名人名言,蕴含着深刻的道理和智慧,是我们学习和思考的重要素材。写总结时,可以借鉴他人的观点和经验,但要保持独立思考。欢迎大家参考以下范文,希望能对大家的总结写作提供一些帮助。
可能性教学设计及说课稿篇一
1、猜人名:咱们班有一位同学在这学期有很大的进步,你们猜猜是谁?(引出可能是....)。
2、老师温馨提示:他是一名男生,他的姓是一种动物。一定是某某某,不可能是某某。
(设计意图:激发兴趣,引出“可能”、“一定”、“不可能”,板书课题:可能性)。
1、初步感知事件发生的不确定性。
(1)组织交流,得到可能是....
(2)可能是黑桃k么?不可能。
(3)换成4张一样的牌,一定能抽到?
(1)哪个盒子一定能取出黄色乒乓球?
(2)哪个盒子不可能取出黄色乒乓球?
(3)哪个盒子里可能取出黄色乒乓球?
【设计意图:巩固“可能”,“一定”,“不可能”,并引出可能性是有大小的】。
(4)第二个盒子和第三个盒子都可能摸出黄色乒乓球,哪个盒子摸出黄球的可能性大呢?为什么?可能性真的有大有小么?下面我们来研究一下。
(5)摸棋子游戏:
将18个黄球,2个白球放入不透明的盒子里,组织学生依次从盒子中摸出一颗棋子,记录它的颜色,再放回去摇匀,重复20次。用统计表记录结果。
记录(画正字)。
次数。
黄球。
白球。
根据表格总结:取出黄球的次数要多些,也就是取出红棋子的`可能性要大些。
(6)再取一次取出哪种颜色的可能性最大?
3、验证结论。
实验:小组分工,一个人负责洗牌,组员轮流抽牌,另一个同学负责记录。汇报实验结果。
小结:以摸球为例,可能性的大小与在总数中所占数量的多少有关,在总数中占的数量越多摸到的可能性也就越大;占的数量越少,摸到的可能性也就越小。
(2)选一选。
(3)想一想。
六、课外延伸:中国的彩票中奖概率只1752万分之一,也就是说,每注2元的彩票,你要购买11万年之久才有机会中奖,所以我们要靠自己的勤劳与智慧创造财富。
可能性教学设计及说课稿篇二
教学目标。
1、经历与体验收集、整理、分析数据的过程,学会用画正字的方法收集整理数据,体会统计是研究解决问题的方法之一。
2、经历试验的具体过程,能对试验可能发生的结果做出简单判断,并做出适当解释,从中体验某些事件发生的可能性是相等的。
3、培养积极参与数学活动的意识,初步感受动手试验是获得科学结论一种有效方法,激发主动学习的积极性,进一步发展与他人合作交流的意识和能力。
教学。
重难点重点是通过活动认识一些事件发生的等可能性,难点是理解任意摸一次球,红球和黄球的机会是相等的。
教学准备教学课件,红球、黄球、布袋若干,正方体。
教学内容师生活动。
3—5分钟。
20—25分钟。
5—10分钟。
3—5分钟。
1、阿凡提的故事:阿凡提在地主巴依老爷家辛辛苦苦干了一年活,小气的巴依不想付工资给阿凡提,于是想了个歪主意.对阿凡提说:“阿凡提,我这儿这两张纸条让你抽,上面分别写着“付工资”“”和“不付工资”,如果你抽到哪一张,我们就按哪一张上写的办,你还是有一半机会的哦”。如果你是阿凡提,你会怎样想?(引出“可能”)。
2、复习“一定”“可能。”
(1)出示装有3个红球的口袋,提问:如果从中任意摸出一个球,该用哪种词语来描述摸球结果?(一定摸出是红球)。
(2)往口袋加入3个黄球,提问:如果从这样的口袋中任意摸出一个球,该用哪种词语来描述摸球结果?(可能摸出是红球,可能摸出是黄球)。
3、揭题:在我们生活中,有些事情一定会发生,有些事情不一定会发生,只能说具有可能性,今天,我们继续研究可能性问题。(板书:可能性)。
1、掷硬币游戏,初步感受可能性。游戏规则。
(1)竖着把硬币放在10厘米左右的高处让硬币自由落在杯中每人抛10次。
(2)用自己喜欢的方法在草稿纸上做好记录。
(3)抛完后,小组长统计本小组的情况并汇总,填好记录表,组内同学共同校对。
(4)活动时我们要互相合作,有秩序,保持安静。
教师统计:思考:出现正面和反面的.可能性是怎样的?先在小组里讨论.。
(结论:有正有反,次数差不多)。
2、摸球游戏。
(1)猜测。
学生自由猜测。(许多伟大的发明和发现都是从猜测开始的,如歌德巴赫猜想,但有了猜想还要继续验证。数学家陈景润经过验证,证明了歌德巴赫猜想因为实践是检验真理的唯一标准)。
(2)验证。
这仅仅是我们的猜测,向知道自己猜测的对不对,我们可以怎么做?(摸一摸)。
游戏规则:1、摸前先把袋中球搅一搅,然后转过脸去从中任意摸一个,摸出后回头看一看,给大家看自己摸到的是什么颜色的球,把球再放入口袋中,按这样,大家轮流摸,一共40次。2、组长用画“正”字的方法来记录。
3、摸完后,组长填写统计表,其他同学负责校对。
4、活动时我们要互相合作,互相谦让,控制好音量,请各小组在小组长的带领下分工。
怎样用画“正”的方法来记录,谁来给我们介绍一下?教师在黑板演示一下。
a、明确分工:活动时我们要互相合作,互相帮助,这样才能顺利完成任务,请各小组在小组长的带领下分工,组长记录,副组长数次数,其余监督。
b、活动体验:学生分组试验,填写统计表,教师巡回指导。
(3)归纳。
小组汇报统计结果,教师实物展示。
红球。
黄球。
合计红球黄球。
次数。
学生:摸到可能是红,也可能是黄,次数差不多。
可能红的多一些,也可能黄的多一些。
3、老师对学生的回答进行小结:在篓子里红黄球个数相同的情况下,从篓子里每摸一个球,摸得次数又比较多,那么摸到红黄球的次数是差不多的。这就说明在这种情况下,任意摸一个球,摸到红黄球的机会是相等的,也就是说摸到红黄球的可能性是相等的。
小结并揭示学法:说明从装有3个红球和3个黄球的袋子任意摸出一个球,摸到红球和黄球的机会是相等的,也就是说可能性是相等的。
提问:
(2)记录之后我们又对数据作了怎样的处理?(填入统计表板书:统计可)见我们用统计的方法来研究事情发生的可能性是一个很好的方法。
(3)通过试验和统计得到什么结论?(摸到红球和黄球的可能性是相等的)。
用的是什么方法?
