人际关系对个人成长和生活幸福有着重要影响,我们应该注重如何建立良好的人际关系。在写总结前,我们要先进行思想准备,明确总结的范围和重点。总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。那么我们该如何写一篇较为完美的总结呢?以下是小编为大家整理的一些英语学习资料,希望对大家有所帮助。
分数与除法教学设计北师大版篇一
学情分析:
五年级的学生已具有一定的操作、观察、归纳概括能力,有了以前学习分数乘法、倒数的基础,让学生通过涂一涂、算一算、想一想、填一填的活动来总结分数除以整数的计算方法,对于学生来说,难度不大。
教学内容分析:
《分数除法(一)》是第三单元第二课时的内容,是在学生学习了分数乘法、认识了倒数的基础上进行教学的,教材中呈现了两个问题,就是把4/7分别平均分成2份、3份,目的是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。
教学目标:
1、在涂一涂、算一算等活动中,探索并理解分数除法的意义。
2、引导学生探索并掌握分数除以整数的计算方法,并能正确计算。
3、能够运用分数除以整数的方法解决简单的实际问题。
教学重点:
引导学生探索并掌握分数除以整数的计算方法,并能正确计算。
教学难点:
2、能够运用分数除以整数的方法解决简单的实际问题。
教学方法:
导学教学法。
创新理念:
“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。“学生是数学学习的主人,教师是数学学习的'组织者、引导者、合作者”。基于以上理念,在教学过程中,我采用“导学教学法”,充分发挥了教师的引导作用,让学生在动手实践的过程中去探索新知,亲身经历知识形成的全过程。
教具准备:
长方形纸、课件。
教学流程:
一、创设情境提出问题。
(1)把一张纸的4/7平均分成2份,每份是这张纸的几分之几?
(2)把一张纸的4/7平均分成3份,每份是这张纸的几分之几?
二、自主探究小组交流。
(教师指导学生自主探究,尝试解决以上两个问题,同桌之间交流想法)。
自主学习提示。
1.利用手中的的学习纸,涂一涂,算一算,尝试解决这两个问题。
2.同桌之间说一说彼此的想法。
3.有困难的同学,可以借助课本第25页的提示,完成这两个问题。
三交流释疑。
把一张纸的4/7平均分成2份,每份是这张纸的几分之几?
请同学们拿出图(一)来涂一涂。
交流:为什么要这样涂,每份是这张纸的几分之几呢?
还有不同的涂法吗?
能根据这个过程列出一个除法算式吗?
这个除法算式和以前学的除法有什么不同?
这就是这节课我们要学习的分数除法。(板书)。
2、初探算法。
把一张纸的4/7平均分成3份,每份是这张纸的几分之几?
请大家在图(二)的上面涂一涂。
交流:(展示学生不同的涂法)。
同学们是把长方形纸的七分之四平均分成了三份,再把其中一份涂上颜色。谁能根据这一过程列出一个算式。
怎样才能算出得数呢?
(师提问:计算时为什么要用×1/3?)。
观察3和1/3有什么关系,由除以3变成乘3的倒数,是不是除以一个整数就可以乘它的倒数呢?我们来验证一下。
(教师出示三组算式)。
1/3÷54/5÷31/3÷5。
指生口算。
让学生观察每一组算式,说一说发现了什么?
根据这三组算式再结合上一道题,你认为分数除以整数可以怎样计算?
(学生口述算法后)。
四、实践应用。
1、算一算。
9/10÷3015/16÷/15÷218/9÷65/6÷15。
2、填一填。
师:学会了知识就要灵活的运用,这道题你们能填上吗?
学生独立在书上第26页填一填,想一想。
集体订正。
3、解决问题。
学生在练习本上列式解答。
指生汇报完成情况。
运用分数除法能解决生活中的很多问题呢,谁能像老师这样来说一说生活中的问题,让大家解决。
(指生口头编题,其他学生解决)。
五、课堂总结。
学生谈一谈本节课的收获。
同学们,这节课你们过的快乐吗?学习本来就是一件快乐的事,老师希望今后你们能快乐的学习,快乐的成长。
六、布置作业:
22页练一练。
分数与除法教学设计北师大版篇二
分数除法是在学生学习了整数乘除法以及解简易方程,并且学习了分数乘法知识的基础上,学习分数除法和比的初步知识。这些知识为学生学习分数除法打下了基础,学习分数除法的知识对加深学生对计算方法的理解和提高学生的计算能力有很好的作用。内容包括:分数除法、解决问题、比和比例的应用。这些知识都是学生进一步学习的重要基础,通过这些知识的学习,学生一方面基本完成任务了分数加、减、除的学习任务,比较系统地掌握了分数四则运算;另一方面又开始了比的初步知识的学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。
就学习分数除法而言,首先要明确分数除法的运算意义,在此基础上探究并掌握它的计算方法,然后学习分数混合运算。关于分数除法中的解决问题,主要有两种情况,一种是问题情境的数量关系与整数除法的实际问题相同,区别只是数据由整数变成了分数。另一种是问题情境的数量关系具有一定的特殊性,表现为已知一个数的几分之几是多少,要求这个数。这样的实际问题,与求一个数的几分之几是多少的实际问题具有紧密的内在联系,即数量关系相同,而区别在于已知数与未知数交换了位置。
教学目标。
知识和技能:
1、使学生理解倒数的意义,会求一个数的倒数。
2、使学生理解分数除法的意义,掌握分数除法的计算法则,能熟练地进行计算。
3、使学生能够用方程或算术方法解答“已知一个数的几分之几是多少,求这个数”的应用题,进一步提高学生解答应用题的能力。
过程与方法:
动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
情感、态度和价值观:
使学生进一步受到事物是相互联系的辩证唯物主义观点的启蒙教育。教学重点、难点:
一个数除以分数的意义以及计算方法,并会分数除法解决相关的问题。掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。
我们来看这样一道乘法应用题,妈妈在超市买了3盒糖果,每盒是100克,3盒糖果共重多少克?我们可以列式:100×3=300(克)。
如果把这道乘法应用题改编成两道除法应用题,一起来看一下:a、3盒水果糖重300克,每盒有多重?300÷3=100(克)b、300克水果糖,每盒100克,可以装几盒?300÷100=3(盒)(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。1/10×3=3/10(千克)3/10÷3=1/10(千克)3/10÷1/10=3(盒)。
通过与前三道题我们可以得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。
分数应用题是小学数学应用题的重要组成部分,分数应用题的数量关系比较复杂,学生分析起来比较困难。下面介绍几种解答分数应用题的常用方法:
一、对应法。
通过审题正确判断单位“1”的量后,把具体数量与分率对应起来,这是解答分数应用题的关键。
如“某筑路队筑一段路,第一天筑了全长的1/5多10米,第二天筑了全长的2/7,还剩62米未筑,这段路全长多少米?”
