一定要问老师,千万不要害羞,但如果你真的觉得不好意思,可以问你身边的学霸同学。

2.阅读理解学习方法。

阅读理解,这主要培养学生的阅读速度和思维记忆能力,所以在生活中你要大量读书,读好书,一些网络上的言情之类的小说就算了吧,那个看看电视剧就好了,读完一本书可以做读书笔记,读后感等等,也可以磨练你的作文,这是第一点,多读书。第二点,其实阅读理解的题都是有套路的,要不你就多做题自己总结,要不你就在网上搜,请教老师,都可以,但不要完全按照套路,不要那么死板。

3.作文写作技巧。

作文,你可以买一本中考作文,把里面的好词好句抄在本子上背下来,学习人家的写作结构,还有就是尽量一周写几篇作文,找老师或者其他人修改,锻炼写作能力,不要怕不知道写什么,你就在生活中细细观察,就比如你的家人都是怎样刷牙的,只要你细心观察,总会有可写的,你也可以记录一天中都干了什么,尽量写成一个小标题,然后你自己再扩充,为你以后写作文准备素材。

七年级下人教版数学教案篇六

掌握多种数学解题方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。

逐步形成“以我为主”的学习模式。

数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

七年级下人教版数学教案篇七

1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。

2.掌握点到直线的距离的概念,并会度量点到直线的距离。

3.掌握垂线的性质,并会利用所学知识进行简单的推理。

[教学重点与难点]。

1.教学重点:垂线的定义及性质。

2.教学难点:垂线的画法。

[教学过程设计]。

一、复习提问:

1、叙述邻补角及对顶角的定义。

2、对顶角有怎样的.性质。

二.新课:

引言:

前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。

(一)垂线的定义。

当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

如图,直线ab、cd互相垂直,记作,垂足为o。

请同学举出日常生活中,两条直线互相垂直的实例。

注意:

1、如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。

2、掌握如下的推理过程:(如上图)。

反之,

(二)垂线的画法。

探究:

1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?

2、经过直线l上一点a画l的垂线,这样的垂线能画出几条?

3、经过直线l外一点b画l的垂线,这样的垂线能画出几条?

画法:

让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。

注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。

(三)垂线的性质。

经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:

性质1过一点有且只有一条直线与已知直线垂直。

练习:教材第7页。

探究:

如图,连接直线l外一点p与直线l上各点o,

a,b,c,……,其中(我们称po为点p到直线。

l的垂线段)。比较线段po、pa、pb、pc……的长短,这些线段中,哪一条最短?

性质2连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

(四)点到直线的距离。

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

如上图,po的长度叫做点p到直线l的距离。

七年级下人教版数学教案篇八

几何图形大小:长度、面积、体积等。

位置:相交、垂直、平行等。

2几何体也简称体。包围着体的是面。

3常见的立体图形:柱体、椎体、球体等各部分不都在一个平面内。

4平面图形:在一个平面内的图形就是平面图形。

5展开图:识记一些常用的展开图。圆柱/圆锥的侧面展开图;。

6点线面体:是组成几何图形的基本元素。

7直线、射线、线段。

线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。

连接两点间的线段的长度,叫做这两点的距离。

经过两点有一条直线,并且只有一条直线。两点确定一条直线。

8角。

9角的比较与运算。

角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

余角:如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角。

补角:如果两个角的和等于180度(平角),就说这两个叫互为补角,即其中每一个角是另一个角的补角。

性质:等角(同角)的补角相等。等角(同角)的余角相等。

七年级下人教版数学教案篇九

1、让学生生自主探索小数的加、减法的计算方法,理解计算的算理并能正确地进行加、减法。

2、使学生体会小数加减运算在生活、学习中的广泛应用,体会数学的工具性作用。

3、激发学生学习小数加减法的兴趣,涌动长大后也要为国争光的豪情,提高学习的主动性和自觉性。

教学重难点。

教学重点:用竖式计算小数加减法。

教学难点:理解小数点对齐的算理。

教学工具。

多媒体课件。

教学过程。

(一)情景引入。

师:同学们,你们还记得吗?整数的加减法是怎样计算的?让我们用一道习题回顾一下。

(呈现多媒体,学生自主完成习题并总结计算算理)。

师:同学们你们可真棒,那么今天我们学习小数的加减法(引出课题并板书)。

(二)例题讲解。

(1)小丽买了下面两本书,一共花了多少钱?

(2)《数学家的故事》比《童话选》贵多少钱?

生:好的。

(展示小丽遇到的问题(1),并让学生列出算式)。

师:根据咱们总结的整数加减法的算理,想一想这个式子怎么计算呢?