小结:猜测----验证----结论。
过渡:想不想用我们刚才的方法做第三个游戏?
教师出示两个面上都有1、2、3的小正方体。
游戏规则:
1、按顺序上抛小正方形,不宜太高,看落下时“1”“2”“3”朝上的次数,按这样,大家轮流抛,一共30次。
2、组长指派一人用画“正”字的方法来记录。
3、抛完后,组长指派一人填写记录表和统计表,其他同学负责校对。
学生体验。填写表格。
朝上的数字123。
次数。
可能性教学设计及说课稿篇三
教学内容:
教材p106—107。
教学目的:
1、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
2、通过实际操作活动,培养学生的动手实践能力。
3、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。
教学重、难点:
能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
教学过程:
一、引入。
用自己的话说一说什么是“可能性”举例子说明。
今天我们继续学习关于“可能性”的知识。
二、实践探索新知。
1、教学例3(比较两种结果的可能性大小)。
(1)观察、猜测。
出示小盒子,展出其中的小球色彩、数量,(四红一蓝)。
如果请一位同学上来摸一个球,你们猜猜他会摸到什么颜色的球?
和同桌说一说,你为什么这样猜?
(2)实践验证。
学生小组操作、汇报实践结果。
汇总各小组的实验结果:几组摸到红,几组摸到了蓝色。
从小组汇报中你发现了什么?为什么会有这样的情况?
:摸到红色多,摸到蓝色的少,因为盒中球红多蓝少。
(3)活动体验可能性的大小。
小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。
活动汇报、
实验过程中,要让学生体会到两点:一、每次摸出的结果是红色还是蓝色,这是随机的,不以人的主观意愿而变化。二、但摸的次数多了以后,在统计上就呈现某种共同的规律性,就是摸出蓝的次数比红多。
(4)小组实验结果比较。
比较后,你发现了什么规律?
出示多组的实验结果,虽然数据不一致,但呈现的规律是相同的。
(1)出示盒内球(一绿四蓝七红)。
(2)猜一猜,摸出哪种颜色的球可能性最大,摸出哪种颜色的球的可能性最小?为什么?
3、p106“做一做”
图中每种颜色进行了分割,此时学生可以用数份数的方法来看三种颜色所占的区域大小。
利用前面学过的分数的知识让学生说一说每种颜色占整个圆面的几分之几,为以后学习可能性的精确值做铺垫(因为概率与这些分数相等)。
三、练习。
p1094。
第4题,是一种逆向思维。并体现开放性,如第1小题,只要红比蓝多,就能满足条件。第2小题,只要蓝比红多,都满足条件。
p1095。
教学反思:
可能性教学设计及说课稿篇四
1.使学生初步本验有些事情的发生是确定的,有些则是不确定的,初步能用一定可能不可能等词语描述生活中一些事情发生的可能性。
2.能够列出简单实验中所有可能发生的结果。
3.培养学生学习数学的兴趣,形成良好的合作学习的态度。
体验事件发生的确定性和不确定性。
击鼓传花游戏,鼓声停时一位同学上台抽签,签中内容有礼物、唱歌、猜谜。
猜猜他抽中了什么签?
(引出用可能、不可能等词来表达,揭示课题:可能性)。
(一)教学例题1。
请同学们看前面,这里有个盆:1号盆、2号盆。(实物:例题上的装有不同颜色小球的盆)咱们来看看里面都有些什么颜色的球。
展示两盆中球的颜色、数量。
1、从1号盆里面任意摸出一个球,一定是红球吗?为什么?
学生讨论,教师巡视指导。
各小组都已讨论好了,谁想代表小组发言?(依次指名学生说)。
(依次板书:一定可能不可能)。
师:小朋友讨论得都非常好。下面,我们实际来摸一摸,验证一下。1号盆,谁来?(学生摸出3个后提问,如继续摸下去,结果怎么样?)。
2、从2号盆里任意摸一个呢?请小组讨论。
请学生摸一摸(摸出3个后提问,如继续措下去,能摸到红球吗?那可能摸出什么球?为什么?)(老师可根据盆里剩下的球随机提问,如:接下去可能摸出什么颜色的球?接下去一定能摸到什么球?)。
3、活动小结。
(二)教学例题2。
例如:(请学生举例几个)。
2、自已阅读书本例题2。
谁理解题目意思了,给大家解释一下。
独立完成。
3、汇报、讲评。
4、练习。
108页练习二十四第一题。
这节课我们学习了有关可能性的知识,把今天所学的知识和我们的生活联系起来,想一想生活中哪些事是一定会发生的,哪些事是不可能发生的,而哪些事是可能发生,也可能不发生的呢?你能举出一些例子,用一定可能、不可能说一说吗?请同学们先下位和你的好朋友说一说。(学生说)。
学生说完后全班交流。
p1082、3。
教材p106107。
1、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
2、通过实际操作活动,培养学生的动手实践能力。
3、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。
能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
用自己的话说一说什么是可能性举例子说明。
今天我们继续学习关于可能性的知识。
1、教学例3(比较两种结果的可能性大小)。
(1)观察、猜测。
出示小盒子,展出其中的小球色彩、数量,(四红一蓝)。
如果请一位同学上来摸一个球,你们猜猜他会摸到什么颜色的球?
和同桌说一说,你为什么这样猜?
(2)实践验证。
学生小组操作、汇报实践结果。
汇总各小组的实验结果:几组摸到红,几组摸到了蓝色。
从小组汇报中你发现了什么?为什么会有这样的情况?