题目中总长度是单位“1”的量,(62+10)米与(1—1/5—2/7)相对应,因此,总长度为:(62+10)÷(1—1/5—2/7)=140(米)。
二、变率法。
题目中几个分率的单位“1”不相同,可先统一单位“1”的量,然后变换分率,寻找已知数量的对应分率,最终解决问题。
该题中的“1/4”是把余下的本数看作单位“1”,而余下本数又是总本数的(1—2/5),因此,我们可以把中年级分得的本数理解为总本数的(1—2/5)×1/4,这样可求出总本数:180÷[1—2/5—(1—2/5)×1/4]=400(本)。
三、常量法。
题目中几个数量前后都发生了变化,而有的数量不变,这就是常量,解题时可把常量看作单位“1”。
如“小华读一本书,已读页数占未读页数的1/5,如果再读30页,已读页数就占未读页数的3/5,这本书共有多少页?”
该题中再读30页后,已读页数与未读页数都在变化,唯独总页数没有变,把总页数看作单位“1”,则总页数为:30÷(3/3+5-1/1+5)=144(页)。
四、联系法。
某些题目中几个数量都与一个数量有联系,把这个数量作为桥梁,解题思路就顺畅了。如“某小学四、五、六年级学生共种树576棵,五年级种树棵数是六年级种树棵数的4/5,四年级种树棵数是五年级种树棵数的3/4,五年级种数多少棵?”
题目中五年级种树棵数与六年级种树棵数有关,又与四年级种树棵数有关,所以,五年级种树棵数是个桥梁,把它看作单位“1”,把“五年级种树棵数是六年级种树棵数的4/5”改变为“六年级种树棵数是五年级种树棵数的5/4倍”,所以,五年级种树棵数为:576÷(1+3/4+5/4)=192(棵)。
五、转化法。
将复杂问题中的某些条件进行转化,结合改变成简单的问题,从而化繁为简。
把“第一车间人数是其余两个车间人数的1/2”转化为“第一车间人数占三个车间总人数的1/1+2”,“第二车间人数占其余两个车间人数的1/3”转化为“第二车间人数占三个车间总人数的1/1+3”,这样,就能求出三个车间的总人数:500÷(1-1/1+2-1/1+3)=1200(人)。
六、假设法。
对题目的某些数量作出假设,导致运算结果与题目不相符合,然后找出产生差异的原因,最终解决所求问题。
如“一项工程,甲、乙两队合做12天完成,现在先由甲队独做18天,余下的再由乙队接着做了8天正好完成,如果全工程由甲队独做,要多少天才能完成?”
假设甲、乙两队都做8天,则共做1/12×8=2/3,比工作总量“1”少1/3,这1/3就是甲队(18-8)天所做的工作量,所以甲队独做的时间为:1÷[1/3÷(18-8)]=30(天)。
七、倒推法。
题目中几个分率的单位“1”不相同,而且单位“1”难以统一,可以先求部分量,再一步一步地逆推出总数。如“一捆电线,第一次用去全长的1/6多2米,第二次用去余下的3/4少4米,还剩16米,这捆电线有多少米?”
这题中两个分率的单位“1”均为未知量,我们可以从较小的单位“1”求起:(16-4)÷(1-3/4)=48(米),(48+2)÷(1-1/6)=60(米)。
八、方程法。
一些复杂的分数应用题用算术方法难以解答,不便于理解,如用方程可顺向求解,容易掌握。如“一项工程,甲、乙两人合做8小时完成,甲独做14小时完成。现在甲做若干小时后,剩下的由乙接着做,前后共用18小时完成。求甲、乙各做多少小时?设甲x小时,则乙做(18-x)小时,根据两个人的工作量之和为1,可列方程:1/14x+(1/8—1/14)×(18-x)=1,解得×=2,18-2=16(小时)。
分数与除法教学设计北师大版篇三
学情分析:
五年级的学生已具有一定的操作、观察、归纳概括能力,有了以前学习分数乘法、倒数的基础,让学生通过涂一涂、算一算、想一想、填一填的活动来总结分数除以整数的计算方法,对于学生来说,难度不大。
教学内容分析:
《分数除法(一)》是第三单元第二课时的内容,是在学生学习了分数乘法、认识了倒数的基础上进行教学的,教材中呈现了两个问题,就是把4/7分别平均分成2份、3份,目的是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。
教学目标:
1、在涂一涂、算一算等活动中,探索并理解分数除法的意义。
2、引导学生探索并掌握分数除以整数的计算方法,并能正确计算。
3、能够运用分数除以整数的方法解决简单的实际问题。
教学重点:
引导学生探索并掌握分数除以整数的计算方法,并能正确计算。
教学难点:
1、探索分数除以整数的计算方法。
2、能够运用分数除以整数的方法解决简单的实际问题。
教学方法:
导学教学法。
创新理念:
“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。“学生是数学学习的主人,教师是数学学习的'组织者、引导者、合作者”。基于以上理念,在教学过程中,我采用“导学教学法”,充分发挥了教师的引导作用,让学生在动手实践的过程中去探索新知,亲身经历知识形成的全过程。
教具准备:
长方形纸、课件。
教学流程:
一、创设情境提出问题。
(1)把一张纸的4/7平均分成2份,每份是这张纸的几分之几?
