拼音是汉字音节,用以书写语言的一种声、文符号。写总结时,要注重用词准确、语句通顺。如果你对总结写作感到困惑,可以看看以下这些范文,或许能给你一些思路。
小学数学圆柱的体积教学设计篇一
1.结合实际让学生探索并掌握圆柱体积的计算方法,能正确运用公式解决简单的实际问题。
2.让学生经历观察、猜想、验证等数学活动过程,培养学生空间想象能力和探究推理能力,渗透“转化”、“极限”等数学思想,体验数学研究的方法。
3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,获得成功的喜悦。
理解并掌握圆柱体积计算公式,并能应用公式计算圆柱的体积。
掌握圆柱体积公式的推导过程。
圆柱的体积演示教具、多媒体课件、圆柱实物2个(一个为橡皮泥)、水槽、水。
一、情境激趣导入新课。
2、提问:“能用一句话说说什么是圆柱的体积吗?”(板书课题)。
二、自主探究,学习新知。
(一)设疑。
1、从刚才的实验中你有办法得到这个圆柱学具的体积吗?
2、再出示一个用橡皮泥捏成的圆柱体模型,你又能用什么好办法求出它的体积?
3、如果要求大厅内圆柱的体积,或压路机前轮的体积,还能用刚才的方法吗?(生摇头)。
(二)猜想。
1、猜想一下圆柱的体积大小可能与什么有关?理由是什么?
2、大家再来大胆猜测一个,圆柱的体积公式可能是什么?说说你的理由?
(三)验证。
1、为了证实刚才的猜想,我们可以通过实验来验证。怎样进行这个实验呢?结合我们以往学习几何图形的经验,说说自己的想法。(用转化的方法,根据学生叙述课件演示圆的面积公式推导过程)。
2、圆柱能转化成我们学过的什么图形呢?它又是怎么转化成这种图形的?(小组讨论后汇报交流)。
3、指名两位学生上台用圆柱体积教具进行操作,把圆柱体转化为近似的长方体。
4、根据学生操作,师再次课件演示圆柱转化成长方体的过程。并引导学生分析当分的份数越多时,拼成的图形越接近长方体。
5、通过上面的观察小组讨论:
(1)圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?
(2)长方体的底面积与原来圆柱体的哪部分有关系?有什么关系?
(3)长方体的高与原来圆柱体的哪部分有关系?有什么关系?
(4)你认为圆柱的体积可以怎样计算?
(生汇报交流,师根据学生讲述适时板书。)。
小结:把圆柱体转化成长方体后,形状变了,体积不变,长方体的底面积等于圆柱的底面积,高等于圆柱的高,因为长方体的体积等于底面积×高,所以圆柱体积也等于底面积×高,用字母表示是v=sh。
6、同桌相互说说圆柱体积的推导过程。
7、完成“做一做”:一根圆形木料,底面积为75cm2,长是90cm。它的体积是多少?(生练习展示并评价)。
8、求圆柱体积要具备什么条件?
9、思考:如果只知道圆柱的底面半径和高,你有办法求出圆柱的体积吗?如果是底面直径和高,或是底面周长和高呢?(学生讨论交流)。
小结:可以根据已知条件先求出圆柱的底面积,再求圆柱的体积。
10、出示课前的圆柱,说一说现在你可以用什么办法求出这个圆柱的体积?(测不同数据计算)。
11、练一练:列式计算求下列各圆柱体的体积。
(1)底面半径2cm,高5cm。
(2)底面直径6dm,高1m。
(3)底面周长6.28m,高4m。
三、练习巩固拓展提升。
1、判断正误:
(1)等底等高的圆柱体和长方体体积相等。……()。
(2)一个圆柱的底面积是10cm2,高是5m,它的体积是10×5=50cm3。.....()。
(3)圆柱的底面积越大,它的体积就越大。……()。
(4)一个圆柱的体积是80cm3,底面积是20cm2,它的高是4cm。……()。
四、全课总结自我评价。
通过这节课的学习你有什么感受和收获?
圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。由于圆柱是一种含有曲面的几何体,这给体积的认识和计算增加了难度。为了降低学习难度,让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。
从本节课教学目标的达成来看,较好地体现了以下几方面:
一、创设生活情境,体现数学生活化。
《新课程标准》指出:要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我从生活情境入手,创设了一个装水的学具槽放入圆柱学具使水面上升的情境,引导学生观察思考,直观感知圆柱体积的概念,同时意识到过去学的排水法可以用来求圆柱的体积,紧接着当老师再出示橡皮泥捏成的圆柱体模型,并追问大厅内圆柱的体积等问题时,学生意识到前面所说求体积计算方法的局限性,从而产生思维困惑,进一步激发了探究圆柱体积计算方法的欲望。这样的导入不仅为学生创造了一个十分宽松的生活化学习环境,还为学生后面构建数学模型,发现圆柱体积公式奠定了基础。在练习的设计上,为避免纯数学的计算,我以学生熟悉的学校圆柱形花坛为背景,提出求花坛填土体积这样的问题,让学生学会灵活应用知识解决简单的实际问题,在巩固体积计算方法的同时,进一步感受到数学知识的使用价值。这样的教学安排不仅体现了数学来源于生活,又应用于生活的思想,也使数学的课堂教学充满浓浓的生活味。