小结:摸到红色多,摸到蓝色的少,因为盒中球红多蓝少。
可能性教学设计及说课稿篇五
学校是公平教育的主阵地,教育公平主要体现在每节课的课堂教学当中,这是一节以公平为素材的课,主要有以下几处特色与亮点:
1本活动是以学生为中心的参与式教学活动,通过学生亲身体验,合作探究获得知识。
2在设计活动时,给学生给出活动目标,即让学生明确通过活动,学到那些知识和技能,获得那些体验,得到那些发展;其次选择的材料是学生容易获得的,符合学生心理特证和年龄特征的,整节课以活动为中心,通过活动学生掌握了知识和技能,个性发展等方面达到了预期目标。
3为学生创设了问题情景,让学生自己提出假设,通过亲身活动,感受知识,从而获得知识和技能。
4突出了课堂的公平性,达到公平教育教学的目的。
本节课是以公平为素材的课,因此在本节课上教师要着重注意以下几个问题;1要为学生营造公平和谐的课堂氛围;2提高课堂参与均等机会;3还要为学生提供课堂提问均等性;4提高课堂公平进程。
1.学生初步体验有些事件发生是确定的,有些则是不确定的,会结合已有的经验对一些事情发生的可能性进行判断并能简单地说出原因。
2.学会列举记录简单事件有可能发生的结果。
3.学生知道事件发生的可能性的大小是不同的,能对一些简单事件发生的可能性大小进行比较。
4.能由一些简单事件发生的可能性大小逆推比较事件多少。
5.培养学生简单的逻辑推理、逆向思考和与人交流思考过程的能力。
摸球
转盘游戏
1能由一些简单事件发生的可能性大小逆推比较事件多少。
2培养学生简单的逻辑推理、逆向思考和与人交流思考过程的能
3感受公平的重要性。
40分钟
1两种颜色的玻璃球各10个。(黄色10个,红色10个)小布袋一条。
2游戏转盘一个。
3活动记录表各两份
第---------组
第一轮第一轮
第二轮第二轮
第三轮第三轮
可能性总结
第---------组
第一轮第一轮
第二轮第二轮
第三轮第三轮
可能性可能性
1分组活动。
按学生实际情况进行均衡分组,力求公平。
2第一组;做摸球活动。先猜测把猜测结果填入下表,然后摸球各成员每人摸出一球后观察颜色后放回小球并搅匀布袋中的小球,下一位摸球。将小组各成员摸到红球的次数和黄球的次数纪录在下表。
第---------组
第一轮第一轮
第二轮第二轮
第三轮第三轮
可能性可能性
第二组:转盘游戏活动。先猜测结果填入下表。然后各组成员每人转动一次转盘,当转盘停止转动后,观察指针停在那个区域,并把结果纪录下表。
第一轮第一轮
第二轮第二轮
第三轮第三轮
可能性可能性
3交换活动场地。第一组做转盘游戏活动,并根据猜测实际操作填表。第二组做摸球活动,并按照猜测,实际操作填表。
5各组展示两次活动的结果并回答下列问题:
7分组讨论下列问题:
在三轮摸球过程中,摸出红球和黄球的可能性与球的总数有什么关系?
指针停在阴影部分和空白部分的可能性与什么有关系?
在现实生活中怎样才能够做到公平公正?
8各组展示讨论结果。
9评介与总结。
1本活动旨在是参与者通过亲手实验,从随机事件中发现规律,从而建立真确的可能性的直觉,体验感受可能性的稳定性。
2随即现象结果的出现是偶然的,出现一个结果事先无法预料,但在大量的实验中它明显出现规律性————稳定性。
3本活动中,布袋中虽然所放红球数量和黄球数量虽然相等。但三轮摸球的纪录也不尽相同,摸球的次数越多红球出现的可能性和黄球出现的可能性就越稳定,依此做出的推断就越准确。
4本活动中,虽然在转盘上,黄色区域的面积占转盘总面积的八分之六(即四分之三),但指针并不一定都停在黄色区域,但随着转动转盘次数的增多,指针停在黄色区域内的可能性就越稳定。
5本活动中,让学生通过动手做实验知道只有可能性相等时,这个游戏才公平。
可能性教学设计及说课稿篇六
2、通过丰富的游戏活动和对生活中几种常见游戏(或现象)剖析与解释,使学生初步体会数学与生活的紧密联系。
体验事件发生的等可能性以及游戏规则的公平性,会用分数表示事件发生的可能性。
能按要求设计公平的游戏方案。
教、学具准备:cai课件;硬币;实验记录表;骰子;六个面上分别写上数字1-6的长方体等。
一、情境导入
师:同学们,你们看过足球比赛吗?还记得足球比赛开始前用什么方法决定哪个队先开球吗?请同学们看屏幕。
课件演示:如下图情境(教科书第99页的情境图)。
师:请观察图片,你们能不能说一说他们是用什么方法决定哪个队先开球的?
二、探究新知
1、动手实验,获取数据。
师:在开始实验之前,同学们要弄清楚实验要求哦,请看屏幕。
课件出示实验要求:1、抛硬币40次,抛硬币时用力均匀,高度适中;2、以小组为单位分别统计相关数据,填入实验报告单(如下表);3、小组成员分工协作,看哪个小组合作最好,完成得最快!
出现的情况正面朝上反面朝上总次数
出现次数
师:很好,我们要得到正面朝上的次数和反面朝上的次数,老师建议你们最好用画“正”字的方法来统计,那就动手开始实验吧!
师:大家做完实验了吗?请各个小组汇报实验结果。
课件出示统计表(如下表),根据学生的汇报教师填入数据。
小组正面朝上反面朝上总次数
1
2
3
4
5
…
合计
2、分析数据,初步体验。
师:请你们认真观察实验数据,发现正面朝上的次数和反面朝上的次数相等吗?
师:对,既有相等的也有不相等的,但正面朝上的次数和反面朝上的次数接近吗?
教师把所有小组的正面朝上次数、反面朝上的次数、总次数分别求和。
师:通过分析,我们发现正面朝上的次数和反面朝上的次数仍然是非常接近的。
3、阅读材料,加深体会。
师:如果我们继续抛下去,会是怎样的结果呢?历史上有很多数学家就做过抛硬币的实验。请看屏幕。
课件出示几位数学家的实验结果(如下表)。
数学家总次数正面朝上反面朝上
德摩根409220482044
蒲丰404020481992
费勒1000049795021
皮尔逊240001201211988
罗曼列夫斯基806403969940941
让学生观察数据,发现正面朝上次数和反面朝上次数很接近。
4、分数表示,科学验证。
师:对,它们的可能性相同的,你们能用一个分数表示它们相同吗?
师:通过做实验,你们认为抛硬币决定谁先开球公平吗?为什么?
三、应用拓展
师:好,请看第一题,正方体的各面分别写着1、2、3、4、5、6.掷出每个数的可能性都是……?(出示教科书练习二十第1题)
课件出示方案一(如下图):转盘上红色占一半,蓝色、黄色各占。
方案一
师:你们觉得这个转盘设计得公平吗?
师:既然大家都认为这个转盘不公平,那怎样设计转盘才公平呢?
师:就按照你们的修改意见,改成三种颜色各占的转盘。
课件出示方案二(如下图)。
方案二
师:设计好转盘后,我们就开始转动转盘决定哪个组来回答第一题,好吗?