(2)把一张纸的4/7平均分成3份,每份是这张纸的几分之几?
二、自主探究小组交流。
(教师指导学生自主探究,尝试解决以上两个问题,同桌之间交流想法)。
自主学习提示。
1.利用手中的的学习纸,涂一涂,算一算,尝试解决这两个问题。
2.同桌之间说一说彼此的想法。
3.有困难的同学,可以借助课本第25页的提示,完成这两个问题。
三交流释疑。
把一张纸的4/7平均分成2份,每份是这张纸的几分之几?
请同学们拿出图(一)来涂一涂。
交流:为什么要这样涂,每份是这张纸的几分之几呢?
还有不同的涂法吗?
能根据这个过程列出一个除法算式吗?
这个除法算式和以前学的除法有什么不同?
这就是这节课我们要学习的分数除法。(板书)。
2、初探算法。
把一张纸的4/7平均分成3份,每份是这张纸的几分之几?
请大家在图(二)的上面涂一涂。
交流:(展示学生不同的涂法)。
同学们是把长方形纸的七分之四平均分成了三份,再把其中一份涂上颜色。谁能根据这一过程列出一个算式。
怎样才能算出得数呢?
(师提问:计算时为什么要用×1/3?)。
观察3和1/3有什么关系,由除以3变成乘3的倒数,是不是除以一个整数就可以乘它的倒数呢?我们来验证一下。
(教师出示三组算式)。
1/3÷54/5÷31/3÷5。
指生口算。
让学生观察每一组算式,说一说发现了什么?
根据这三组算式再结合上一道题,你认为分数除以整数可以怎样计算?
(学生口述算法后)。
四、实践应用。
1、算一算。
9/10÷3015/16÷2014/15÷218/9÷65/6÷15。
2、填一填。
师:学会了知识就要灵活的运用,这道题你们能填上吗?
学生独立在书上第26页填一填,想一想。
集体订正。
3、解决问题。
学生在练习本上列式解答。
指生汇报完成情况。
运用分数除法能解决生活中的很多问题呢,谁能像老师这样来说一说生活中的问题,让大家解决。
(指生口头编题,其他学生解决)。
五、课堂总结。
学生谈一谈本节课的收获。
同学们,这节课你们过的快乐吗?学习本来就是一件快乐的事,老师希望今后你们能快乐的学习,快乐的成长。
六、布置作业:
22页练一练。
将本文的word文档下载到电脑,方便收藏和打印。
分数与除法教学设计北师大版篇四
学习内容分析。
本节课内容是在学生已理解平均分的意义,掌握一些整数知识的基础上进行学习的,分数概念比较抽象,教材从学生熟悉的一个简单的数学事实出发:一个苹果平均分给两个人,每个人分得半个苹果,让学生讨论用什么方法表示“一半”。这个讨论过程,一方面让学生意识到原来的数不够用了,要另想办法表示“一半”;另一方面让学生参与创造,感受表示“一半”的方法其实有很多的。在多种方的对比中,体会用分数表示一半的优越性,体会学习分数的必要性;进而让学生在“涂一涂”“折一折”“说一说”等操作和描述活动过程中理解简单的分数所表示的意义,并会认、会读、会写分数,认识分数的各部分名称。本节课的核心是引导学生结合具体的情境和操作过程来理解简单的分数的意义,渗透数形结合的思想。
学习者分析。
分数的初步认识是从整数到分数进行数的概念和第一次扩展,无论在意义、读写方法以及各部分的名称认识上,分数和整数都有很大的差异,学生学习时可能出现一些困难,因此,学生在学习过程中通过“折一折”、“涂一涂”、“说一说”等形式,逐步体会分数的意义,同时培养了学生的合作交流与动手操作能力。
教学目标。
课程标准:能结合具体情境初步理解分数的意义,能认、读、写简单的分数。
知识与技能:初步理解分数的意义,并能认、读、写简单的分数,知道分数的各部分名称。体会学习分数的必要性。并培养学生独立思考、探究学习的能力及思维的灵活性。
过程与方法:玩中学——学中做——做中得——乐中验。不但激发了学生的学习兴趣而且渗透了学习方法。
教学重点及。
解决措施。
认识分数各部分的名称,初步掌握简单分数的写法和读法,体会学习的必要性。
教学难点及。
解决措施。
教学流程。
设计思路。
一、创设情景,导入新课。
分苹果。
二、活动—建构。
(一)建构二分之一。
1、初步感知。
活动一:画一画。
用自己喜欢的方式表示出一半的意思。
2、深化认识。
活动二:涂一涂。
(二)认识分数各部分名称、读写及表示的意义。
观看微课。
(三)探索几分之几。
活动三:折一折。
请拿出准备好的纸片,动手折一折,涂一涂,你还能得到哪些分数?
(1)、学生独立折纸。
(2)、上台展示:展示自己的作品,并说说创造分数的过程。
三、巩固练习、实践应用。
下面的画面让你联想到了什么分数?
图:法国国旗(1/3)巧克力(1/8)。
四、总结质疑、完善认识。
师:同学们,这节课你有什么收获和体会?有什么问题吗?
“三三式教学,
创建学习共同体”理论的渗透及表现。
活动一:画一画。
用自己喜欢的方式表示出一半的意思。
(使用小组合作学习,互惠互助的学习模式)。
(三)探索几分之几。
活动三:折一折。
请拿出准备好的纸片,动手折一折,涂一涂,你还能得到哪些分数?(使用小组合作学习,互惠互助的学习模式;学生倾听,教师串联、反刍)。
信息技术应用分析。
知识点。
学习水平。
媒体内容与形式。
使用方式。
使用效果。
分苹果、练习等。
中等。
ppt。
图文展示。
激发兴趣。
认识分数。
中等。
微课。
视频播放。
容易掌握。
分数的表示过程等。
中等。
数字故事。
播放。
直观感受。
分数与除法教学设计北师大版篇五
课题教时(19)。
学习。
目标1、能用方程解决有关的简单的分数实际问题,初步体会方程解决实际问题的重要模型。
2、在解方程中,巩固分数除法的计算方法。
学习。
重点能用解方程解决简单的有关分数的实际问题。
巩固分数除法的计算方法。
过程与方法。
教师活动。
一、创设情境,引入新知。
1、出示主题图。
让学生大胆地提出问题:操场上有多少人参加活动?