(让学生大胆的去尝试,小组讨论,并列出竖式)。

师:你们发现小数加减法计算时需要注意什么?

生1:注意数位对齐。

生2:注意小数点要对齐。

生3:……。

老师小结:小数点要对齐,得数的小数点也要对齐。

师:小丽啊还有一个问题让我们看一看(展示问题(2))。

(让学生自主解决,并再回忆需要注意什么?)。

完成后学生给予总结,完成小数加减法的时候需要注意什么?

(三)习题巩固。

课本72页做一做。

课后小结。

学生谈一谈本节课你学到了什么?

给出总结:计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。

课后习题。

一、计算。

1.5-0.5=1-0.9=2.3+0.6=0.9+0.8=。

1.9-0.8=3.5-2.4=0.36+0.65=0.96-0.32=。

二、竖式计算。

20.87-3.65=3.25+1.73=。

18.77+3.14=23.5-2.8=。

三、解决问题。

1、小红买文具,买钢笔用去6.7元,买文具盒用去9.8元,一共用去多少钱?

板书。

计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。

七年级下人教版数学教案篇十

1、生物圈中的绿色植物类群有:藻类植物、苔藓植物、蕨类植物、种子植物,其中前三种植物生长到一定的时期会产生一种叫做孢子的生殖细胞。因为通过孢子进行繁殖,所以又称为孢子植物(没有种子植物)。

2、藻类植物大多数生活在水中(如淡水:水绵,衣藻海水:紫菜、海带)。

(1)形态结构:没有根、茎、叶的分化。

(2)营养方式:藻类植物细胞里都含有叶绿素能进行光合作用,营养方式为自养。

(3)繁殖方式:用孢子进行繁殖。

3、藻类植物在生物圈中作用:

(1)生物圈中氧气的重要来源。

(2)水生生物的食物来源。(如鱼类饵料)。

(3)供食用。(如海带紫菜)。

(4)药用。

4、苔藓植物大多数生活在陆地上的潮湿环境(葫芦藓、地钱、树干苔藓)。

(1)形态结构:一般都很矮小,通常具有类似茎和叶的分化,但是茎中没有导管,叶中也没有叶脉,根非常简单,称为假根(只起固定植物体作用)。

(2)营养方式:苔藓植物细胞里都含有叶绿素,能进行光合作用。

(3)繁殖方式:用孢子(生殖细胞)进行繁殖。苔藓植物是监测空气污染程度的指示植物。

5、蕨类植物多数生活在阴湿的环境中(如里白、贯众、满江红)。

(1)形态结构:有根、茎、叶的分化,在这些器官中有专门运输物质的通道——输导组织。

(2)营养方式:蕨类植物细胞里都含有叶绿素能进行光合作用,营养方式为自养。

(3)繁殖方式:用孢子(生殖细胞)进行繁殖。

蕨类植物与人类的关系及其在生物圈中的作用:

(1)可供食用,如蕨菜。

(2)可供药用,如卷柏、贯众等。

(3)作为绿肥和饲料,如满江红。

(4)煤的来源。

6、种子植物的分类:根据子叶数目分为:

(1)双子叶植物:胚里具有两片子叶的植物(叶脉网状),营养都储存在子叶中。如蚕豆、大豆、花生。

(2)单子叶植物:胚里具有一片子叶的植物(叶脉弧形),营养大部分储存在胚乳中。如水稻、小麦、高粱。

7、种子的结构:

(1)种皮:保护作用。

(2)胚(包含胚芽、胚轴、胚根、子叶)是新植物的幼体,将来能发育成一个植物体。

(3)只有单子叶植物有胚乳。子叶、胚乳中储藏的营养物质是胚发育成幼苗时养料的来源。

8、种子和孢子的比较:种子中含有丰富的营养物质,具有适应环境的结构特点,如果环境过于干燥或寒冷,它可以处于休眠状态。孢子只是一个细胞,只有散落在温暖潮湿的环境中才能萌发。

10、被子植物成为地球上分布最广泛的植物原因:被子植物一般都具有非常发达的输导组织,从而保证了体内水分和营养物质高效率地运输;它们一般都能开花和结果,所结的果实能够保护里面的种子,不少果实还能帮助种子传播。

生物实验题解题技巧。

深刻领会生物教材实验的设计思想。做好探究性实验大题,就要认真分析教材涉及的实验,理解每一个实验的原理与目的要求,弄清材料用具的选择方法与原则。

掌握生物实验方法和实验步骤,深入分析实验条件、过程、现象或结果的科学性、正确性、严谨性和可变性,能够描述教材中经典实验的原理、目的、方法步骤、现象与结果预测及结论,为实验设计提供科学的实验依据,搭建基本框架。