转动转盘,决定哪个组回答。
2、师:恭喜你们获得了第一面红旗。我们看下一题,指针停在这四种颜色区域的可能性各是多少?(课本练习二十第2题的第1题)
可能性教学设计及说课稿篇七
1、通过整理与复习,进一步巩固理解用分数表示可能性大小的基本思考方法,会用分数表示简单事件发生的可能性,进一步加深对可能性大小的认识。
2、进一步认识到数学与生活的联系,感悟生活中任何幸运与偶然的背后都是有科学规律支配的。
巩固用分数表示可能性的大小。
一、谈话导入:
1、本学期我们学习了用分数表示可能性的大小,请你举例说明。
2、学生举例说明。
二、基本练习:填空题,逐题出示,学生回答,并说明想法。
1、一个骰子的六个面分别是1-6点,掷骰子落下后,1点朝上的可能性是()。
2、口袋中有红、黄、绿球各2个,每次任意摸一个球,摸到红球的可能性是()。
3、一副扑克牌,从中任意摸一张,摸到红桃a的可能性是()。如果是两副扑克牌,从中任意摸一张,摸到红桃a的可能性是()。
4、口袋中放8个球,如果要保证摸到红球的可能性是3/4,口袋中应放()个红球。
5、五1班有男生25人,女生20人。要抽1名学生参加抽测,抽到男生的可能性是(),抽到女生的可能性是()。
6、袋中有6个红球,2个白球,每次从中任意摸一个(摸好放回)。摸40次,白球大约摸到()次。
7、有12个乒乓球,其中6个是红球,6个是黄球。从中任意摸一个,摸到红球的可能性是()。如果第一次摸出1个红球(摸好不放回),第二次又摸出一个红球(摸好不放回),再继续摸,那么第三次摸时,摸到红球的可能性是()。如果每次摸好后都放回呢?体会两种操作程序的不同,结果也不同。
8、抛一枚硬币,连续9次都正面朝上,第10次抛出,正面朝上的可能性为()。
体会每次抛到正面朝上的可能性都是1/2。不会因前面抛到的结果影响到后面的可能性。
9、红红和四个女生及三个男生一起玩捉迷藏,红红捉到一个同学,这名同学是女生的可能性是()。
体会其中的可能性只与被捉的学生有关,与红红无关。
三、综合题。
(一)画一画。
1、右图是一个转盘,请在转盘上画上阴影,使指针转动后,停在阴影部分的可能性是1/4。
2、有10枚围棋子,从中任意摸一枚,摸到黑子的可能性是4/5。请你画出符合条件的10枚围棋子。
(二)连一连。
3、在每个口袋里任意摸一个球,摸到黑球的可能性是多少?连一连。
(图意:4个口袋中分别装:2黑3白,3黑3白,4黑6白,4黑4白)。
(三)辩一辩。
7、一种彩票是由0-9的任意数字组成的三位数组合而成,如315或426等等。某人买了一张彩票,请分析他中奖的可能性。
8、出示教材上第118页上第25题。学生读题理解题目意思,按要求回答问题,并说明想法。
9、出示教材上第119页上第26题。
先出示图,提问:这两张图按虚线能否折成正方体?说明理由。(相连的虚线必须是5条)。
读题理解题目意思。按要求涂色、写数。
说明想法。将图形剪下来沿虚线折一折验证。
教学后记。
课前思考:
这一节复习课内容紧扣第八单元的教学重点,设计的练习形式多样,“画一画”、“连一连”、“辩一辩”等内容都是学生们喜欢的,这样的复习课一定能让学生们的复习兴趣调动起来,相信通过这些练习和相关的复习,能让学生联系分数的意义,进一步学会用分数表示具体情境中简单事件发生的可能性的大小,掌握其方法,并能根据事件发生的可能性大小的要求,设计出相应的活动方案。这部分内容是小学阶段最后一次学习可能性,可以进一步加深对可能性大小的认识。
另外,补充这样的实际问题供学生练习:
可能性教学设计及说课稿篇八
1、认识简单的等可能性事件。
2、会求简单的事件发生的概率,并用分数表示。
感受等可能性事件发生的等可能性,会用分数进行表示。验证掷硬币正面、反面朝上的可能性为。
主体图挂图,老师、学生收集生活中发生的一些事件(必然的、不可能的、不确定的),硬币。
一、信息交流。
1、学生交流收集到的相关资料,并对其可能性做出说明。
师出示收集的事件,共同讨论。
2、小结:在生活中有很多的不确定的事件,我们现在一起来研究它们的可能性大小。
二、新课学习。
1、出示主体图,感受等可能性事件的等可能性。
观察主体图,你得到了哪些信息?
在击鼓传花中,谁得到花的可能性大?掷硬币呢?
生:击鼓传花时花落到每个人的`手里的可能性相等,抛一枚硬币时正面朝上和反面朝上的可能性也是相等的。
在生活中,你还知道哪些等可能性事件?生举例…..
2、抛硬币试验。
(1)分组合作抛硬币试验并做好记录(每个小组抛100次)。
抛硬币总次数正面朝上次数反面朝上次数。
(2)汇报交流,将每一组的数据汇总,观察。
(3)出示数学家做的试验结果。
试验者抛硬币总次数正面朝上次数反面朝上次数。
德摩根409220482044。
蒲丰404020481992。
费勒1000049795021。
皮尔逊240001201211988。
罗曼若夫斯基806403969940941。
观察发现,当实验的次数增大时,正面朝上和反面朝上的可能性都越来越逼近。
3、师生小结:
掷硬币时出现的情况有两种可能,出现正面是其中的一种情况,因此出现正面的可能性是。
三、练习。
1、p.99.做一做。
2、练习二十第1---3题。
四、课内小结。
通过今天的学习,你有什么收获?
课题统计与可能性第一课时事件发生的可能性。
可能性教学设计及说课稿篇九
教学内容:
教材p107—109。
教学目的:
4、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
5、通过实际操作活动,培养学生的动手实践能力。
6、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。
教学重、难点:
知道事件发生的可能性是有大小的。
教学过程:
一、引入。
出示小盒子,展出其中的小球色彩、数量,
如果请一位同学上来摸一个球,他摸到什么颜色的球的可能性最大?
二、探究新知。
(1)每小组一个封口不透明袋子,内装红、黄小球几个。(学生不知数量、颜色)小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。
记录次数。
黄
红
活动汇报、
(2)袋子里的红球多还是黄球多?为什么这样猜?
小组内说一说。
总数量有10个球,你估计有几个红,几个黄?