2、解决问题。
鼓励学生用方程解决问题。
3、选择用除法计算借助线段图的动能理清思路。
板书:
二、尝试解决。
1、试一试第1题。
2、试一试,第1题(2)板书:
9×1/3=3(人)。
三、练一练。
1、解方程:
1/5x=73/4x=4。
5/8x=1/123/8x=1。
2、解决问题。
让学生先弄清“八折8/10,可利用方程法解,术法作基本要求”
3、解决练一练,第3、题学生活动。
学生仔细观察情境图后,提出问题。
全班进行交流。
学生可以列方程解决,也可以用分数除法解决。
集体纠正。
学生独立解方程。
捐名板演。
然后进行全班交流。
集体纠正,即现价是原价也可用算术法解,算术法作基本要求。
学生独立解决。
或用算术法解决问题。
然后进行全班交流纠正。
板书设计。
解:设操场上有x人参加活动。
x×2/9=6。
x=6÷2/9。
x=6×9/2。
x=27答教学反思。
课题练习三分数除法教时(20)。
学习。
目标1、巩固求一个数的倒数的方法,及时分数运算方法的掌握。
2、培养学生解决问题的能力。
学习。
重点求一个数的倒数及分数运算方法。
解决实际问题的能力。
过程与方法。
教师活动。
一、求一个数的倒数。
1、出示数据。
1/91113/512/3。
2、求出以上数的倒数。
91/115/1313/2。
1的倒数是它本身。
二、计算分数乘除法。
1、出示计算题。
8×1/43/4÷44/9÷3/24/5÷44/7÷7/4。
2、计算以上各题。
三、解决方程。
1/9x=2/32/3x=54。
7/4x=358x=42。
1.5x=28.5。
四、解决问题:
1、练习三第4题。
2、练习三第5题可以用解方程的方法也可以用算术方法解决问题。
3、完成第6-9题。
方法同上。
4、完成第10题。
学生可能有不同的解决问题的方法,可以根据分数除以整数的意义进行解答。
1/3÷3=1/9也可以列出方程进行学生活动。
学生观察数据。
独立写出各数的倒数。
然后交流纠正。
学生看清乘除法,然后独立计算,进行交流,除以一个数是乘这个数的倒数。
学生独立解决。
指名板演。
集体交流纠正。
学生认真审题,用方程解决问题。
说一说解设。
然后全班交流。
学生仔细审题,找出数量关系,列成计算然后进行交流。
同上。
1÷1/9=9(天)。
解答:1/3x=3。
x=9。
板书设计练习三。
1/9×9/111×1/11。
3/4÷4=3/4×1/4=3/16。
解:设:校园总面积为xm2。
3/40x=660。
x=8800答:校园总面积为8800m2教学反思。
学生计算掌握的可以,但是把分数乘法、分数除法应用题防在一起,有时还是混淆。这大概是不十分理解吧!
分数与除法教学设计北师大版篇六
1、掌握并积累重要的文言文实词和虚词,掌握本文出现的通假字、词类活用的特殊文言句式。
2、学习本文比喻论证、对比论证的方法,提高学生围绕中心论点合理论证的能力。
3、明确认识学习的重要性以及学习必须“积累”“坚持”“专一”的道理。
二、教学重点。
1、诵读并背诵全文,积累文言词语。
2、比喻的含义和内在联系。
三、教学难点。
1.在诵读中渗透正字正音、辨词析句、层次疏理、文意理解、语言鉴赏等多项文言基础知识的学习。
2.掌握全文比喻和对比论证的特点。
四、教学准备。
课前让学生结合书后思考练习题预习课文。
五、教学过程。
1、解读第一段(7分钟)。
1)回忆上个课时的内容并结合学生自主预习的结果,提问:本文的中心论点是什么?(明确中心论点:学习不可以停止)。
2)齐背诵第一段后,提问:
a.请问本段论述了什么内容?
b.运用什么方法论述的?
d.发生什么样的变化?
e.作者又以“直木为轮”为喻,说明什么道理呢?
f.“金就砺”“木受绳”两个比喻引出什么结论?
g.此句与本段哪句相照应?
(问题层层递进,学生回答一个接一个问题时思考,本段的主旨即学习的意义为何?)。
3)教师总结。
荀子提出人性本恶的思想,认为只有用教育来陶冶,用礼法来约束,才能把这种生而具有的“恶”转变为“善”。这里作者运用5个比喻阐述学习的重要性。学习是人发展的过程,如果不停止地学习,人的知识、才能、品德会不断地增进、提高,达到“知明而行无过”的境界。
2、解读第二段(7分钟)。
1)同学们一起背诵第二自然段。
2)提问:
本段写了几层内容?
第一层阐明什么内容?
第二层与第三层是什么关系?
由此看来,第二层用什么方法阐述学习的重要性?
用哪几个比喻?