生物的学习方法和技巧。

掌握基本知识要点。

与学习其它理科一样,生物学的知识也要在理解的基础上进行记忆,但是初中阶段的生物学还有着与其它学科不一样的特点:面对生物学,同学们要思考的对象是陌生的细胞、组织、各种有机物、无机物以及他们之间奇特的逻辑关系。

因此只有在记住了这些名词、术语之后才有可能理解生物学的逻辑规律,既所谓“先记忆,后理解”。在记住了基本的名词、术语和概念之后,把主要精力放在学习生物学规律上。这时要着重理解生物体各种结构、群体之间的联系(因为生物个体或群体都是内部相互联系,相互统一的整体),也就是注意知识体系中纵向和横向两个方面的线索。

用生物学的基本观点统领生物学的学习。

树立正确的生物学观点,可以更迅速更准确地学习生物学知识。所以在生物学学习中,要注意树立以下生物学观点:

1.生命物质性观点生物体由物质组成,一切生命活动都有其物质基础。

2.结构与功能相统一的观点包括两层意思:一是有一定的结构就必然有与之相对应功能的存在;二是任何功能都需要一定的结构来完成。

3.生物的整体性观点系统论有一个重要的思想,就是整体大于各部分之和,这一思想完全适合生物领域。不论是细胞水平、组织水平、器官水平,还是个体水平,甚至包括种群水平和群落水平,都体现出整体性的特点。

4.生命活动对立统一的观点生物的诸多生命活动之间,都有一定的关系,有的甚至具有对立统一的关系,例如,植物的光合作用和呼吸作用就是对立统一的一对生命活动。

5.生物进化的观点生物界有一个产生和发展的过程,所谓产生就是生命的起源,所谓发展就是生物的进化。生物的进化遵循从简单到复杂,从水生到陆生、从低等到高等的规律。

6.生态学观点基本内容是生物与环境之间是相互影响、相互作用的,也是相互依赖、相互制约的。生物与环境是一个不可分割的统一整体。

系统化和具体化的方法。

系统化就是把各种有关知识纳入一定顺序或体系的思维方法。系统化不单纯是知识的分门别类,而且是把知识加以系统整理,使其构成一个比较完整的体系。在生物学学习过程中,经常采用编写提纲、列出表解、绘制图表等方式,把学过的知识加以系统地整理。

具体化是把理论知识用于具体、个别场合的思维方法。在生物学学习中,适用具体化的方式有两种:一是用所学知识应用于生活和生产实践,分析和解释一些生命现象;二是用一些生活中的具体事例来说明生物学理论知识。

七年级下人教版数学教案篇十一

多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

及时了解、掌握常用的数学思想和方法。

中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

七年级下人教版数学教案篇十二

3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

数轴的概念和用数轴上的点表示有理数。

教学过程(师生活动)设计理念。

设置情境。

教师通过实例、课件演示得到温度计读数.

(多媒体出示3幅图,三个温度分别为零上、零度和零下)。

问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。

(小组讨论,交流合作,动手操作)创设问题情境,激发学生的学习热情,发现生活中的数学。

教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?

从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

寻找规律。

归纳结论。

问题3:

1,你能举出一些在现实生活中用直线表示数的实际例子吗?

3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

4,每个数到原点的距离是多少?由此你会发现了什么规律?

(小组讨论,交流归纳)。

归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

教科书第12页练习。

课堂小结。

请学生总结:

1,数轴的三个要素;

2,数轴的作以及数与点的转化方法。

本课作业。

1,必做题:教科书第18页习题1.2第2题。

2,选做题:教师自行安排。

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

2,教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

3,注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

七年级下人教版数学教案篇十三

(1)能用代数式表示实际问题中的数量关系.

(2)理解单项式、单项式的次数,系数等概念,会指出单项式的次数和系数.

讲授法、谈话法、讨论法。

【教学重点】。

单项式的有关概念。

【教学难点】。

负系数的确定以及准确确定一个单项式的次数。

【课前准备】。

教师准备教学用课件。

【教学过程】。

一、新课引入。

教师操作课件,展示章前图案以及字幕,学生观看并思考下列问题:

1.青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答下列问题:

(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?

分析:(1)根据速度、时间和路程之间的关系:路程=速度×时间.列车在冻土地段2小时行驶的路程是100×2=200(千米),3小时行驶的路程为100×3=300(千米),t小时行驶的路程为100×t=100t(千米).