(3)开袋子验证。
让学生初步感受到实验结果与理论概率之间的关系。
2、练习。
p107“做一做”
3、
三、巩固练习。
p1096。
[1]学生说说掷出后可能出现的结果有哪些。
[2]猜测实验后结果会有什么特点。
[3]实践、记录、统计。
[4]说说从统计数据中发现什么?
[5]由于实验结果与理论概率存在的差异,也可能得不到预期的结果,可以让学生再掷几次,让学生根据试验的结果初步感受到硬币是均匀的,两种结果出现的可能性是相等的。
p1097。
学生讨论完成。
教学反思:
可能性教学设计及说课稿篇十
人教版三年级上册的《可能性的大小》是属于统计与概率里中概率的起始知识之一,本节课主要目标是让学生知道随机事件的可能发生的结果,并通过简单的试验让学生体会事件发生的可能性是有大小的,概括出初步判断可能性大小的方法,体会单次事件发生的不确定性,并进行运用。其中让学生体会事件发生的可能性大小,理解数量越多发生的可能性越大,数量越少发生的可能性越小是本节课的重难点,因为对于这点认识学生的生活经验高于数学经验,如果在实验的过程中,发生小概率事件,也就是说数量少的反而出现的次数多时,学生可能将生活经验与之相联系,产生认识的迷惘,一旦处理不好会使整节课陷入混乱状态。因此处理起来要慎之又慎,只要引导学生了解试验少的时候,试验结果不一定与预测的可能性大小相符,但随着试验次数的增加,试验结果将越来越接近预测的可能性大小。
基于以上的认识,我构建了“从生活中来,到生活中去”的基本设想,打算通过不同情境的创设引导学生去“猜想——验证——感悟”,最终建立起高于生活的可能大小的认识。
从生活中来,就是尊重学生的原有的生活经验,创设“猜球”的情境,勾起学生已有的对于“可能性大小”的认知,初步判断出“数量多的发生的可能性大,数量少的发生的可能性小”。
生活经验要通过验证才能上升到理论认识,而其中的“小概率”事件,是提升原有认知的关键之处。因此,我采用了4:2的比例放球,排除一切干扰因素,组织小组摸球,比较、分析数据,体验概括出当摸球次数少时,是有可能发生小概率事件的,但当摸球次数越多原有猜想就越明显,从而使学生站在了数学的高度。最后,通过“摸奖”游戏,让学生体验随机事件的不确定性,最终完成对“概率”的初步体验。
到生活中去,就是尊重数学的基本使命——去指导,去解决生活中的实际问题。因此,我创设了“闯关游戏”,让数学以生动有趣的形式回归生活,使学生在轻松的氛围里,主动的去运用知识、解决生活问题。
1.能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的,概括出初步判断可能性大小的方法。
2.通过体会单次事件发生的不确定性,初步体会频率与概率的区别。
3.通过猜测验证感悟,培养学生大胆的想象力和逻辑推理能力,养成科学的学习态度。
4.通过情境创设,激发学生学习数学兴趣,体会到数学和生活的联系。
教学重点:通过简单的试验让学生感悟到事情发生的可能性大小的情况,并能作出判断,进行描述与运用。
教学难点:当小概率时间发生时,如何抓住机会,引导学生知道“当试验少的时候结果可能与预测的可能性大小不相符,但当试验次数不断增加时,结果会越来越接近预测的可能性大小”
课堂引入讲究快、趣,需要用最少的时间调动学生的积极性,引入课题。“猜球”引入可以既增加神秘感,引起兴趣。又可以用最少的时间复习旧知,引出新知。
1、小组合作验证猜测结果:这一环节的随机性很强,到底会出现什么情况我们无法料定。因此,我们能做的就是要排除各种干扰因素,准备好比较合理的试验材料,布置好活动的具体要求。其次,就是预设好可能出现的各种情况,有备无患。不断地引导学生将猜想和试验结果相结合,通过分析、比较得出猜想的正确性。
2、体验单次摸球的不确定性。
这样设计,可以加大全班学生参与面,激发兴趣,培养发散思维。除了可以体验单次事件发生的不确定性,还可以体验到可能性大小中,质不变量变的情况。
这样设计,除了调节气氛,还可以预留悬念,为后面的思想教育打好基础。
1、在全班同学的努力下,我们终于闯过了三关。能说说你现在的感受和你的收获吗?
2、师小结出示:知识会带给我们智慧和力量,有了它我们人类才能把不可能变为可能,把有可能的变成很有可能。希望小朋友好好学习,把获取知识的可能性变为最大。加油吧!
这样设计,既可以总领全课,又可以将收获延伸到知识之外。
(一)教材所处的地位和作用。
本课是苏教版小学数学教材四年级上册64到67第六单元第一课时的内容,在此之前,学生已学习了简单的分类和统计知识,为过渡到本节的学习起着铺垫的作用,本节内容是感受确定和不确定现象,为五年级学习可能性的大小打下基础,为学生以后学习概率建立一个概念。
(二)教学目标:
1、知识与技能目标:
(1)使学生初步体验有些事情的发生是确定的,有些则是不确定的,存在各种可能性。
(2)初步能用“一定”、“可能”、“不可能”等词语描述生活中发生的一些事情的可能性。
2、过程与方法:
(1)创设摸球、摸纸牌游戏、装球的活动,让学生经历事件发生的不确定现象,体会可能。
(2)充分关注学生的学习过程,对积极参与,勇于交流的行为给予充分的`肯定和表扬。
3、情感态度和价值观:
通过游戏培养学生学习数学的兴趣,形成良好的合作学习态度。
(三)教学重点、难点以及确定依据。
本着新课程标准,在吃透教材的基础上,我确立了如下的教学重点,难点。
教学重点:感受简单随机现象的特点,能列举出简单随机现象中所有可能发生的结果。
教学难点:能对简单随机现象发生的可能性大小做出定性描述。
环节一:导入。
师:在老师没松手之前,你估计硬币在老师哪只手里?今天这节课我们就一起来学习可能性的知识。(板书:可能性)。
环节二:探究可能性以及可能性是有大小的。
(一)摸球中体验“可能”
1、桶里放3个红球3个黄球,请位同学摸一摸,大家记录摸到了什么颜色的球?
在这样的桶里任意摸一个球,可能摸到哪种颜色的球呢?(红球和黄球)指名学生完整的说一说。
小结:任意摸一次,都有两种可能的结果,(可能)摸到红球也(可能)摸到黄球。
2、桶里装5个红球,请位同学摸一摸,大家记录摸到了什么颜色的球?