(问题层层递进,环环相扣,引导学生自主剖析第二段的层次和主旨--学习的重要性)。
3)教师总结。
第一、二自然段是文章的第一部分,主要论述了学习的重要性。在写法上最大的特点是运用大量的比喻,从各个方面对中心论点加以阐释,使论点既鲜明又生动。第二段作者用了五个比喻。开头作者用“终日而思”,“不如须臾之所学”先来阐说,接着就用“揉而望”,“不如登高之博见”这个比喻,形象说明只有摆正“学”和“思”的关系才能使学习产生显著效果。为了把道理说得更透辟,作者顺势而下,连用“登高而招”、“顺风而呼”、“假舆马”、“假舟楫”四个比喻,从见、闻、陆、水等方面阐明了在实际生活中由于利用和借助处界条件所起的重要作用,从而说明人借助学习,就能弥补自己不足,取得更显著的成效。最后由此得出结论,君子所以能超越常人,并非先天素质与一般人有差异,而完全靠后天善于学习。
3、解读第三段(7分钟)。
1)引导学生仿照第二段的学习方法自主学习第三段(本段主要论述什么问题?分几层?作者是用什么方法论述问题的?每一层的两个比喻句是什么关系?本段的三层内容都用对比设喻的方法阐述。这样的写法什么好处?)。
4、请同学们拿出纸来,按要求作练习。要求:每人写一个比喻句阐述知识的重要性,比喻要恰当。
5、布置作业:写一篇不少于500字的议论文,论述人要有崇高的理想。适当运用比喻论证法。
刘里。
[劝学教学设计(人教版高一必修三)]。
将本文的word文档下载到电脑,方便收藏和打印。
分数与除法教学设计北师大版篇七
《笔算除法例3》的教学,主要是让学生能够把接近几十五的数看作几十五来计算感受数学与自然科学的紧密联系,提高学习数学的兴趣。整节课教师让学生参与“观察、探索、合作、发现”等数学活动获得了新知识。
教学中,我创设学生熟悉的、能够理解的问题情境,发现要解决问题,在做题的`过程中,就出现了两种情况:一是把24看做20来试商,但需要两次试商;二是把24看做25一次完成试商。这时让第一种做法的学生谈一下感受,让第二种做法的学生也谈一下自己的感受。通过计算和同学的讲解,使学生在试商是,如果接近25,怎样算比较好,并让学生讨论一下,亲自试一试,这是学生们表现的都很主动,积极地参与。通过讨论、比较大家一致认为如果除数接近25,就看作25来试商比较简单。
不足之处有个别学生在试商时不会试商,即便知道把除数看作几十五来试商,也找不准该商几。原因是他们不能算出几十五和几十相乘接近被除数,这就要求在平时教学中加强学生的口算练习。
分数与除法教学设计北师大版篇八
分数除以整数的计算方法:除以一个整数(零除外),等于乘这个整数的倒数。
(1)4/7÷2(2)4/7÷3。
=4/7×1/2。
=2/7。
教学反思:
《分数除法(一)》是学生初次接触分数除法,本节课是学生今后学习分数除法的基础,让学生理解分数除法的意义以及对算法的探索就显得格外重要。本节课我力求体现以下几点:
一、充分利用学生最佳的学习状态。
课堂上省去了旧知的复习,设计简单的知识情景,以最快的速度抓住学生有效学习时间,提高课堂有效性。
二、让学生在不同的活动中探索数学。
数学课不应只让学生单纯地模仿和记忆,应让学生在具体地操作、观察、实践中得出结论。因此,课堂上我让学生通过操作、观察,引导学生探索出分数除以整数的计算方法,让学生经历了知识形成的全过程。在这样的过程中,充分地发挥了教师的引导作用,注重的是学生能力的培养,注重的是教给学生学习的方法,而不是把知识单纯的传授给学生,做到既重结果,又重过程。
三、让学生在不同层次的练习中应用数学。
学数学的目的就是用数学。在新课结束后,我让学生在不同层次的练习中应用了所学知识,让学生充分感受到了数学源于生活,又寓于生活。
分数与除法教学设计北师大版篇九
作为一名为他人授业解惑的教育工作者,可能需要进行教学设计编写工作,借助教学设计可以促进我们快速成长,使教学工作更加科学化。你知道什么样的教学设计才能切实有效地帮助到我们吗?下面是小编精心整理的分数除法的教学设计,仅供参考,欢迎大家阅读。
1、结合具体事例,经历分数除以整数的过程。
2、掌握分数除以整数的计算方法,能够进行分数除以整数的.计算。
3、积极参与数学学习活动,有克服困难和运用知识解决问题的成功体验。
小黑板,口算卡。
一、创设情境。
1、复习导入(一生说数,另一生说出它的倒数)。
2、口算练习:(1)205(2)488(3)364。
201/5481/8361/4。
二、自主探究。
(一)根据口算找规律。
1、提问:通过以上计算,你发现了什么?
预设:学生可能说出:
(1)每组的计算结果相同。
(2)除以一个数和乘以这个数的倒数的结果是一样的。
(3)每组算式里都有一个除法和一个乘法,符号后面的两个数互为倒数,其结果都是相同的。
2、教师引导。
如果用甲数表示被除数,乙数表示除数,那么你能得出什么结论来呢?
师生总结:甲数乙数(0除外)=甲数乙数的倒数。
预设:学生可能想不到除数不能为0。
师引导:所以的数都能作除数吗?
3、验证以上结论:
请学生参照以上口算习题,自己试着举出几组来。
1、出示分饼例题。
学生用自己喜欢的方法尝试解决。(教师为学生准备了圆片)。
预设:学生可能会出现两种想法。
(1)把1/2张大饼平均分成三份,就是把一张大饼平均分成(23=)6份,每份是1/6。(学生可能结合折图片来加以说明)。
(2)求每份是多少,就是求的是多少?
教师根据学生的汇报情况,随机板书。
2、学生观察计算过程,谈发现。
3、师生共同总结分数除以一个数的计算方法。
分数除以一个数(0除外)等于分数乘这个数的倒数。
三、巩固练习。
1、完成试一试。
学生练习。(集体订正时,让学生说一说自己是怎么想的?)。
2、完成练一练。
第1、2、4题:学生完成后,汇报解题思路。师生共同交流。
四、交流收获。
通过这节课的学习,你有哪些收获?
分数与除法教学设计北师大版篇十
教学目标:
1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。
2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商。
3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。
教学重难点:
重点:掌握分数与除法的关系,会用分数表示两个数相除的商。
难点:理解可以用分数表示两个数相除的商。
教学过程:
一、导入揭题。
1、复习:76是数,它表示()。10/7的分数单位是(),它有()个这样的分数单位。
2、观察:5÷8=4÷9=这两道题能得到整数商吗?
3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。
二、探索新知。
1、教学例1。
(1)课件出示例1。
把一个蛋糕平均分给3人,每人分得多少个?