二、引导学生经历知识探究的全过程。
动手实践、自主探究、合作交流是《新课程标准》所倡导的数学学习的主要方式。在本课教学中,由于学具的欠缺,没能给学生提供小组动手操作的机会,为了弥补这一不足,最大限度发挥学生自主学习的作用,教学中我努力为学生搭建探究平台,通过观察、设疑、猜想、验证,经历圆柱体积的转化过程,发展学生的空间想象能力。在探究圆柱体积的过程中,我从本班学情出发,大胆放手让学生猜想“圆柱体积大小可能与什么有关,可能怎样计算,为什么?”,然后再结合以往学习几何图形的经验,回顾圆的面积推导过程,实现知识迁移,明确“转化”思想在数学研究中的重要意义。为了让学生直观感受到圆柱体转化为长方体的过程,我较好地借助实物模型和多媒体课件演示,把二者有机结合,先让两个学生上台操作演示,然后再课件动态模拟,在学生充分观察的基础上,小组讨论交流:当圆柱体转化成近似的长方体后什么变了,什么没变?长方体的底面积与圆柱的底面积有什么关系?长方体的高与圆柱的高有什么关系?从而得出结论:圆柱的体积等于底面积乘以高。整个探究过程以学生自主学习为主,知识的形成给学生留下深刻的印象。伴随着问题的圆满解决,学生体验到了成功的喜悦与满足。
三、注重学法指导和数学思想方法的渗透。
“学会学习”是对学生“学”的最高要求,因此在教学中不但要教给学生知识,更要教给学生学习的方法,让学生终身受用。在本节课的教学中,我把“观察、猜想、验证”的学法指导,贯穿于整个学习过程,使学生学得主动有效。在探究方法的引导上从回忆圆的面积公式推导入手,确定转化的方法,体验转化的过程,验证转化的结果,使“转化”、“极限”等数学思想在课中得到良好渗透,学生进一步体会到科学、条理的数学思维方式,从而发展了学生的数学能力。
小学数学圆柱的体积教学设计篇二
九年义务教育六年制小学数学人教版第十二册第33—34页的内容。
知识与技能:理解并掌握圆柱体的侧面积和表面积的计算方法,能结合具体情境,灵活运用计算方法解决实际问题。
过程与方法:经历圆柱表面积、侧面积计算方法的探索过程,培养学生自主探索、合作交流的能力。
情感态度与价值观:学生获得积极成功的情感体验,体会数学与生活的密切联系。
能结合具体情境,灵活运用圆柱侧面积、表面积的计算方法解决实际问题。
圆柱形模型、剪刀。
(一)创设生活情景,引入新课。
我根据学生喜欢喝饮料的爱好,创建生活情景,“同学们都喜欢喝饮料,那么你们知道做这样的一个饮料罐至少需要多少的铁皮吗?怎样计算?”这节课,我们就来一起学习圆柱的表面积(板书课题)(设计意图:数学来源于生活,又应用于生活,我利用学生的生活实际设疑引入新课,很容易激发学生的学习兴趣,进而求知,解决问题。)。
(2)引导探究,学习新知。
师:我们来做一个“饮料罐”,该怎样做?
生:要做一个圆筒,和两个完全相同的圆。
师:用什么形状的纸来做卷筒呢?同学们说的意见不一致时,我适时引导,你们动手剪一剪不就知道了吗?每一组的同学都剪开自己带来的圆筒,有的得到了长方形,有的得到了平行四边形,也有的得到了正方形。
(设计意图:动手操作,使学生对圆柱各部分的组成有了完整的认识,培养了学生的创造能力,同时也揭示了知识间的内在联系,实现了知识的转化和迁移。)。
2、探究圆柱侧面积的计算。
师:我们先来研究把圆筒剪开展平是一个长方形的情况,求这个饮料罐要用铁皮多少?就是求什么?学生观察、思考、议论。
生1:求饮料罐铁皮用料面积就是求:圆面积×2+长方形面积。
师:这两位同学说得对吗?要求圆柱体的表面积要知道什么条件?
生3:我看只要知道圆的半径和高就可以了。
师:我们来听听这位同学是怎么想的。
生3:长方形的长与圆的周长相等,长方形的宽与圆柱的高相等,所以只要知道圆的半径就可以求出长方形的长,也可以求出圆的面积。生4:我觉得知道圆的直径和高也可以了。
生5:我还觉得知道圆的周长和高也行。
师:这三位同学都说得很好,那么圆柱的侧面积该怎样求?
生6:因为长方形面积=长×宽所以圆柱的侧面积=底面周长×高。
师:如圆柱展开是平行四边形或正方形,是否也适用呢?学生分组动手操作,动笔验证,得出了同样的结论。
小结:同学们会动手、动脑,巧妙地把圆柱的侧面转化为平面图形,圆柱的侧面展开后不论是长方形、正方形或平行四边形,圆柱的侧面积都等于它的底面周长乘高。
师板书:圆柱侧面积=底面周长×高s侧=ch出示例1让学生独立计算出圆柱的侧面积,一生板演,集体订正。
(设计意图:学生在教师创设的情境中,分组合作得出结论,充分调动了学生学习的积极性,同时个性也得到发展。)。
师:我们知道了圆柱侧面积的计算了,那么它的表面积该怎样算呢?
(1)出示例2。
分组讨论例2中给了哪些条件?求什么问题?它的表面积应包括几个面?怎样解答。
(设计意图:学生已掌握了圆面积和侧面积的计算方法,教学圆柱的表面积时,让学生自学交流就能掌握方法。)。
(2)教学例3。
师:通过计算,你有哪些收获?