(2)列车通过非冻土地段所需时间为2.1t小时,行驶的路程为120×2.1t(千米);列车通过冻土地段的路程为100t,因此这段铁路的全长为120×2.1t+100t(千米).

(3)在格里木到拉萨路段,列车通过冻土地段要u小时,那么通过非冻土地段要(u-0.5)小时,冻土地段的路程为100u千米,非冻土地段的路程为120(u-0.5)千米,这段铁路的全长为[100u+120(u-0.5)]千米,冻土地段与非冻土地段相差为[100u-120(u-0.5)]千米.

思路点拨:上述问题(1)可由学生自己完成,问题(2)、(3)先由学生思考、交流的基础上教师引导学生分析怎样列式.

上述的3个问题中的数量关系我们分别用含有字母的式子表示,通过本章学习,我们还可以将上述问题(2)、(3)进行加减运算,化简.

kb2.下面,我们再来看几个用含字母的式子表示数量关系的问题.

用含有字母的式子填空,看看列出的式子有什么特点.

(1)边长为a的正方体的表面积为______,体积为_______.

(2)铅笔的单价是x元,圆珠笔的单价是铅笔的单价的2.5倍圆珠笔的单价是_______元.

(3)一辆汽车的速度是v千米/时,它t小时行驶的路程为_______千米.

(4)数n的相反数是_______.

教师课堂巡视,关注中下程度的学生,及时引导,学生探究交流.

上面各问题的代数式分别是:6a2,a3,2.5x,vt,-n.

观察上面各式中运算有什么共同特点?

上面各式中,数字与字母之间,字母与字母之间都是乘法运算,它们都是数字与字母的积,例如:6a2表示6×a2,a3表示1×a3,2.5x表示2.5×x,vt表示1×v×t,-n表示-1×n.

像上面这样,只含有数与字母的积的式子叫做单项式.单独的一个数或一个字母也是单项式.如:-2,a,,都是单项式,而,1+x都不是单项.

单项式中的数字因数叫做这个单项式的系数,例如:6a2的系数是6,a3的系数是1,-n的系数是-1,-的系数是-.

单项式表示数字与字母相乘时,通常把数字写成前面,当一个单项式的系数是1或-1时通常省略不写.

一个单项式中,所有字母的指数的和叫做这个单项式的次数.例如,2.5x中字母x的指数是1,2.5x是一次单项式;vt中字母v与t的指数和是2,vt是二次单项式,-ab2c中字母a、b、c的指数和是4,-ab2c是4次单项式.

七年级下人教版数学教案篇十四

1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;。

3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。

正确分析实际问题中的不等关系,列出不等式组。

建立不等式组解实际问题的数学模型。

出示教科书第145页例2(略)。

问:(1)你是怎样理解“不能完成任务”的数量含义的?

(2)你是怎样理解“提前完成任务”的数量含义的?

(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?

师生一起讨论解决例2.

1、教科书146页“归纳”(略).

2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?

在讨论或议论的基础上老师揭示:

步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。

七年级下人教版数学教案篇十五

3、在教学中适当渗透分类讨论思想。

重点:有理数的加法法则。

重点:异号两数相加的法则。

教学过程:

二、讲授新课。

1、同号两数相加的法则。

学生回答:两次运动后物体从起点向右运动了8m。写成算式就是5+3=8(m)。

教师:如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少?

学生回答:两次运动后物体从起点向左运动了8m。写成算式就是(-5)+(-3)=-8(m)。

师生共同归纳法则:同号两数相加,取与加数相同的符号,并把绝对值相加。

2、异号两数相加的法则。

学生回答:两次运动后物体从起点向右运动了2m。写成算式就是5+(-3)=2(m)。

师生借此结论引导学生归纳异号两数相加的法则:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

3、互为相反数的两个数相加得零。

教师:如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少?

学生回答:经过两次运动后,物体又回到了原点。也就是物体运动了0m。

师生共同归纳出:互为相反数的两个数相加得零。

教师:你能用加法法则来解释这个法则吗?

学生回答:可用异号两数相加的法则来解释。

一般地,还有一个数同0相加,仍得这个数。

三、巩固知识。

课本p18例1,例2、课本p118练习1、2题。

四、总结。

运算的关键:先分类,再按法则运算;。

运算的步骤:先确定符号,再计算绝对值。

注意:要借用数轴来进一步验证有理数的加法法则;异号两数相加,首先要确定符号,再把绝对值相加。

五、布置作业。

课本p24习题1.3第1、7题。

七年级下人教版数学教案篇十六

(4)设n是一个数,则它的相反数是________.