小结:在这个桶里摸,(一定)摸出红球。
3、桶里装5个黄球,请位同学摸一摸,大家记录摸到了什么颜色的球?
小结:在这个桶里摸,(不可能)摸出红球。
总结:事情分可能发生,一定发生和不可能发生,可能发生称为不确定事件,一定发生和不可能发生称确定事件。(举生活中的例子)。
(二)、摸牌中感悟“可能性大小”
师:刚才同学们表现得很棒,看,老师给大家带来了四张扑克牌,分别是红桃a、红桃2、红桃3、红桃4,思考一下从中任意摸一张可能摸到哪一张?摸之前能确定吗?让学生思考在交流。
(不能确定,有四种可能)。
师:下面我们把红桃4变成了黑桃4,现在,4张牌中有3张红桃1张黑桃,现在任意摸一张牌,可能摸到哪一张?(红桃a、红桃2、红桃3、黑桃4)摸出红桃的可能性大,还是黑桃的可能性大?(红桃)为什么?(红桃的张数多)。
我们同学都同意吗?(同意)那只是我们的猜想,我们要证实我们的猜想,我们需要试一试那我们来进行摸排游戏吧。摸之前老师来给大家明确下摸牌的要求。
这次邀请组长进行合理分工,一人洗牌,一人记录,(用写正字的方法,最后写成数字)另外的人摸五次,共摸40次。
4、组织交流。看到这几组同学的摸排记录,你有什么想法吗?(摸到红桃的次数比摸到黑桃的次数多)。
师小结:现在摸出的牌共有4种可能,红桃有3种可能,黑桃有一种可能,所以红桃摸出的可能性大,黑桃的可能性小,说明可能性有大小。
环节三:巩固练习。
师:老师想看看我们的同学的掌握情况,我们一起来练一练。
摸出梅花10和8的可能性(相等)。
3、转盘中也存在着可能性,让我们一起去看看吧。
(1)转动哪个转盘,指针偶尔落在红色区域呢?偶尔是什么意思呢(很少可能性很小)。
(2)转动哪个转盘指针经常落在红色区域呢?经常是什么意思呢?(很多,可能性很大)。
(3)转动哪个转盘,指针偶尔落在红色区域和黄色区域的可能性相等呢?指名回答。
环节四:全课小结。
今天大家今天表现得十分不错,老师准备送一段话给大家作为奖励我们一起来看一下吧。
今天(可能)你的表现不是很出色,但只要你在今后的学习中多动脑,勤思考,你就(不可能)没有进步,继续努力,相信你(一定)是最棒的,孩子们,加油!
可能性。
可能。
一定。
不可能。
可能性教学设计及说课稿篇十一
通过判断小丽和小强采用“石头、剪子、布”来决定谁跳是否公平这一活动,引导学生对小丽获胜和小强获胜的可能性进行思考和分析。但与例1例外不同,例3并没有给出小丽和小强玩“石头、剪子、布”的所有可能的结果,所以不能直接计算出小强获胜的可能性,而应先罗列出他们两人玩“石头、剪子、布”的所有可能的结果。
1、通过罗列出两人玩“剪子、石头、布”的所有可能的结果,计算出其可能性。
2、了解采用“剪子、石头、布”游戏的公平性。
3、通过游戏的公平性,培养学生的公平、公正意识,促进学生正直人格的形成。
教学重点不重复、不遗漏的列出所有可能的结果。
教学难点不重复、不遗漏的列出所有可能的结果。
教学准备投影仪、生收集生活中的等可能性事件。
一、复习。
1、生交流收集的等可能性事件,并说明其发生的可能性。
2、计算发生的可能性,首先看一共有多少种可能的结果,再看发生的事件有几种,最后算出可能性。
二、新授。
1、同学们都会玩“石头、剪子、布”的游戏,谁能和老师一起玩?
(游戏……)。
这样确定谁胜谁败公平吗?
生发表意见。
下面我们就用可能性的指示,看看这个游戏是否公平?
2、罗列游戏中的所有可能。
可交流怎样才能将所有的可能都列出来,方法的交流。
小丽石头石头石头。
小强剪子布石头。
结果小丽获胜小强获胜平。
3、通过观察表格,总结。
一共有9种可能;小丽获胜的可能有3种,小强获胜的可能也是3种,平的可能也是3种。所以小丽获胜的可能性是39,小强获胜的可能性是39,二者相等,所以用“石头、剪子、布”的.游戏来决定胜负是公平的。
4、反馈练习。
p.103.做一做。
重点说明:一共有多少种可能,如何想的。
注重学生判断的方法多样化,
(1)计算出单数、双数的可能性;
(2)其他方法,如双数只有一个6,而单数则有两个,因此末尾出现单数的可能是双数的两倍,因此这是不公平的。
三、练习。
1、练习二十三第一题独立完成,集评。
2、练习二十三第二题可以采用初步判定,然后罗列验证的方法。
3、练习二十三第三题制定游戏规则,小组内合作完成!
四、课内小结。
通过今天的学习,你有什么收获?
可能性教学设计及说课稿篇十二
1通过摸球,装球等活动,初步体验有些事件的发生是确定的,有些事件的发生是不确定的,并能用“一定”,“可能”,“不可能”等词语来描述事件发生的可能性,获得概率的思想。
2 培养初步的判断和推理能力。
3培养学习数学的兴趣,形成良好的合作学习的态度。
教学重点:感受体验有些事件发生的确定性和不确定性。
难点:理解,辨析“可能”,“一定”,“不可能”发生的事件。
教学过程 :
一 联系生活,激趣引入。
“今天,智慧爷爷带了个幸运王冠想戴在我们班一位扎两条小辫的女小朋友头上,谁可能会成为这个幸运的小天使呢?她坐在第一大组,猜猜她可能是谁? ( 学生猜测 )师强调可能。
指一男生,可能会是他吗?(不可能),为什么呢?
智慧爷爷悄悄告诉大家,那是穿红衣服的女孩,你能判断出什么结论吗?一定吗?
为什么不猜a a ,bb了?