生5:我知道了,做这个无盖水桶要用铁皮多少平方厘米就是求一个侧面积和一个底面积的和。
生6:在得数保留时,我觉得应该用进一法取近似值,因为用料比实际多一些,因为有损耗,所以要用进一法。让学生看34页,看“注意”后的一段话。
(设计意图:让学生从生活实际出发,充分讨论,理解进一法,明确在什么情况下用“进一法”取近似值,培养学生实际应用意识。)。
(3)巩固练习,灵活运用。
小结:计算圆柱的表面积要根据具体实物分别处理,要学会运用新学的知识合理灵活地解决生活中的实际问题。
2、综合练习(只列式,不计算)。
(设计意图:通过这种练习进一步培养学生根据实际情况灵活运用知识的能力。)。
3、实践与应用。
小组合作测量计算:制作所带的圆柱形实物的用料面积,先让学生讲讲需要测量哪些数据,以及测量方法,再进行测量和计算。
(设计意图:培养学生合作意识和动手操作能力,锻炼学生用所学知识解决生活中的实际问题,使学生感受数学就在身边,不断提高应用数学的意识。)。
(4)全课小结在实际生活中,计算圆柱的表面积,要根据具体情况灵活掌握,如计算油桶的表面积是求侧面积与两个底面积的总和;无盖水桶的表面积是求侧面积加上一个底面积;水管—的表面积只求侧面积,另外,在实际中使用的材料都要比计算得到的结果多一些,所以都要采用“进一法”取近似值。
圆柱的侧面积=底面周长×高。
长方形的面积=长×宽。
小学数学圆柱的体积教学设计篇三
本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。例4是圆柱的体计算公式的直接运用,是圆柱体积计算的基本,但这题又给学生设置了单位不统一的障碍,让学生在直接应用公式计算的同时注意计量单位的统一。例5是圆柱体积计算公式的扩展练习,意在让学生加深理解容积的概念,使之明确求水桶的容积就是求水桶内部的体积。例5除了在意义上扩展外,公式的运用中也有加深,水桶的底面积没有直接给出,因此要先求出水桶的底面积,再求出水桶的体积。
1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2.会用圆柱的体积计算圆柱形物体的体积和容积。
3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力。
4.借助实物演示,培养学生抽象、概括的思维能力。
圆柱体、长方体彩图各一张,圆柱的体积公式演示教具。
小刀,用土豆做成的一个圆柱体。
我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
[评析:复习抓住教学重点,瞄准学习新知识所必须的旧知识,、旧方法进行铺垫,沟通了知识之间的内在联系,衔接自然。新课引入教师引出了学习新知识的思路,导出了解决问题的方法,从而调动了学生学习的积极性,激发了学生探求新知识的欲望。
1.探究推导圆柱的`体积计算公式。
(2)请学生演示教具,学生边演示边讲解切割拼合过程。
(3)根据学生讲解,出示圆柱和长方体的彩图。
(4)学生观察两个立体图,找出两图之间有哪些部分是相等的?
(5)依据长方体的体积计算公式推导出圆柱的体积计算公式。板书:v=sh。
(6)要用这个公式计算圆柱的体积必须知道什么条件?
2.教学例4。
(1)出示例4。
(3)请一名同学板演,其余同学在作业本上做。
(5)教师归纳学生所用的解题方法。强调在解题的过程中要注意单位统一。
3.教学例5。
(1)请同学们想一想,如果已知圆柱底面的半径rt和高h,怎样求圆柱的体积?请学生自学并填写第44页第一自然段的空白部分。
(2)出示例5,指名读题。请同学们思考解题方法。
(3)请学生讲解题思路讨论、归纳统一的解题方法。
(4)让学生按讨论的方法做例5。
(5)教师评讲、总结方法。
(6)学生讨论。比较例4、例5有哪些相同和不同点。
1.做第44页下面做一做的题目。两人板演,其余在自己作业本主做,做完后及时反馈练习中出现的错误,并加以评讲。
2.刚才同学们在做例4时,还有下面几种解法,请大家仔细思考,这些解法是对还是错?试说明理由。
(1)v=sh=5o2.1=105。
答:它的体积是105立方厘米。
(2)2.l米=210厘米。
v=sh=50210=10500。
答:它的体积是10500立方厘米。
(3)50立方厘米=0.5立方米。
v=sh=0.52.1=1.05(立方米)。
答:它的体积是l.05立方米。
(4)50平方厘米=0.005平方米。
v=0。00521=0.01051。
答:它的体积是0.01051(立方米)。
问:这节课里我们学到了哪些知识?根据学生回答教师总结。
练习十一的第l、2题。
[总结实:本节课的教学体现了三个主要特点:
三、正确处理两主关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好。总之,本节课教师引导得法,学生学得灵活,体现了重在思,贵在导,导思结合的原则,体现了教是为了不教,学会是为了会学的素质教育思想。
小学数学圆柱的体积教学设计篇四
一、填空。
1、一个圆柱体,底面积是12平方分米,高6分米,它的体积是立方分米。
2、一个圆柱体积是84立方厘米,底面积21平方厘米,高是()。
3、已知圆柱谷桶里底面半径是3米,高4米,它的底面积是(),容积是()立方米。
二、求下面圆柱的`体积。
1)底面积0。6平方米,高0。5米2)底面半径4厘米,高12厘米。
3)底面直径5分米,高6分米4)底面周长12。56厘米,高12厘米。
小学数学圆柱的体积教学设计篇五
1.教学内容。
本节课是人教版六年小学数学课本第十二册第三单元第二小节第一课时,内容包括圆柱体的体积计算公式的推导和运用公式计算它的体积。
2.本节课在教材中所处的地位和作用。
《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。
3.教材的重点和难点。
由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公社的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。
4.教学目标。
(1)知道圆柱体积计算公式的推导过程,会应用该公式计算圆柱的体积。
(2)初步建立空间观念和逻辑推理能力。
(3)知道知识间是可以互相转化的。
二、说教法。
从形式已有的知识水平和认识规律出发,为了更好地突出重点,化解难点,扫清学生认知上的思维障碍,在实施教学过程中,主要体现以下几个特点:
1.直观演示,操作发现。
教师充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。
2.巧设疑问,体现两“主”
教师通过设疑,指明观察方向,营造探究新知识的氛围,在引导学生归纳推理等方面充分发挥了其主导作用,有目的、有计划、有层次地启迪学生的思维,充分发挥了学生的主体作用。把学生当作教学活动的主体,成为学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。
3.运用迁移,深化提高。
运用知识的迁移规律,培养学生利用旧知学习新知的能力,从而使学生主动学习,掌握知识,形成技能。
三、说学法。
课堂教学中,不是老师单纯地传授知识,而是在老师的指引下,让学生自己学,任何人都不能替代学生学习。所以要把教法融于学法中,在学法中体现教法。
本节课的教学,使学生掌握一些基本的学习方法。
1.学会通过观察、比较、推理能概括出圆柱体积的推导过程。
2.学会利用旧知转化成新知,解决新问题的能力。
3.学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。
四、说教学过程。
对本节课的教学,我们设计了以下几个环节,
(一)复习旧知识,为引入新知识作准备。
1.求下面各圆的面积(口算),单位为厘米。
(1)半径为1厘米;(2)直径为4厘米;(3)周长为62。8厘米。
2.什么叫做体积?怎样计算长方体的体积?