(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元。

2.请学生说出所列代数式的意义。

(设计意图:让学生会用单项式表示现实生活中的数量关系,进一步感悟用字母表示数的简洁、方便,使用的广泛性。)。

3.请学生观察所列代数式包含哪些运算,有何共同运算特征。

(由小组讨论后,经小组推荐人员回答)。

(设计意图:教师提出问题,激发学生学习的欲望、学习的积极性、主动性,以此为载体感悟单项式的特征,为归纳单项式概念作好准备)。

二、新授内容。

1、单项式。

通过上述特征的描述,从而概括单项式的概念,:

单项式:即由_____与______的乘积组成的代数式称为单项式。

补充:单独_________或___________也是单项式,如a,5。

2.练习:判断下列各代数式哪些是单项式?

(1);(2)abc;(3)b2;(4)-5ab2;(5)y+x;(6)-xy2;(7)-5。

解:是单项式的有(填序号):________________________。

七年级下人教版数学教案篇十七

学习目标:

1.会用正.负数表示具有相反意义的量.

2.通过正.负数学习,培养学生应用数学知识的意识.

3.通过探究,渗透对立统一的辨证思想。

学习重点:

用正.负数表示具有相反意义的量。

学习难点:

实际问题中的数量关系。

教学方法:

讲练相结合。

教学过程。

一.学前准备。

通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.

问题1:“零”为什么即不是正数也不是负数呢?

引导学生思考讨论,借助举例说明.

参考例子:温度表示中的零上,零下和零度.

二.探究理解解决问题。

问题2:(教科书第4页例题)。

先引导学生分析,再让学生独立完成。

(2)20xx年下列国家的商品进出口总额比上一年的变化情况是:

美国减少6.4%,德国增长1.3%,

法国减少2.4%,英国减少3.5%,

意大利增长0.2%,中国增长7.5%.

写出这些国家20xx年商品进出口总额的增长率.

解:(1)这个月小明体重增长2kg,小华体重增长―1kg,小强体重增长0kg.

(2)六个国家20xx年商品进出口总额的增长率:

美国―6.4%,德国1.3%,

法国―2.4%,英国―3.5%,

意大利0.2%,中国7.5%.

三.巩固练习。

从0表示一个也没有,是正数和负数的分界的角度引导学生理解.

在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.

在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.

通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.

四.阅读思考1页。

(教科书第8页)用正负数表示加工允许误差.

问题:1.直径为30.032mm和直径为29.97的零件是否合格?

2.你知道还有那些事件可以用正负数表示允许误差吗?请举例.

五.小结。

1.本节课你有那些收获?

2.还有没解决的问题吗?

六.应用与拓展。

1.必做题:

教科书5页习题4.5.:6.7.8题。

2.选做题。

1).甲冷库的温度是―12°c,乙冷库的温度比甲冷酷低5°c,则乙冷库的温度是.

七年级下人教版数学教案篇十八

一:教材分析:

1:教材所处的地位和作用:

以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。

2:教育教学目标:

(1)知识目标:

(a)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。

(b)通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。

(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。

(3)思想目标:

通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。

3:重点,难点以及确定的依据:

根据题意寻找和;差;倍;分问题的相等关系是本课的重点,根据题意列出一元一次方程是本课的难点,其理论依据是关键让学生找出相等关系克服列出一元一次方程解应用题这一难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。

二:学情分析:(说学法)。

1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。

2:学生在列方程解应用题时,可能存在三个方面的困难:

(1)抓不准相等关系;

(2)找出相等关系后不会列方程;

(3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。

3:学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。

4:学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。

5:学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。

三:教学策略:(说教法)。

如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:

1:“读(看)——议——讲”结合法。

2:图表分析法。

3:教学过程中坚持启发式教学的原则。

教学的理论依据是:

1:必须先明确根据应用题题意列方程是重点,同时也是难点的观点,在教学过程中帮助学生抓住关键,克服难点,正确列方程弄清楚题意,找出能够表示应用题全部含义的一个相等关系,并列出代数式表示这相等关系的左边和右边。为此,在教学过程中要让学生明确知晓解题步骤,通过例1可以让学生大致了解列出一元一次方程解应用题的方法。

2:在教学过程中要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表示应用题全部含义的一个相等关系,分析的过程可以让学生只写在草稿上,在写解的过程中,要求学生先设未知数,再根据相等关系列出需要的代数式,再把相等关系表示成方程形式,然后解这个方程,并写出答案,在设未知数时,如有单位,必须让学生写在字母后,如例1中,不能把“设原来有_千克面粉”写成“设原来有_”。另外,在列方程中,各代数式的单位应该是相同的,如例1中,代数式“_字串7”“—15%_”“42500”的单位都是千克。在本例教学中,关键在于找出这个相等关系,将其中涉及待求的某个数设为未知数,其余的数用已知数或含有已知数与未知数的代数式表示,从而列出方程。在例1中的相等关系比较简单明显,可通过启发式让学生自己找出来。在例1教学中同时让学生巩固解一元一次方程应用题的五个步骤,特别是第2步是关键步骤。