(2)同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。
(3)汇报讨论结果。
(4)观察这两种解法有什么联系?
2、教学例2、
把3个饼平均分给4个孩子,每个孩子分得多少个?
(1)平均分同样可以列式为:3÷4。
(2)小组合作探究:3÷4的商能不能用分数表示呢?
(3)通过进一步探究,你发现分数与除法有什么关系了吗?
三、拓展应用。
一个正方形的周长是64cm,它的边长是周长的几分之几?
四、总结。
通过这节课的学习,你有什么收获?
五、作业布置。
完成教材第50页”做一做“。
分数与除法教学设计北师大版篇十一
教学目标:
1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。
2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商。
3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。
教学重难点:
难点:理解可以用分数表示两个数相除的商。
教学过程:
一、导入揭题。
1、复习:76是()数,它表示()。10/7的分数单位是(),它有()个这样的分数单位。
2、观察:5÷8=4÷9=这两道题能得到整数商吗?
3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。
二、探索新知。
1、教学例1。
(1)课件出示例1。
把一个蛋糕平均分给3人,每人分得多少个?
(2)同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。
(3)汇报讨论结果。
(4)观察这两种解法有什么联系?
2、教学例2、
把3个饼平均分给4个孩子,每个孩子分得多少个?
(1)平均分同样可以列式为:3÷4。
(2)小组合作探究:3÷4的商能不能用分数表示呢?
(3)通过进一步探究,你发现分数与除法有什么关系了吗?
三、拓展应用。
一个正方形的周长是64cm,它的边长是周长的几分之几?
四、总结。
通过这节课的学习,你有什么收获?
五、作业布置。
完成教材第50页”做一做"。
分数与除法教学设计北师大版篇十二
教学目标:
1.体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。
2..培养学生动手动脑能力,以及判断、推理能力。
3.培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。
教学重点:体验分数除以整数的计算方法,并能正确的计算。
教学难点:分数除以整数计算法则的推导过程。
教学准备:长方形纸片、彩笔。
教学过程:
一、创设情景,教学分数除法的意义。
1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!
(1)每人吃1/2块饼,4个人共吃多少块饼?
(2)把2块饼平均分给4个人,每人吃了多少块饼?
(3)有2块饼,分给每人1/2块,可分给几个人?
2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。
师:讨论:分数除法的意义和整数除法的意义一样吗?
总结:分数除法的`意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
(1)引导参与,探究新知。
师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。
出示问题1。
请大家拿出一张操作纸,涂色表示出这张纸的4/7。
师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2。
请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。
师:对这种做法大家有什么疑问吗?
生:这儿是除法怎么变成了乘法?
师:老师也有这个疑问,你能讲讲吗?
师:谁能结合图来讲一讲呢?
师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……。
(2)质疑问难,理解新知。
接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。
通过计算你们有什么发现?
生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。
生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21。
能再讲讲这样做的道理吗?
师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。
请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?
展示学生的分法。
师(指着涂色部分):你所表示的这一部分是4/7的多少?
通过直观图理解4/7的1/3是4/21。
(3)比较归纳,发现规律。
师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!
小组活动,说算法。
师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。
出示:分数除以整数,等于分数乘这个整数的倒数。
还有需要注意的地方吗?
生:有,除数不能为0。
师:谁能把分数除以整数的计算法则用自己的话来说一说?
完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。
那象这样的分数除以整数的题目在计算时要注意些什么?
生:要约分!结果最简。除号要变成乘号!
三、巩固练习。
学生独立完成。
四、课堂小结。
1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)。
分数与除法教学设计北师大版篇十三
2.教学实录。
3.教学评价。
4.教学反思。
望疃学区中心学校。
石勇强。
石勇强。
教学目标:
1、在涂一涂、算一算等活动中,探索并理解分数除法的意义。
2、引导学生探索并掌握分数除以整数的计算方法,并能正确计算。
3、能够运用分数除以整数的方法解决简单的实际问题。教学重点:
引导学生探索并掌握分数除以整数的计算方法,并能正确计算。教学难点:
2、能够运用分数除以整数的方法解决简单的实际问题。教具准备:
长方形纸、课件。教学流程:
一、创设情境。
提出问题。
二、自主探究。
小组交流。
(教师指导学生自主探究,尝试解决以上两个问题,同桌之间交流想法)自主学习提示。
1.利用手中的的学习纸,涂一涂,算一算,尝试解决这两个问题。2.同桌之间说一说彼此的想法。
3.有困难的同学,可以借助课本第25页的提示,完成这两个问题。三。
交流释疑。
把一张纸的4/7平均分成2份,每份是这张纸的几分之几?请同学们拿出图。
(一)来涂一涂。
交流:为什么要这样涂,每份是这张纸的几分之几呢?还有不同的涂法吗?
能根据这个过程列出一个除法算式吗?这个除法算式和以前学的除法有什么不同?这就是这节课我们要学习的分数除法。(板书)。
2、初探算法。
把一张纸的4/7平均分成3份,每份是这张纸的几分之几?请大家在图。
(二)的上面涂一涂。交流:(展示学生不同的涂法)。
同学们是把长方形纸的七分之四平均分成了三份,再把其中一份涂上颜色。谁能根据这一过程列出一个算式。
怎样才能算出得数呢?
(师提问:计算时为什么要用×1/3?)。
4/5÷3。
1/3÷5指生口算。
让学生观察每一组算式,说一说发现了什么?
根据这三组算式再结合上一道题,你认为分数除以整数可以怎样计算?
(学生口述算法后)。
四、实践应用。
1、算一算9/10÷30。
15/16÷20。
14/15÷218/9÷65/6÷15。
2、填一填。
师:学会了知识就要灵活的运用,这道题你们能填上吗?