(二)导入新课,隐射教学目标。
1.观察比较:出示几组圆柱体实物(同底等高、同底不等高、等高不等底),引导学生观察比较,老师提出问题:通过观察,你想知道些什么?了解些什么?引导学生产生疑问后,教师这时交待,我们今天要学习的新知识,就能很好地解决这个问题(揭示课题)。让学生自行设疑,教师向学生交待学习任务,使学生对新知识产生强烈的求知欲望,从而进入最佳的学习状态。
2.展示学习目标,学生认读目标。
教师通过展示目标,学生认读目标,这时学生就能清楚地知道了学习的主要任务和要求,从而把教师的教学目标,转化成了学生的学习目标。使学生带着目标,有目的、有准备地学习下一步的新知识,学生就真正能成为学习的主人,也使教学变得更加明确具体,可操作、可检测。同时也能激发起全体学生的参与达标意识,学生的主体地位就充分地显示出来了。
(三)导入新课,实施教学目标。
1.设疑:要判断圆柱体积的大小,究竟哪个大?哪个小?到底圆柱的体积与什么有关呢?能不能把圆柱转化成我们学过的立体图形来计算它的体积?这里老师引导学生回忆圆的'面积公式的推导过程,教师出示投影,帮助学生思考。
2.演示操作,揭示新知。
引导学生用字母表示出来,最后让学生看书质疑。
这部分教学设计意图:根据教材特点,学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,完成从演示——观察——操作——比较——归纳——推理的认识过程,让知识在观察、操作、比较中内化,实现由感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破难点,化解难点。
关于难点的突破,我们主要从以下几个方面着手:
(1)引导学生通过观察比较,明确圆柱体的体积与它的底面积和高有关。
(2)运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获得新知识。
(3)充分利用直观教具,师生互动,通过演示操作,帮助学生找出两种几何形体转化前后的关系。
(4)根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。
3.运用。
出示例1:先由学生自己尝试练习,请一位学生板演,集体讲评时提问学生,在解题时要注意什么?让学生自己来概括总结,通过学生的语言说出:(1)单位要统一(2)求出的是体积要用体积单位。
小学数学圆柱的体积教学设计篇六
1.在情境中建立数学与生活的联系。
《数学课程标准》指出:数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,为他们提供观察和操作的机会,使他们有更多的机会从周围熟悉的事物中学习数学和理解数学,体会到生活中处处都有数学,感受到数学的趣味和作用。本设计在教学伊始,有效利用教材提供的具体情境,引导学生在观察、讨论中发展形象思维,建立数学与生活的联系,在学生建立了圆柱的表面积表象的同时抛出问题,激发学生的学习热情和探究意识。
2.在操作中渗透转化思想。
转化思想是数学学习和研究中的一种重要的思想方法。本设计为学生提供充分的动手操作机会,使学生经历用自己的方法把圆柱的侧面化曲为直的过程,体会圆柱的侧面沿高展开所形成的长方形的长和宽与圆柱的有关量之间的关系。使学生在观察、推理中掌握圆柱侧面积和表面积的计算方法,在实际操作中体会转化思想,提高学生探究问题的能力。
3.在应用中培养学生解决问题的能力。
“培养学生应用知识解决生活问题的能力”是数学教学的重要任务之一。本设计重视引导学生把生活中的实际问题转化为数学问题,引导学生把数学知识与生活实际相结合,具体问题具体分析,灵活运用圆柱表面积的计算方法解决生活中一些相关的问题,使学生在分析、思考、合作的过程中完成对圆柱表面积的不同情况的探究,提高分析、概括和知识运用的能力。
教师准备多媒体课件。
学生准备纸质圆柱形物体剪刀长方形纸板。
提出问题、设疑导入。
1.说一说。
师:生活中,哪些物体的形状是圆柱?谁能和大家说一说?圆柱在生活中的应用非常广泛,和我们的生活是密切相关的。
2.想一想。
课件出示情境图:做一个圆柱形纸盒,至少要用多大面积的纸板?(接口处不计)。
3.汇报。
小组合作,观察、讨论:求至少要用多大面积的纸板就是求圆柱的上、下底面的面积和圆柱的侧面积之和。
4.交代学习目标,导入新课。
师:圆柱的上、下底面的面积和圆柱的侧面积之和也叫圆柱的表面积,这节课我们就来探究有关圆柱表面积的问题。(板书课题)。
设计意图:创设情境,培养问题意识,引导学生思考,使学生在观察、讨论中初步感知圆柱表面积的意义,学生的思考和探究活动就有了明确的方向,为学习新知做好铺垫。
小学数学圆柱的体积教学设计篇七
教学内容:教材第12页例3、练一练,练习二第6~11题。
教学要求:使学生进一步认识体积的计算方法,能根据不同的条件求圆柱的体积,学会计算套管体积的计算方法,井能应用于实际求出物体的重量。
教学重点:计算套管体积的计算方法。
教学难点:根据不同的条件求圆柱的体积。
教学过程:
一、铺垫孕伏:
(1)底面积3平方分米,高4分米;
(2)底面半径2厘米,高2厘米;
(3)底面直径2分米,高3分米。
追问:圆柱的体积是怎样计算的?(板书:v=sh)。
2.复习环形面积的计算公式。
提问:怎样计算环形面积?你能举例和同学们说一说吗?小组交流。
3.引入新课。
我们已经学习过圆柱的体积计算。这节课,就在计算圆柱体积的基础上,学习套管体积的计算。(板书课题)。
二、自主探究:。
1.教学例3。
出示例3,读题。提问:这道题求什么?要求钢管的质量先要求什么?怎样求钢管的体积?小组讨论。解答这道题还要注意些什么?(单位,取近似数)指名学生板演,其余学生做在练习本上。集体订正,说明每一步求的什么,怎样求的。
2.新课小结。
三、巩固练习。
1.做练一练第1题。
指名两人板演,其余学生分两组,每组-题做在练习本上。集体订正。
2.做练习二第6题。
让学生在练习本上完成。指名学生口答算式,老师板书。结合让学生说一说是怎样想的。
四、布置作业。
练习二第7、8题及数训。
小学数学圆柱的体积教学设计篇八
教材第5~6页例2、例3和练一练,练习一第48题。
1.使学生理解和掌握圆柱体表面积的计算方法,能根据实际情况正确地进行计算,培养学生解决简单的实际问题的能力。让学生认识取近似值的进一法。
2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。
教师准备一个圆柱模型(表面要有可揭下各个部分的一层纸);学生准备一个圆柱体。
掌握圆柱侧面积的计算方法。
:能根据实际情况正确地进行计算。
1.复习圆柱的特征。提问:圆柱有什么特征?