3:针对学生在列方程解应用题中可能存在的三个方面的困难,在教学过程中有意识加以解决,特别是学生抓不准相等关系这方面,可以让学生通过表格,图表等形式帮助学生找出相等关系表示成方程。如例1在分析过程中通过表格让学生明了清楚直观解决列方程的难点。

4:通过图表对比使学生更直观,理解更深刻,同时,降低了理论教学的难度和分量,提高课堂教学效益(教学手段)。

5:在课后习题的安排上适当让学生通过模仿例题的思想方法,加深学生解应用题的能力,这主要由于学生刚刚入门,多进行模仿,习惯以后,再做与例题不一样的习题,可以提高运用知识能力,同时让学生进行一题多解,找出共同点,区别或最佳列法,以开阔学生的思路。

四:教学程序:

(一):课堂结构:复习提问,导入讲授新课,课堂练习,巩固新课,布置作业五个部分。

(二):教学简要过程:

1:复习提问:

(1):什么叫做等式?

(2):等式与方程之间有哪些关系?

(3):求_的15%的代数式。

(4):叙述代数式与方程的区别。

(理由是:通过复习加深学生对等式,方程,代数式之间关系的理解,有利于学生熟练正确根据题意列出一元一次方程,从而有利降低本节的难度。)。

2:导入讲授新课:

(1):教具:

一块小黑板,抄212例1题目及相对应的空表格。

左边右边。

(2):新课引述:

(3):讲述课文212例1:

(目的是:要求学生认真读懂题目,寻找反映题目的全部含义的相等关系,必须根据题目关系,切勿盲目性)通过理解启发学生寻找出以下关系:原来重量—运出重量=剩余重量(a)(在指导学生分析寻找题意相等关系时,可能存在学生分析问题思路不同,会找出如下关系:原来重量=运出重量+剩余重量,原来重量—剩余重量=运出重量的相等关系来,这主要由于学生思路不同,得出的关系表面不同,但思路是正确的,应加以鼓励培养学生这种发散思维能力。)。

指导学生设原来重量为_千克。这里分析等式左边:原来重量为_千克,运出重量为15%_千克,把以上填入表格左边。字串7分析等式右边:剩余重量为42500千克,填入表格右边。

(目的是:通过分析使学生易看出,先弄懂题意,找出相等关系,再按照相等关系来设未知数和列代数式,有利于降低列方程解应用题的难度)。

把以上左边和右边的代数式分别代入(a)中,同时要求学生注意方程的左边和右边的单位要一致,就可以列出方程。

同时要求学生在解答过程中勿漏写“答”和“设”,且都不要漏写单位。

结合解题过程向学生介绍一元一次应用题解法的一般步骤:

课本215黑体字。

3:课堂练习:

课文216练习1,2题。

(目的是:让学生通过适当的模仿例题的解题思想方法从而加深对本课的内容的理解掌握。)。

4:新课巩固:

学生对本节内容进行要小结:

列方程解应用题着重于分析,抓住寻找相等关系。解一元一次应用题的一般步骤及注意事项。

(目的:让学生加深对应用题的解法的认识和该注意事项的重视。)。

5:作业布置:

课文221习题4-4(1)a组1,2,3题。

(目的:在于检验学生对本节内容的理解和运用程度,以及实际接受情况,并促使学生进一步巩固和掌握所学的内容。)。

五:板书设计:

4_4一元一次方程的应用:

例题:小黑板出示例1题目解:设原来有_千克面粉,那么运。

相等关系:原来重量—运出重量=剩余重量出了15%_千克,依题意,得。

等式左边:等式右边:_—15%_=42500。

原来重量为_千克,剩余重量为42500千克。解这个方程:

运出重量为15%_千克。85/100__=42500。

解一元一次方程的一般步骤:_=50000(千克)。

小黑板出示课文215黑体字内容提要答:原来有50000千克面粉。

七年级下人教版数学教案篇十九

1、教学方法:引导发现法、探究法、讲练法、

(一)重点

准确掌握积的乘方的运算性质、

(二)难点

用数学语言概括运算性质、

(三)解决办法

增强对三种运算性质的理解,并运用对比的方法强化训练以达到准确地区分、

一课时、

投影仪或电脑、自制胶片、

3、通过举例来说明积的乘方性质应如何正确使用,师生共练以达到熟练掌握、

4、多种题型的设计,让学生能从不同的角度全面准确地理解和运用该性质、

(一)明确目标

本节课重点学习积的乘方的运算性质及其较灵活地运用、

(二)整体感知

(三)教学过程

1、创设情境,复习导入

前面我们学习了同底数幂的乘法、幂的乘方这两个寨的运算性质,请同学们通过完成一组练习,来回顾一下这两个性质:

填空:

七年级下人教版数学教案篇二十

一个人只有在早晨开始就努力学习,这一天才不会被浪费掉。我们每一个人都是应该抓住每一分,每一秒,不让他们偷跑掉。同学们,请记住“成功,属于珍惜时间的人”,珍惜自己的时间,对你自己是有益的。学会高效的。

学习。

方法。

可以提高自身的学习能力。下面就是小编为大家梳理归纳的内容希望能够帮助到大家。

2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;。

3,体验分类是数学上的常用处理问题的方法。

教学难点正确理解分类的标准和按照一定的标准进行分类。

知识重点正确理解有理数的概念。

教学过程(师生活动)设计理念。

探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

问题1:观察黑板上的9个数,并给它们进行分类.

学生思考讨论和交流分类的情况.

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

例如,

对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.??…(由于小数可化为分数,以后把小数和分数都称为分数)。

通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.

按照书本的说法,得出“整数”“分数”和“有理数”的概念.

看书了解有理数名称的由来.

“统称”是指“合起来总的名称”的意思.

学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会。

练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

2,教科书第10页练习.

此练习中出现了集合的概念,可向学生作如下的说明.

数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

也可以教师说出一些数,让学生进行判断。

集合的概念不必深入展开。

创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生。

总结。

已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数这个分类可视学生的程度确定是否有必要教学。

小结与作业。

课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

本课作业1,必做题:教科书第18页习题1.2第1题。

2,教师自行准备。

本课。

教育。

评注(课堂设计理念,实际教学效果及改进设想)。

1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概。

念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进。

行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分。

类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

教学目标1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;。

3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

教学难点数轴的概念和用数轴上的点表示有理数。

知识重点。

教学过程(师生活动)设计理念。

设置情境。

引入课题教师通过实例、课件演示得到温度计读数.

(多媒体出示3幅图,三个温度分别为零上、零度和零下)。

问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.

点表示数的感性认识。

合作交流。

从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

寻找规律。

归纳结论问题3:

1,你能举出一些在现实生活中用直线表示数的实际例子吗?

3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

4,每个数到原点的距离是多少?由此你会发现了什么规律?

(小组讨论,交流归纳)。

归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

巩固练习。

教科书第12页练习。

小结与作业。

课堂小结请学生总结:

1,数轴的三个要素;。

2,数轴的作以及数与点的转化方法。

本课作业1,必做题:教科书第18页习题1.2第2题。

2,选做题:教师自行安排。

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

2,教学过程突出了情竟到抽象到概括的主线,

教学方法。

体了特殊到一般,数形结合的数学思想方法。

3,注意从学生的知识。

经验。

出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

教学目标1,掌握相反数的概念,进一步理解数轴上的点与数的对应关系;。

2,通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;。

3,体验数形结合的思想。

教学难点归纳相反数在数轴上表示的点的特征。

知识重点相反数的概念。

教学过程(师生活动)设计理念。

设置情境。

引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类。

4,-2,-5,+2。

允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。

(引导学生观察与原点的距离)。

思考结论:教科书第13页的思考。

再换2个类似的数试一试。

培养学生的观察与归纳能力,渗透数形思想。

深化主题提炼定义给出相反数的定义。

学生思考讨论交流,教师归纳总结。

规律:一般地,数a的相反数可以表示为-a。

思考:数轴上表示相反数的两个点和原点有什么关系?

练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。

深化相反数的概念;“零的相反数是零”是相反数定义的一部分。

强化互为相反数的数在数轴上表示的点的几何意义。

给出规律。

解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?

学生交流。

分别表示+5和-5的相反数是-5和+5。

练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法。

小结与作业。

课堂小结1,相反数的定义。

2,互为相反数的数在数轴上表示的点的特征。

3,怎样求一个数的相反数?怎样表示一个数的相反数?

本课作业1,必做题教科书第18页习题1.2第3题。

2,选做题教师自行安排。

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.

2,教学引人以开放式的问题人手,培养学生的分类和。

发散思维。

的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.

3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.