在智慧爷爷没给我们缩小范围之前,可能是aa ,也可能是bb, 在我们的生活中,很多事情一时是不能确定的,都有他的可能性,这就是我们今天要学习的新本领“可能性”
二 创设情境 探索新知。
小朋友们喜欢玩游戏吗?智慧爷爷带来了三种颜色的球,装在四个口袋里,我们来个比手气游戏,每组派2个同学,一个摸球,一个上黑板记录。哪一组小朋友摸到代表喜气的红球次数最多,哪一组就获胜。
每组推选代表。下面的同学先猜一下,哪组可能获胜呢?(学生猜测)智慧爷爷悄悄告诉大家,第一组一定会胜。李老师不相信,你们相信吗?我们一起来试试。
宣布规则:摸的同学不许看,每人摸5次。开始后,李老师说第一次,你们开始摸,说了第2次才能摸第2次。记录的同学看好你们组小朋友摸到球的颜色,摸一次就在对应颜色旁打钩。(学生摸球)。
他们都摸了5次,分别摸出了什么球?哪一组获胜了?
看到这样的结果,你们是不是很惊讶啊,智慧爷爷告诉小朋友,他为什么猜得那么准呢?原来这四个口袋里分别有秘密呢?你能猜出来吗?请大家在小组里商量商量。
谁来大胆猜测一下第一组的口袋里到底有什么秘密?
都是红球。(打开看一下)那么任意摸一个,会是什么情况呢?
一定是红球。如果学生能说出一定,教师表扬。小朋友的这个词用得真好。(师板书一定)。
学生猜测一下2、3、4组口袋里分别有什么秘密?
一一出示可能,不可能。
小结:通过刚才的游戏,我们发现在全是红球的袋内任意摸一个,(“一定”是红球,)在没有红球的袋内任一摸一个,(“不可能”是红球,)在既有红球又有其他颜色的球的袋内任一摸一个,(有“可能”是红球。)。
三 找找好朋友。
四人为一组,先小组里猜猜自己可能会转到哪个朋友,轮流自己转转,每人转1次,看看分别转到了谁。
谁交到唐老鸭了?为什么没有人交到呢?(没有7号)所以我们不可能交到。
李老师想和2号的小动物交朋友,你能设计一个股子,不管怎么转,一定是和米老鼠交到朋友?小组商量一下。
四 摸果冻。
小朋友们真了不起,智慧爷爷拿来三种口味的果冻招待小朋友和你们的新朋友。 。
(1) 出示3袋果冻,全是草莓味,桔子味和草莓味,柠檬味和橘子味。
问:“从每袋内任意摸一个果冻,一定是草莓味的吗?
小组商量讨论,集体交流。
五 小小装配员。
智慧爷爷今天为我们带来了许多果冻,在分给大家之前,还想考考小朋友的智慧呢?你们愿意接受智慧爷爷的考验吗?请小朋友当小小装配员。按定单要求装果冻,看哪组合作的又快又好。
订单:1 随意拿一个,一定是草莓味的。
2 随意拿一个,可能是草莓味的。
3 随意拿一个,不可能是草莓味的。
一一出示定单,说说是怎样放的,为什么那样放。
我们生活中,有些事是可能发生的,有些事是一定发生的,有些事是不可能发生的。
选择:
1 太阳从东方升起。(一定,不可能,可能)。
2 公鸡下蛋。(一定,不可能,可能)。
3 明天考试我得100分。(一定,不可能,可能)。
生活中的事情很多很多,你能不能利用这三个词来说说生活中的事情。
同桌交流互说,全班交流。
生活中的例子很多很多,我们要做个有心人。
七;出示转盘,分布均匀,转动指针,会停哪呢?
出示另一转盘,分布不均。(标设奖品)商家为什么这样设计呢?
八 课堂总结。
今天你有什么收获?
可能性教学设计及说课稿篇十三
《可能性》是五年级上册数学里的统计与可能性的内容,是一节实践活动课。是我在本学期“金烛杯”活动的参赛课。现代教学理论认为:数学教学应从学习者的生活经验和已有知识的背景出发,提供给学生充分进行数学实践活动和交流的机会,使他们真正理解和掌握数学知识、思想方法,同时,获得广泛的数学活动经验。在数学教学中,必须重视学生的实践活动,充分发挥学生的主体性让学生亲身经历数学过程,感受数学的力量,促进数学的学习。本课依托新课程理念,注重为学生创设生活情景让学生从体验中学习,在体验中自我建构新知,并从中掌握数学方法。努力为学生创设条件,让学生主动参与到发现数学知识的过程中。在整个活动中,我的设想是希望课堂上自然地向学生们渗透了科学研究的基本过程,引导学生们要通过猜想——操作——论证去发现一些规律。这节课主要是学生通过动手实践、自主探索、合作交流等方式学习数学。根据学生的特点和教材实际,让学生在猜一猜、想一想、试一试、说一说等情景中玩数学、学数学,亲身体验知识的形成过程。
实际上整节课只设计了一个与学生生活相关的情景:学校在月底要召开秋季趣味运动会了,为了这次运动会的成功举办,老师们正在认真地设计各种游戏规则,而学生们正在积极地投入到各种比赛活动的练习中,运动会上有各种比赛项目实际上就是学生的学习内容或练习,这样设计层次清楚,思路清析,环节紧凑,便于教师组织教学,学生也感觉到今天的学习好像是在开“运动会”,在运动会中动脑学习一系列的数学内容,这样设计,联系了生活实际,让学生感受到数学就在自己的身边,体会到学习数学的价值,激发了学生学习数学的积极性。
在设计与讲课中,将教材中的“做一做”与练习中的3道题组合成了两道练习,置身于两个情境中“下跳棋”和“老鹰捉小鸡”,引起学生的认知冲突,通过对比,发现必须平均分转盘,必须采用正方体,保证每个面的大小是一样的,才能使游戏公平,这样做突破了教学难点。
在足球赛活动中创设了游戏情境,让学生主动参与做数学实验抛硬币,每组抛40次,观察抛硬币的结果,发现正面朝上或反面朝上的次数都很接近总次数的二分之一,通过“猜想”,如果继续抛下去会出现什么情况?引起学生的好奇心,观察历史上的科学家做的抛硬币的统计表,发现抛得次数越多,正面朝上的次数就越接近反面朝上的次数,让学生亲历了数学知识的形成过程,在与他人的合作过程中,增强互相帮助,团结协作的精神,同时感受到科学家持之以恒和不畏难的精神。在其他活动项目中,我也注重尽量让学生自己发现,让学生说,突出学生的主体地位。
本节课要让学生理解只有做到可能性相等,游戏才公平,在教学中,着重强调:这样公平吗?为什么?培养了学生公正、公平的意识,同时结合摸球游戏联系生活中的中奖,理解摸奖游戏对于参与者来说是不公平的,教育学生不要参加摸奖,促进学生正直人格的形成。
课讲完了,突然没有了那种紧张和激动,心理上是一种轻松和一丝淡淡的遗憾。------心里总是想着这节课存在的不足:
跳棋比赛中应设计成学生喜欢玩的电脑游戏“飞行棋”的形式,在课堂上真正让学生玩一次,由理论到实践,全班学生分为不同的三个队,由队代表来参与到活动,这样既培养了学生的集体主义精神,又能够使课堂气氛异常活跃,提高学生的学习数学的兴趣。
通过讲课发现自己在这次比赛中存在基本功不足的问题,激励性语言较少,课堂上心里紧张,不能灵活运用教学语言组织教学,缺乏一种亲切、自然、清析流畅的感觉;课中语言点拔不到位(抛硬币实验中出现正面朝上的次数与总次数之间有什么关系),导致在这一环节上用了较多时间引导点拔;还有是对学生出现错误状况后反应不够敏感(黑球个数是2,蓝球是20,黑球出现的可能性不是十分之一)。
设计丰富的教学活动,为学生提供探索与交流的时间和空间。这节课我安排了这样几个层次的活动,第一个活动是摸球,先让学生预测摸出的球一定是黄色吗?并用“一定”、“不可能”“可能”来描述摸出的结果,然后让学生亲自摸一摸,体验事件发生的确定性和不确定性,并注重对不确定性和可能性的直观感受。第二个活动是说一说,出示袋子里已装好的球,让学生说一说袋子里任意摸出一个球会是什么样的情况,使学生进一步感知事情发生的可能性和不可能性。第三个活动是抛硬币,让学生猜一猜朝上的一面是正面还是反面,切实感受事情发生的可能性。第四个活动是根据要求往口袋里放球,老师先让学生试着判断“要想达到预期结果,每次口袋里应该放什么颜色的球”。再让学生实践操作体验各自的想法。
通过这样的四次活动,使学生真切的感受到,有些事件的发生是确定的,有些事件的发生是不确定的,因而产生对事件发生的可能性的初步认识。注重思维拓展,体验成功。在练习设计中,通过课件中准备的身边的一些现象,可以开拓学生的思维,促进知识的迁移运用,使学生在“做一做”中进一步体验生活中的确定和不确定事件。培养了学生倾听意见,汲取经验和相互交流的能力。让学生体验到成功的乐趣,更增添了学好数学的信心。
可能性教学设计及说课稿篇十四
1、体验事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的可能性。
2、能按照指定的要求设计简单的游戏方案。
3、理解中位数在统计学上的意义,学会求中位数的方法。
4、根据数据的具体情况,体会“平均数”“中位数”各自的特点。
1、注重学生对等可能性思想的理解,淡化纯概率数值的计算。
2、加强学生对中位数在统计学意义上的理解。
3、本单元内容可用4课时进行教学。
第一课时。
课题:等可能性与公平性。
教学内容:p98.主体图p.99.例1及练习二十第1—3题。
1、通过游戏活动,体验事件发生的等可能性和游戏规律的公平性,会求简单事件发生的可能性。
2、知道判断游戏公平性的方法是看事件发生的可能性是否相等。
3、能从事件发生的可能性出发,根据指定的`要求设计游戏方案。
4、能对简单事件发生的可能性作出预测。
教学重点:感受等可能性事件发生的等可能性,会用分数进行表示。
教学难点:能从事件发生的可能性出发,根据指定的要求设计游戏方案,并能对简单事件发生的可能性作出预测。
教学准备:主体图挂图,硬币,转盘。
一、情境导入。
(出示情境图)下课了,同学们在操场上玩,我们一起去看一看他们都在玩什么游戏呢?
同学们在玩的过程中涉及到许多的数学知识,今天这节课我们一起来研究一下。
二、新课学习。
1、学习例1,感受等可能性事件的等可能性。
师介绍足球比赛前抛硬币开球的规则。
你认为用抛硬币决定谁先开球的方法公平吗?说说你的理由。
今天这节课我们就来学习和公平性相关的知识—可能性。[板书课题]。
2、抛硬币试验。
现在拿出课前准备的硬币,我们来做抛硬币的实验。看看结果是不是真的和我们说的一样。
分组合作抛硬币试验并做好记录(每个小组抛40次)。
抛硬币总次数。
正面朝上次数。
反面朝上次数。
汇报交流,将每一组的数据汇总,并与实验前的猜测进行对比。
为什么有的组记录值比1/2小,有的组记录值却比1/2大?
师:1/2只是理论上的结果,因为随机事件的概念值是建立在大量重复实验的基础上的,所以抛40次硬币时,结果会出现偏差大,这也是政党的。当实验的次数增多时,正面朝上的概率和反面朝上的概率会越来越接近1/2。
出示数学家做的试验结果。
试验者抛硬币总次数正面朝上次数反面朝上次数。
德摩根409220482044。
蒲丰404020481992。
费勒1000049795021。
皮尔逊240001201211988。
罗曼若夫斯基806403969940941。
观察发现,当实验的次数增大时,正面朝上和反面朝上的可能性都越来越逼近。
3、师生小结:
掷硬币时出现的情况有两种可能,出现正面是其中的一种情况,因此出现正面的可能性是。用抛硬币来决定谁先开球是公平的。
三、练习。
1、p99做一做。
指针停在红色、蓝色、黄色区域的可能性分别是多少呢?
既然这个转盘设计得不公平,那你们能不能重新设计一个转盘,使这个游戏规则变公平呢?
2、p100第2题。
出示一个被平均分成4份的s转盘,其中红、黄、蓝、绿各占1份。
问:指针停在这四种颜色的可能性各是多少?
如果转动指针100次,估计大约会有多少次指针是停在红色区域呢?如果出现疑问可进行小组讨论。
一定会是25次吗?
师:这是理论上的结果,因为随机事件的概率值是建立在大量重复试验的基础上的,所以实际转动100次时,有可能会偏离这个结果,这也是正常的。
老师转动此转盘,决定由男或女先开始走棋。
3、练习二十第3题。
为什么不公平?(面积最大的那个面投掷后朝上的可能性最大)。
试验,验证结果。
4、练习二十第1题。
那就正方体骰子来决定每次所走棋的步数公平吗?说说你的想法。
男女生掷骰子走棋。
四、课内小结:通过今天的学习,你有什么收获?
我为这学生准备了大量教具,包括情境图、主题图、做一做及练习2的转盘,长方体及正方体的骰子、同学们也都准备了硬币。由于准备充分,且整节课教学环节以操作、游戏贯穿,所以学生忘我地投入到学习全过程,教学效果相当好。
【本文地址:http://www.xuefen.com.cn/zuowen/11589921.html】