2.计算下面圆柱的侧面积(口头列式):
(1)底面周长4.2厘米,高2厘米。
(2)底面直径3厘米,高4厘米。
(3)底面半径1厘米,高3.5厘米。
3.提问:圆柱的一个底面面积怎样计算?
4.引入新课。
我们已经会计算圆柱的侧面积,那么怎样计算圆柱的表面积呢?这节课就学习圆柱的表面积计算,(板书课题)。
1.认识表面积计算方法。
(1)请同学们拿出圆柱来看一看,想一想圆柱的表而包括哪几个部分,然后告诉大家。指名学生拿出圆柞,边指边说明它的表面包括哪几个部分。
(2)教师演示。
出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。
(3)得出公式。
2.教学例2。
出示例2,学生读题。提问:这道题分哪几步来算?你们会做吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一步的具体含义,是怎样算的。
3.组织练习。
做练一练第1题。指名两人板演,其余学生做在练习本上。集体订正,说说这两题计算时有什么不同的地方,为什么?指出:计算圆柱的表面积,要注意题里的条件,正确列出算式计算。
4.教学例3。
出示例3,学生读题。提问:这道题实际是求什么?这里求表面积与例2有什么不同,为什么?(只要用侧面积加一个底面积)指名学生板演,其余学生做在练习本上。集体订正,追问为什么只加一个底面积。强调不用四舍五入法及其理由,说明用进一法,并让学生说明结果的近似值,板书订正。
5.组织练习。
(1)下面的数用进一法保留整数,各是多少?(口答)。
162.329.43.842.6。
(2)做练一练第2题。让学生做在练习本上。指名口答前两步各求什么,怎样算的。(老师板书算式)提问:第三步要怎样算,为什么只加一个底面积。
这节课学习子什么内容?你学到了些什么?指出:求圆柱表面积在实际应用中,要注意题里的实际情况,弄清什么时候要侧面积加两个底面积,什么时候要侧面积加一个底面积,什么时候只要求侧面积,然后计算结果。另外,在求需要材料取近似数时,一般要用进一法。
课堂作业:练习一第5~7题。
小学数学圆柱的体积教学设计篇九
《圆柱的体积》是在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。根据本节课的性质特点和六年级学生以形象思维为主、空间观念还比较薄弱的特点,我确定本节课的教学目标为:
1、知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。
2、过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、情感、态度、价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。
教学的重点和难点:
由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来推导,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。
二、把握学情,选择教法。
(一)学情分析。
六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。
(二)、选择教法,实践课题。
《新课程标准》指出:数学教学应联系现实生活,使学生从中获得数学学习的积极情感体验,感受数学的力量。同时我紧密结合自己的课题“培养学生自主合作学习能力与学生数学素养的策略研究”、“在数学课上如何激发学生的学习兴趣”。通过教学实践,使学生学会自主学习和小组合作,培养学生的创新精神和小组合作及应用数学意识。因此,在本节课中,我认为运用活动教学形态,多媒体演示形态,采取“引导―合作―自主―探究”的教学方法,使每个学生都能参与到学习中,感受到学习的乐趣,从而突破本课的难点。
三、教学策略的选择。
现代教育心理学认为:小学生思维的发展是从具体形象思维向抽象思维过渡的。因此,按小学认知规律从“具体感知―形成表象―进行抽象”的过程,我打算主要采用观察发现法、实验法,以及分组讨论、合作学习等形式,并运用多媒体课件辅助教学,让学生在观察、感知各种实物的基础上,动手操作,分组讨论、合作学习,教师恰当点拨,适时引导等方法及手段,激发学生的学习兴趣,调动学生的学习积极性,让学生通过动手操作、观察、实验得出结论,体现了以学生为主体、教师为主导的教学原则。
四、基于以上构想,我确定本节课的教学程序为:
教师活动:创设情境协作指导拓展延伸。
学生活动:操作感悟自主探究实践应用。
具体为三个环节进行教学:
1、直观演示,操作发现。
学生充分利用直观教具观察、比较、动手操作、讨论交流,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。
2、巧设疑问,体现两“主”
教师通过设疑,指明观察方向,营造探究新知识的氛围,在引导学生归纳推理等方面充分发挥了其主导作用,有目的、有计划、有层次地启迪学生的思维,充分发挥了学生的主体作用。把学生当作教学活动的主体,成为学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。
3、运用迁移,深化提高。
运用知识的迁移规律,培养学生利用旧知学习新知的能力,从而使学生主动学习,掌握知识,形成技能。
现代课堂教学中,不是老师单纯地传授知识,而是在老师的指引下,让学生自己学,任何人都不能替代学生学习。所以要把教法融于学法中,在学法中体现教法。
本节课的教学,使学生掌握一些基本的学习方法。
1、学会通过观察、比较、推理能概括出圆柱体积的推导过程。
2、学会利用旧知转化成新知,解决新问题的能力。
3、学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。
具体教学程序:
(一)、情景引入:
(2)你能想办法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。
2、创设问题情景。
如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。(板书课题:圆柱的体积)通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成“任务驱动”的探究氛围。
(二)、新课教学:
设疑揭题:同学们想一想,我们当初是如何推导出圆的面积计算公式的呢?课件演示推导圆的面积公式的转化过程。我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?引导学生小组合作交流、观察、既而动手操作。沿着圆柱底面把圆柱切开,可以得到大小相等的16块或更多块,启发学生说出转化成我们熟悉的长方体。同时引导学生观察转化前后两种几何形体之间的内在联系,圆柱的底面与长方体的底面有什么关系?圆柱的高与长方体的高又有什么关系?学生交流、进行验证、自己推导出圆柱体体积计算的公式。教师再用多媒体课件演示验证整个的具体操作过程,最后让学生说一说圆柱体计算公式的整个推导过程。引导学生用字母表示出来。