七年级下人教版数学教案篇二十一

4通过平行公理推论的推理,培养学生的逻辑思维能力和进行推理的能力

1教师教法:尝试法、引导法、发现法

2学生学法:在教师的引导下,尝试发现新知,造就成就感

(一)重点

平行公理及推论

(二)难点

平行线概念的理解

(三)解决办法

通过引导学生尝试发现新知、练习巩固的方法来解决

投影仪、三角板、自制胶片

1通过投影片和适当问题创设情境,引入新课

2通过教师引导,学生积极思维,进行反馈练习,完成新授

3学生自己完成本课小结

(-)明确目标

(二)整体感知

(三)教学过程

创设情境,引出课题

学生齐声答:不是

师:因此,平面内的两条直线除了相交以外,还有不相交的情形,这就是我们本节所要研究的内容(板书课题)

[板书]24平行线及平行公理

探究新知,讲授新课

师:在我们生活的周围,平面内不相交的情形还有许多,你能举例说明吗?

学生:窗户相对的棱,桌面的对边,书的对边……

师:我们把它们向两方无限延伸,得到的直线总也不会相交我们把这样的直线叫做平行线

[板书]在同一平面内,不相交的两条直线叫做平行线

教师出示投影片(课本第74页图2?17)

师:请同学们观察,长方体的棱与无论怎样延长,它们会不会相交?

学生:不会相交

师:那么它们是平行线吗?

学生:不是

师:也就是说平行线的定义必须有怎样的'前提条件?

学生:在同一平面内

师:谁能说为什么要有这个前提条件?

学生:因为空间里,不相交的直线不一定平行

教师在黑板上给出课本第73页图2

学生:两种相交和平行

由此师生共同小结:在同一平面内,两条直线的位置关系只有相交、平行两种

尝试反馈,巩固练习(出示投影)

1判断正误

(1)两条不相交的直线叫做平行线()

(2)有且只有一个公共点的两直线是相交直线()

(3)在同一平面内,不相交的两条直线一定平行()

(4)一个平面内的两条直线,必把这个平面分为四部分()

2下列说法中正确的是()

a在同一平面内,两条直线的位置关系有相交、垂直、平行三种

b在同一平面内,不垂直的两直线必平行

c在同一平面内,不平行的两直线必垂直

d在同一平面内,不相交的两直线一定不垂直

学生活动:学生回答,并简要说明理由

师:我们很容易画出两条相交直线,而对于平行线的画法,我们在小学就学过用直尺和三角板画,下面清同学在练习本上完成下面题目(投影显示)

已知直线和外一点,过点画直线

师:请根据语句,自己画出已知图形

学生活动:学生在练习本上画出图形

师:下面请你们按要求画出直线

注意:(1)在推动三角尺时,直尺不要动;

(2)画平行线必须用直尺三角板,不能徒手画

尝试反馈,巩固练习(出示投影)

1画线段,画任意射线,在上取、、三点,使,连结,用三角板画,,分别交于、,量出、、的长(精确到)

2读下列语句,并画图形

(1)点是直线外的一点,直线经过点,且与直线平行

(2)直线、是相交直线,点是直线、外的一点,直线经过点与直线平行与直线相交于

(3)过点画,交的延长线于

学生活动:学生思考并回答,能画,而且只能画一条

师:我们把这个结论叫平行公理,教师板书

【板书】平行公理:经过直线外一点,有且只有一条直线与这条直线平行

学生:思考后,立即回答,能画无数条

师:请同学们在练习本上完成

(出示投影)

已知直线,分别画直线、,使,

学生活动:学生在练习本上完成

师:请同学们观察,直线、能不能相交?

学生活动:观察,回答:不相交,也就是说

师:为什么呢?同桌可以讨论

学生活动:学生积极讨论,各抒己见

学生活动:教师让学生积极发表意见,然后给出正确的引导

师:我们观察图形,如果直线与相交,设交点为,那么会产生什么问题呢?请同学们讨论

学生活动:学生在教师的启发引导下思考、讨论,得出结论

[板书]如果两条直线都和第三条直线平行,那么这两条直线也互相平行

学生活动:学生思考,回答:不对,给出反例图形,

例如:如图1所示,射线与就不相交,也不平行

师:同学们想一想,当我们说两条射线或线段平行时,实际上是什么平行才可以呢?

生:它们所在的直线平行

尝试反馈,巩固练习(投影)

七年级下人教版数学教案篇二十二

师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).

问题2:在生活中,仅有整数和分数够用了吗?

请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)。

学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有-的新数。

【本文地址:http://www.xuefen.com.cn/zuowen/11739182.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档