学生独立在书上第26页填一填,想一想。
集体订正。
3、解决问题。
学生在练习本上列式解答。
指生汇报完成情况。
运用分数除法能解决生活中的很多问题呢,谁能像老师这样来说一说生活中的问题,让大家解决。
(指生口头编题,其他学生解决)。
五、课堂。
总结。
学生谈一谈本节课的收获。
同学们,这节课你们过的快乐吗?学习本来就是一件快乐的事,老师希望今后你们能快乐的学习,快乐的成长。
六、布置作业:22页练一练。
(一)——分数除以整数。
=4/7×1/2。
=4/7×1/3。
=2/7。
=4/21。
石勇强。
一、创设情境。
提出问题。
二、自主探究。
小组交流。
(教师指导学生自主探究,尝试解决以上两个问题,同桌之间交流想法)自主学习提示。
1.利用手中的的学习纸,涂一涂,算一算,尝试解决这两个问题。2.同桌之间说一说彼此的想法。
交流释疑。
把一张纸的4/7平均分成2份,每份是这张纸的几分之几?请同学们拿出图。
(一)来涂一涂。
交流:为什么要这样涂,每份是这张纸的几分之几呢?还有不同的涂法吗?
能根据这个过程列出一个除法算式吗?这个除法算式和以前学的除法有什么不同?这就是这节课我们要学习的分数除法。(板书)。
2、初探算法。
把一张纸的4/7平均分成3份,每份是这张纸的几分之几?请大家在图。
(二)的上面涂一涂。交流:(展示学生不同的涂法)。
(师提问:计算时为什么要用×1/3?)。
老师教学点评:
本课在学生积累了丰富的平均分经验的基础上,建立除法算式,体会除法运算的意义。
本课的基本训练得到很好的落实,突出表现在两点:(1)让学生先独立完成,再交流、反馈;(2)加强了图形语言与算式、文字语言与算式转换的练习。
在课堂上给予学生充分的时间去分一分、画一画、说一说,学生自主学习,及时设问,引发学生思考,培养学生的思维能力,总体来说,大部分学生对平均分理解了,有了初步的印象,教学目标达到了,但在有些方面还需改进,教学环节还要更紧凑,在时间把握方面还有所调控;对学生的评价语言还需更丰满一些,多培养学生别人在说的时候应该认真倾听的好习惯。
(一)》教学反思。
教学反思:
(一)》是学生初次接触分数除法,本节课是学生今后学习分数除法的基础,让学生理解分数除法的意义以及对算法的探索就显得格外重要。本节课我力求体现以下几点:
一、充分利用学生最佳的学习状态,课堂上省去了旧知的复习,设计简单的知识情景,以最快的速度抓住学生有效学习时间,提高课堂有效性。
二、让学生在不同的活动中探索数学。数学课不应只让学生单纯地模仿和记忆,应让学生在具体地操作、观察、实践中得出结论。因此,课堂上我让学生通过操作、观察,引导学生探索出分数除以整数的计算方法,让学生经历了知识形成的全过程。在这样的过程中,充分地发挥了教师的引导作用,注重的是学生能力的培养,注重的是教给学生学习的方法,而不是把知识单纯的传授给学生,做到既重结果,又重过程。
三、
让学生在不同层次的练习中应用数学。学数学的目的就是用数学。在新课结束后,我让学生在不同层次的练习中应用了所学知识,让学生充分感受到了数学源于生活,又寓于生活。
不足之处:教学设计的内容过于饱满,导致部分学生对本课的重点掌握得不好。
分数与除法教学设计北师大版篇十四
北师大版小学五年级数学下册第55~56页。
1、体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。
2、培养学生动手动脑能力,以及判断、推理能力。
3、培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。
体验分数除以整数的计算方法,并能正确的计算。
分数除以整数计算法则的推导过程。
长方形纸片、彩笔。
一、创设情景,教学分数除法的意义。
1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!
(1)每人吃1/2块饼,4个人共吃多少块饼?
(2)把2块饼平均分给4个人,每人吃了多少块饼?
(3)有2块饼,分给每人1/2块,可分给几个人?
2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。
师:讨论:分数除法的意义和整数除法的意义一样吗?
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
(1)引导参与,探究新知。
师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。
出示问题1。
请大家拿出一张操作纸,涂色表示出这张纸的4/7。
师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2=。
请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。
师:对这种做法大家有什么疑问吗?
生:这儿是除法怎么变成了乘法?
师:老师也有这个疑问,你能讲讲吗?
师:谁能结合图来讲一讲呢?
师:很好!把除法转化成乘法,问题迎刃而解,你真棒!
(2)质疑问难,理解新知。
接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。
通过计算你们有什么发现?
生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。
生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21。
能再讲讲这样做的道理吗?
师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。
请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?
展示学生的分法。
师(指着涂色部分):你所表示的这一部分是4/7的多少?
通过直观图理解4/7的1/3是4/21。
(3)比较归纳,发现规律。
师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!
小组活动,说算法。
师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。
出示:分数除以整数,等于分数乘这个整数的倒数。
还有需要注意的地方吗?
生:有,除数不能为0。
师:谁能把分数除以整数的计算法则用自己的话来说一说?
完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。
那象这样的分数除以整数的题目在计算时要注意些什么?
生:要约分!结果最简。除号要变成乘号!
三、巩固练习。
学生独立完成。
四、课堂小结。
1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)。
分数与除法教学设计北师大版篇十五
1、说出几个分数的倒数。
其中一道是6/93,
(当学生使用分子除以整数的方法时,教师无须强调一定要使用一般方法:即用分数乘整数的倒数。)。
问题:谁走得快些?该如何比较?