根据教材特点,学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,亲自完成从演示――观察――操作――比较――归纳――推理的认识过程,让知识在观察、操作、比较中内化,实现由感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破难点,化解难点。
关于难点的突破,我主要从以下几个方面着手:
(1)引导学生自己动手通过观察比较,明确圆柱体的体积与它的底面积和高有关。
(2)运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获得新知识。
(3)充分利用直观教具,师生互动,小组合作,通过演示操作,帮助学生找出两种几何形体转化前后的关系。
(4)根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。
3、运用。出示例。
1:先由学生自己尝试练习,请一位学生板演,集体讲评时提问学生,在解题时要注意什么?让学生自己来概括总结,通过学生的语言说出:
(1)单位要统一。
(2)求出的是体积要用体积单位。在掌握了圆柱体积计算的方法之后,安排例1进行尝试练习,这样既可以调动学生的学习积极性和主动性,又可以培养学生学习新知识的能力,同时把所学知识转化为相应的技能。
(三)巩固练习,检验目标。
1、练一练1题:计算各圆柱的体积,目的是让学生进一步理解巩固圆柱的体积公式。
2、完成练习第2题。通过练习,巩固新知识,加深对新知识的理解,把所学知识进一步转化为能力,在练习中发展智力,培养优良的思维品质和学习习惯。
3、变式练习:已知圆柱的体积、底面积,求圆柱的高。
这道题的安排是对所学内容的深化,在掌握基础知识的前提下,培养思维的灵活性,同时深化教学内容,防止思维定式。
4、动手实践:让学生测量自带的圆柱体。
这道题的设计,一方面培养了学生解决实际问题的能力,另一方面也加深了对圆柱体积计算公式的理解,同时数学知识也和学生的生活实际结合起来,使学生明白,我们所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生的学习兴趣。
(四)总结全课,深化教学目标。
结合板书,引导学生说出本课所学的内容,我是这样设计的:这节课我们学习了哪些内容?圆柱体积的计算公式是怎样推导出来的?你有什么收获?然后教师归纳,通过本节课的学习,我们懂得了新知识的得来是通过已学的知识来解决的,以后希望同学们多动脑,勤思考,在我们的生活中还有好多问题需要利用所学知识来解决的,望同学们能学会运用,善于用转化的思想来丰富自己的头脑,思考问题。
板书设计:略。
五、教学效果预测:
新课程标准认为:“数学教学是师生交往、互动与共同发展的过程,教师是课堂气氛的调节者”。本节课我始终注意以人为本,从学生的兴趣出发,通过动手实践、自主探究、自主发现、使学生充分地理解、掌握圆柱体体积公式的推导过程,并熟练地加以运用。
本节课的设计,我遵循小学生的认知规律,由直观到抽象,由感性到理性,采用分组讨论,合作学习等形式,让学生参与教学全过程,增强了学生的主人翁意识。并用计算机多媒体教学课件辅助教学,激发了学生的学习兴趣,提高了教学效率与效益。在圆满的同时,我也觉得会有一些可能出现问题的地方:比如,在具体的运用、实践中一定要注意和圆柱的表面积加以区别,这一点我在实际的教学中会多加以指导和训练。
小学数学圆柱的体积教学设计篇十
教学目标:
1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、进一步提高学生解决问题的能力。
教学重、难点:
1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、理解圆柱体积公式的推导过程。
教学准备:圆柱切割组合模具、小黑板。
教学过程:
一、创设情境,生成问题。
1、什么是体积?(物体所占空间的大小叫做物体的体积。)。
2、长方体的体积该怎样计算?归纳到底面积乘高上来。
3、圆的面积怎样计算?
二、探索交流,解决问题。
(启发学生思考。)。
2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。
3、思考:
(1)圆柱切开后可以拼成一个什么形体?(长方体)。
(2)通过实验你发现了什么?
小组讨论:实验前后,什么变了?什么没变?
讨论后,整理出来,再进行汇报。
(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方。
体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)。
学生汇报讨论结果。
长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。
师:圆柱的体积怎样计算?用字母公式,怎样表示?
板书:v=sh。
5、算一算:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积吗?
三、巩固应用练习。
1、一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,
这个水桶的容积是多少升?
说明:求水桶的容积,就是求水桶的体积。想一想先求什么?
2、一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?
先求底面半径再求底面积,最后求体积。
已知底面周长对解决问题有什么帮助吗?必须先求出什么?四:课堂小结:
通过这节课你学会了哪些知识,有什么收获?五:课后作业:
教材第9页,练一练第1、3、4、题。
小学数学圆柱的体积教学设计篇十一
在这节课学生进行数学探究时,由于条件的限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了学生。接着再结合多媒体演示让学生感受“把圆柱的底面分的份数越多,切开后,拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生基本没有亲身参与操作,非常遗憾。但我使用了课件-----把圆柱体沿着它的直径切成诺干等份,拼成一个近似的长方体,展示切拼过程.学生虽然没有亲身经历,但也一目了然.,学习效果还可以。
本节的练习,提高了学生运用数学知识解决身边问题的能力,从学数学的角度,注意了数学知识的特点。运用已有的知识经验解决新的问题,在新旧知识的联系上,使学生想象合理、联系有方。
小学数学圆柱的体积教学设计篇十二
核心提示:学生进行圆柱体积公式探究时,由于条件的限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了个别学生。接着再结合多媒体演示让学生感受“把圆柱的`底面分的份数越多,切开后,拼起...
学生进行圆柱体积公式探究时,由于条件的限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了个别学生。接着再结合多媒体演示让学生感受“把圆柱的底面分的份数越多,切开后,拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,从而推导出圆柱体积的计算公式。非常遗憾的是学生基本没有亲身参与操作,。但我使用了课件-----把圆柱体沿着它的直径切成诺干等份,拼成一个近似的长方体,展示切拼过程.学生虽然没有亲身经历,但也一目了然.
小学数学圆柱的体积教学设计篇十三
谈话:前面我们认识了圆柱,学习了圆柱的底面积、侧面积和表面积,今天学习“圆柱的体积”。(教师板书,学生齐读)。
启发:看到这个课题,你们会想到什么?这堂课要解决什么问题呀?(可能学生会提出以下几个问题)。
引导:
(1)什么是圆柱的体积?
(2)圆柱的体积和什么有关?
(3)圆柱的体积公式是怎样推导出来的?
(4)圆柱的体积是怎样求出来的?
(5)学习圆柱的体积公式有什么用?
谈话:对!刚才这几位同学跟老师想的一样。
启发:圆柱的体积就是圆柱所占空间的大小。
谈话:这堂课我们主要解决三个问题:(出示探究问题)。
1、圆柱的体积和什么有关?
2、这个公式是怎样推导出来的?
3、学习了圆柱的体积能解决什么实际问题?
【设计意图】直接揭示课题,启发学生自己提出教学的要求,这样既创设了问题情境,激发学生学习的兴趣,又使学生明确这堂课的教学目标。
1、提出问题。
谈话:现在请大家回忆一下,我们以前学过哪些立体图形的体积计算。是怎样计算的?
引导:我们已经学过长方体、正方体的体积计算。(教师随着学生的回答,逐一出示出上述图形)。
谈话:长方体的体积=长×宽×高。
正方体的体积=棱长×棱长×棱长。
统一为:长方体或正方体的体积=底面积×高。
谈话:长方体和正方体和今天学习的圆柱有什么显著的区别?
引导:长方体的面都是平面图形,圆柱的侧面是一个曲面。
引导:它的侧面是一个曲面,用体积单位直接量是有困难的。
2、引发猜想。
谈话:圆柱的体积和什么有关系呢?(准备三组比较圆柱体杯里饮料的多少:一组是底面积一样,高不同;另一组高一样,底面积不同;最后一组底面积、高都不同)。
引导:圆柱体的体积既和底面积有关,又和高有关。
3、自学课本。
谈话:圆柱体的体积和底面积、高到底有什么关系呢?如何求圆柱体的体积?
启发:请大家阅读课本,在课本中寻找答案。(教师要求学生利用预先准备好的平均分成16份圆柱学具拼一拼,学生一边看书,一边操作。学生阅读课本后,全班交流。)。
引导:我们用图形转化的方法,求圆柱的体积。
谈话:这个办法很好。那么把圆柱转化成什么图形呢?
引导:长方体。
谈话:以前我们学习圆的面积时也是运用转化的策略,把圆转化成近似的长方形,“化曲为直”、“化圆为方”推导出圆的面积计算公式。
(用多媒体演示圆形的转化过程,边出示、边交流)。
【设计意图】在不能用体积单位直接量的情况下,启发学生运用转化的数学思想解决问题。通过复习了旧知识,又为学习新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。
谈话:同学们观察一下,拼成的是什么图形?
引导:近似的长方体。
启发:说得很好,为什么说是近似的长方体,哪里不太像?
引导:长都是许多弧线组成,不是直的。
谈话:这里我们把圆柱分成16等分,还能分吗?
谈话:究竟能分多少份呢?
引导:无数份,可以永远分下去。
谈话:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长就越接近于直线段,这个图形就越接近于长方体。
谈话:从分割、拼接的操作过程中,比较拼成的近似长方体与原来的圆柱,你发现了什么?
汇报:把圆柱体转化为近似的`长方体,形状变了,体积没有变。
谈话:要求圆柱的体积,我们只要求转化后的长方体的体积就可以了。
汇报:
(1)转化后的近似长方体的底面积与原来的圆柱体的底面积相等。
(2)转化后的近似长方体的高与原来的圆柱体的高相等。
因为:长方体的体积=底面积×高。
(教师要求学生观察自己在课堂上拼出的图形,一边讨论,一边逐步写出推导的过程。)。
长方体的体积=底面积×高。
交流:我们也可以用字母表示圆柱的体积计算公式:v=sh(板书)。
引导:刚才我们的猜想是正确的,圆柱的体积既和底面积有关,又和高有关。
现在请同学们把圆柱体积公式的推导过程再完整地说一遍。
谈话:通过猜一猜我们知道了圆柱体积的大小与圆柱的底面积和高有关。
通过分一分、拼一拼我们把圆柱转化成了近似的长方体。
通过比一比、算一算成功地推导出圆柱的体积计算公式,解决了我们前两个要探究的问题。
【设计意图】要求每个学生动手操作,打破了过去教师演示教具学生看的框框,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆柱体积的公式。
小学数学圆柱的体积教学设计篇十四
1.填空。
(1)()叫做物体的体积。
(2)用字母表示长方体的体积公式是()。
(3)棱长2分米的正方体,一个面的面积是(),表面积是(),体积是()。
(4)一个长方体长是0.4米、宽0.2米、高0.2米,它的表面积是(),体积是()。
(5)5立方米=()立方分米。
2.8立方分米=()立方厘米。
720立方分米=()立方米。
32立方厘米=()立方分米。
2.7立方米=()升。
1200毫升=()立方厘米。
4.25立方米=()立方分米=()升。
1.2立方米=()升=()毫升。
2.一块砖长24厘米,宽1.2分米,厚6厘米,它的体积是多少立方分米?