学生列出了算式1:22╱3(小红每小时走多少千米?)。
2、探究22╱3如何计算:教师在学生的回答过程中画出线段图并进行讲解。
(除数是分数的除法的算理是教学的难点,但教师比较轻易地就滑过去了,没有好好地把握让学生探究的机会,而更在于让学生掌握计算方法这一结果。这个环节完全可以基于学生原有的知识进行迁移,放手让学生自己探究,猜想-----是否也是乘以除数的倒数呢?验证----用自己的策略或画几何图形、或用线段图、或利用乘除法之间的关系去推理、归纳、证实----建立模型,得出一般的方法。一定要让学生理解过程,能熟练地阐述算理。否则,就如某些学生的迷茫:我不知道为什么会是这样。)。
3、解决小红的速度问题,列式、计算。学生列出算式后进行计算。5╱65╱12。
(能不能让学生述说过程是怎样的呢?为什么可以乘以除数的倒数?)。
4、学生观察,并归纳计算方法。
5、对比,归一。比较分数除以整数和分数除以分数的方法,归纳为:除以一个不等于0的数,等于乘这个数的倒数。
(没有回应到要解决的问题。在新课程中解决问题都是与计算结合在一起的,要更多地关注学生思维的培养和解决问题的完整性。其实,解决这一个问题也不只是一种思路,教师没有意识到这一例题的资源的丰富性和开放性,对教材解读不到位。既可以通过单位时间的路程来比较,也可以通过单位路程所需要的时间来比较。作为比速度,当然是数值越大越快;作为比时间则数值越小越快。如果教师能意识到这一资源,能抓住这一出发点启发学生思考,那将是很有价值的。)。
(学生可能还有疑惑,可以让学生相互质疑,让学生看书质疑。尤其不要将课本仅仅看成是练习册,要发挥课本的指引作用,利用课本培养学生阅读课本的习惯。)。
1、书中的做一做。
(要真正做到心中有学生,心中有学困生,心中有学生容易错误的类型,并及时采取干预措施,补救失误或漏洞。)。
2、计算。
3、解方程。
(在学生群体练习的时候,要俯下身来看看学生整体掌握知识、运用技能的情况,看看学困生存在怎样的问题,在课堂上就寻求解决问题,变课后辅导为课内辅导。解方程这一练习形式大可不必。对于除数是分数的除法,学生很容易出现错误,教师应该基于自己的教学经验教训或者是他人的经验教训,对于学生出现的错误类型心中有数并就此设计一些辨析题让学生判断正误,及时提醒。或者就地取材,针对学生的错误即时提取错误资源并板书,让学生来判断。在练习过程中,发现学生对解方程本身就有问题,学生在两种技能都没有巩固的情况下进行综合练习,欲速不达。另外,可以增加一道解决问题的题目让学生完成。)。
分数与除法教学设计北师大版篇十六
教学目标:
1、通过对比两个除法算式与一个乘法算式,比较已知数和得数,理解并概括出分数除法的意义。
2、掌握分数除以整数的计算方法。
3、通过教学,培养学生的知识迁移能力和抽象、概括能力。
4、使学生明确知识间是相互联系的。
教学重难点:
重点:
理解分数除法的意义,掌握分数除以整数的计算方法。
难点:
教学过程:
一、导入。
1、例1。
2、改编条件和问题,用除法计算。
二、教学实施。
学生试着列出算式。
(1)例1引导学生分析并用图表示数量关系。
师问:求每份是这张纸的几分之几,怎样列式?
(2)列式计算。
师问:从图上看,结果是多少?这个结果是怎样得到的?
学生折一折,算一算。
(3)理清思路。
思路一:把五分之四平均分成2份,就是把4个五分之一平均分成2份,每份是2个五分之一,也就是五分之二。
思路二:把五分之四平均分成2份,求每份是多少,就是求五分之四的二分之一是多少。
(4)总结分数除以整数的计算方法。分数除以整数等于分数乘这个数的倒数。
5、巩固练习。完成教材第30页“做一做”。
三、课堂作业设计。
1、填空。
(1)分数除法的意义与整数除法的意义(),都是已知()与(),求()的运算。
(2)分数除以整数(0除外),等于分数()这个整数的()。
2、计算并验算。
分数与除法教学设计北师大版篇十七
一、从生活入手学数学。
国家数学课程标准》指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”教学一开始教师就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,用介绍该班的情况引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。
二、关注过程,让学生获得亲身体验。
教学中,为让学生认识解答分数乘法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。
在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师教学存在偏差。教师喜欢重关键词语琐碎地分析,喜欢用严密的语言进行严谨地逻辑推理,虽分析得头头是道,但容易走两个极端,或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。教学中我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的`能力,省去了许多烦琐的分析和讲解。在教学中准确把握自己的地位。我想真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显学生的主体地位,体现了生本主义教育思想。
三、多角度分析问题,提高能力。
在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如“是、占、比、相当于后面就是单位1”;“知1求几用乘法,知几求1用除法”等等的做法,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。
四、有破度有层次地设计练习,提高学生的思维能力。
教案还精心设计了练习题,通过看图,找等量关系,巩固了学生的分析思路;通过三类题的对比练习,使学生掌握了三类题的异同点,增强了学生的辨析能力,对于学生分析和解题起到了很好的推动作用,使学生无论遇到什么题,都会做到:抓住特点,学而不乱。
分数与除法教学设计北师大版篇十八
学习目标:
1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。
2.掌握一个数除以分数的计算方法,并能正确进行计算。
学习重点:理解一个数除以分数的意义和基本算理。
学习难点:运用分数除法的计算方法解决实际问题。
学习内容:
一、分一分。
有4张同样的圆形纸片。
(1)每2张一份,可以分成多少份?
画一画:
列示:
(2)每1张一份,可以分成多少份?
画一画:
列示:
(3)每1/2张一份,可以分成多少份?
画一画:
列示:
(4)每1/3张一份,可以分成多少份?
画一画:
列示:
(5)每1/4张一份,可以分成多少份?
画一画:
列示:
二、画一画。
1.有1根2米长的绳子。
(1)截成每段长1/3米,可以截成几段?
画一画:
列示:
(2)截成每段长2/3米,可以截成几段?
画一画:
列示:
2.3/4里面有几个1/8?
画一画:
列示:
三、填一填,想一想。
在〇里填上“”“”或“=”。
4÷1/2〇4×24÷1/3〇4×34÷1/4〇4×4。
2÷1/3〇2×32÷2/3〇2×3/23/4÷1/8〇×8。
你发现了什么?()。
四、试一试。
8÷6/75/12÷3。
()。
【本文地址:http://www.xuefen.com.cn/zuowen/11403002.html】