小学数学圆柱的体积教学设计篇十五
在上圆柱体积公式前,我精心备课,准备好教具,课堂上把教给学生,让他们四人一小组,去合作演示,充分讨论探索,我在教室里引导学生总结归纳;圆柱体能拼成近似的长方体,长方体的底面积等于圆柱体的底面积,长方体的高就是圆柱的高。因此,长方体的体积就是圆柱的体积,从而推导出v=sh.学生在课堂中合作十分融洽,我自己也觉得这堂课设计得非常不错,按照备课的程序,接下来就是加深学生对公式的运用、巩固。突然,一双小手高高举起“老师,我有不同方法计算圆柱的体积”我一愣,备课时根本没有考虑到用其它方法;我灵机一动,对,让他说出自己的方法,这位同学用v=ch/2r,即圆柱侧面积的一半乘以底面半径,我当时没有下结论,把这个“球”踢给学生,让他们一起探讨这种说法是否正确;不久学生都异口同声的肯定了。这种新颖的创新思维,课堂上响起了热烈的掌声。
这堂课后,我的心久久不能平静,学生独特见解、探索,使我看到学生的创新潜力是巨大的',重在教师的开发、引导。“创新是一个民族的灵魂,是一个国家兴旺发达的不竭动力。”在教学中,孩子们的创新意识常常体现在一些奇思妙想中,有的也许细稚,有的也许太“出格,”但这些却是学生创新精思维的闪现,必须珍惜,这样才能培养出具有创新精神的时代新人。在今后的教学中把充足的探究时间与空间交给学生,改变以教师为主体的传统观念,以学生为主体,教师为主导,让学生成为课堂的真正主人。
小学数学圆柱的体积教学设计篇十六
1、使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
目标1。
:目标2。
1、一个直径是100毫米的圆,求周长。
2、一个半径3厘米的圆,求周长和面积。
3、一个长为3米,宽为2米的长方形,它的面积是多少?
4、出示圆柱体的模型,说说它有什么特征?
1、做一个圆柱形纸盒,至少需要多大面积的纸板?(接口处不计)。
要解决这个问题,就是求什么?
2、圆柱的表面积包括哪几部分?
3、圆柱的表面积的计算关键在哪一部分?
4、探索圆柱侧面积的计算方法。
1)圆柱的侧面展开后是一个怎样的图形呢?用一张长方形的纸,可以卷成圆柱形。
2)圆柱侧面展开图的长和宽与这个圆柱有什么关系?怎样求圆柱的侧面积呢?
3)师;圆柱的侧面积就是求长方形的面积。用长乘宽。
4)长就是圆柱的'底面圆的周长,宽就是圆柱的高。
5)请你来总结一下圆柱侧面积的计算方法。
6)圆柱的侧面积用2∏rh,求圆柱的表面积要用侧面积加两个底面积。
1、求底面半径是10厘米,高30厘米的圆柱的表面积。
2、教师板书:
侧面积:2╳3.14╳10╳30=1884(平方厘米)。
底面积:3.14╳10╳10=314(平方厘米)。
表面积:1884+314╳2=2512(平方厘米)。
要求按步骤进行书写。
2、试一试。
做一个无盖的圆柱形铁皮水桶,底面直径围分米,高为5分米,至少需要多大面积的铁皮?
求至少需要多少铁皮,就是求水桶的表面积。
这道题要注意什么?无盖就只算一个底面。这种题如果求整数,一般用进一法。
3、练一练。书第6页第1题。
3个小题:已知底面直径或底面周长和高,求圆柱的表面积。重点讨论:已知底面周长,求表面积。
它山之石可以攻玉,以上就是为大家整理的4篇《小学六年级数学教案《圆柱的体积》》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在。
小学数学圆柱的体积教学设计篇十七
一、填空。
1、一个圆柱体,底面积是12平方分米,高6分米,它的体积是立方分米。
2、一个圆柱体积是84立方厘米,底面积21平方厘米,高是()。
3、已知圆柱谷桶里底面半径是3米,高4米,它的底面积是(),容积是()立方米。
1)底面积0.6平方米,高0.5米2)底面半径4厘米,高12厘米。
3)底面直径5分米,高6分米4)底面周长12.56厘米,高12厘米。
三、应用题。
1、一个圆柱木桶,底面直径16厘米,高2分米,体积是多少立方厘米?
2、一段圆柱形的钢材。长60厘米。横截面直径10厘米。每立方厘米钢重7.8克,这段钢材重多少千克?(得数保留一位小数)。
小学数学圆柱的体积教学设计篇十八
2、一段圆柱形的钢材。长60厘米。横截面直径10厘米。每立方厘米钢重7.8克,这段钢材重多少千克?(得数保留一位小数)。
3、一个圆柱水桶,从里面量高是3分米,底面半径1.5分米,它大约可装水多少千克?(1升水重1千克)。
5、一只圆柱形水桶,底面半径是0.2米,高0.5米,装了桶水,问桶中有水多少升?
小学数学圆柱的体积教学设计篇十九
2、提问:“能用一句话说说什么是圆柱的体积吗?”
(学生互相讨论后汇报,教师设疑)。
1、比较大小、探究圆柱的体积与哪些要素有关。
(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?
(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。
(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)。
(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。
2、大胆猜想,感知体积公式,确定探究目标。
(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。
(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。
(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?
(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。
(5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)。
4、确定方法,探究实验,验证体积公式。
(1)、首先要求学生利用实验工具,自主商讨确定研究方法。
(2)、学生通过讨论交流确定了两种验证方案。
方案一:将圆柱c放入水中,验证圆柱c的体积。
方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。
(3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。
(5)、学生汇报:实验的结果与猜想的结果基本相同。
(6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。
(7)、小结:
要想求出一个圆柱的体积,需要知道什么条件?
(8)、学生自学第8页例4上面的一段话:用字母表示公式。
学生反馈自学情况:
v=sh。
1、课件出示例4,学生独立完成。
指名说说这样列式的依据是什么。
2、巩固反馈。
3、完成第9页的“试一试”和练一练”中的两道题。
(“练一练”只列式,不计算)。
集体订正,说一说圆柱体的体积还可以怎样算?
5、拓展练习。
(1)、一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)。
谈谈这节课你有哪些收获。
教学内容:人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积。
教学目标:
1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:掌握和运用圆柱体积计算公式。
教学难点:圆柱体积计算公式的推导过程。
【本文地址:http://www.xuefen.com.cn/zuowen/11736202.html】