比例的意义和基本性质教案(优质17篇)

格式:DOC 上传日期:2023-11-13 04:18:04
比例的意义和基本性质教案(优质17篇)
时间:2023-11-13 04:18:04     小编:MJ笔神

教案是教学改革的重要手段,能够促进教学质量的提升。那么,如何编写一份合格的教案呢?首先,要明确教学目标,确立中心任务;其次,要合理安排教学步骤,使学生循序渐进地完成任务;还要根据学生的实际情况,灵活运用不同的教学方法和手段;此外,教案还应注重培养学生的综合能力,思维能力和创新意识。编写教案时,教师要注重教学过程中的评价和反馈,及时发现和解决问题,使教学更加有效。教案的精益求精要通过不断的实践和反思实现。

比例的意义和基本性质教案篇一

教学要求:1、使学生能正确判应用题中涉及的量成什么比例关系。

2、使学生能利用正反比例的意义正确解答应用题。

培养学生的判断分析推理能力。

教学难点:学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。

教学过程:

(一)复习。

1.说说正、反比例的意义。

(1)一辆汽车行驶速度一定,所行的路程和所用时间。

(2)从a地到b地,行驶的速度和时间。

(3)每块砖的面积一定,砖的块数和总面积。

(4)海水的出盐率一定,晒出的盐和海水重量。

3.判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。

(1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。

(二)新课。

(1)用以前方法解答。

(2)研究用比例的方法解答。

题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系?

能不能利用这个关系式列比例解答?

解比例,同学自已完成,及时纠正。检验。

改变例1中的条件和问题。

1、以前的发法解答。

2、怎样用比例知识解答?

3讨论结果填书上。

4小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。

整理和复习。

教学要求:

2、使学生能正确理解正、反比例的意义,能正确进行判断。

3、培养学生的思维能力。

教学过程:

知识整理。

1回顾本单元的学习内容,形成支识网络。

2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。

复习概念。

什么叫比?比例?比和比例有什么区别?

什么叫解比例?怎样解比例,根据什么?

什么叫呈正比例的量和正比例关系?什么叫反比例的关系?

什么叫比例尺?关系式是什么?

基础练习。

1填空。

六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是()。

小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是()。

甲乙两数的比是5:3。乙数是60,甲数是()。

2、解比例。

5/x=10/340/24=5/x。

3、完成26页2、3题。

综合练习。

1、a×1/6=b×1/5a:b=():()。

2、9;3=36:12如果第三项减去12,那么第一项应减去多少?

3用5、2、15、6四个数组成两个比例():()、():()。

实践与应用。

1、如果a=c/b那当()一定时,()和()成正比例。当()一定时,()和()成反比例。

将本文的word文档下载到电脑,方便收藏和打印。

比例的意义和基本性质教案篇二

《比例的基本性质》这节课在学生理解比例的意义的基础上教学的,为下节课教学解比例打下基础。教材利用三角形的缩小做素材,引导学生根据图中的数据写出不同的比例,以其中一个比例为例教学比例各项的名称,在让学生说出其他几个比例的内项和外项。在观察各个比例中的内项和外项的基础上,发展规律,揭示比例的基本性质。教材还介绍了分数形式的比例基本性质的表达方法。“试一试”教学利用比例的基本性质判断两个比能否组成比例的方法。“练一练”和练习十第1-4题对所学知识进行巩固。

传统的课堂教学,学生面对的都是些经过人类长期积淀和锤炼的间接经验。由于教学大纲规定,许许多多的知识点,使得教师只能用简单的“传授——接受”的教学方式来进行。而学生只是记忆、再现这些知识点,沦为考试的奴隶。其实知识是死的,课堂教学绝不仅仅让学生拥有知识,更应该让学生拥有智慧,拥有获取知识的方法。

从教育心理学角度看,学生智慧的发展,离不开智慧的熏陶。智:是人类个体的认识过程或认知结构,即对外部信息的感知、整理、联想、储存很搜索、提取、操作,或通过此过程形成的认知水平。慧:是人类个体所认知事理的评判过程和评判标准。我校通过创设智慧课堂,使教学触及学生的世界,伴随他们的认知活动,做到了“以智促知”。

1、注重从学生已有的知识出发,主动建构知识。在教学“比例的基本性质”时,让学生自己选择例子来探索,在探索中发现规律,得到结论。让学生处于积极探索的状态,唤醒了学生学习中一些零散的体验,并在教师的引导下主动将这些体验“数学化”,提炼出数学知识。

在教学中,不仅要求学生掌握抽象的数学结论,更应注重学生的“发现”意识,引导学生参与探讨知识的形成过程,尽量挖掘学生的潜能,能让学生通过努力,自己解决问题。这一教学过程,让学生通过计算、观察、发现、自学的方式,使学生在自己探索中学习知识,发现知识,并通过讨论,说出判断两个比能否组成比例的依据,促进了学生学习的顺利进行。

2、用教材教,体现教学的民主性。因为学生对比的知识了解甚多,所以在研究“比例的基本性质”的时候,不是教师出示教材中的例子,而是让学生自己举例研究,使研究材料的随机性大大增强,从而提高结论的可信度。这样也能让学生体会到归纳法研究的过程,并渗透科学态度的教育。

整个教学过程力求体现学生自主探索、独立思考、合作交流的学习过程,从中提高学生的数学学习的能力。如要求学生用自己的语言归纳比例的基本性质,重视在练习中发挥教师的指导作用,使练习的针对性更强,巩固练习在层次上由易到难,在形式上由封闭走向开放,让学生的聪明才智、才能得到充分的发挥,真正主动学习,成为学习的主人。

3、在运用比例的基本性质进行判断时,要求学生讲明理由,培养学生有根据思考问题的良好习惯;在填写比例中未知数时,不仅要求学生说出理由,还要求学生进行检验,这样培养学生良好的检验习惯和灵活解决问题的能力,培养良好的学习习惯。

4、给予学生自主探究的时间、自由驰骋的思考空间,允许他们有不同的想法、不同的方法,在开放式、个性化的学习中生成灵感,碰撞智慧。正是学生用自己独特的学习方式来解决问题,课才变得生动和真实,学习才显得如此活泼和有效。数学的学习成了充满灵性的创造过程,成了放飞心灵的快乐之旅。课堂已不仅是学科知识传递的殿堂,更是智慧培育的圣殿。

叶澜教授曾说:“把课堂还给学生,让课堂焕发生命活力”,确实我们教师应该把课堂看作是学生演绎精彩生命的舞台,把主动权、选择权下放给学生,让学生去思考、去探索、去实践,才能激起学生的求知欲望,才会有层出不穷的生成,使课堂充满生命的活力。

“比例的意义和基本性质”这节课是概念教学,不太好讲。在上课之前我感觉自己做了充分的准备。从学生已有的知识经验入手,方便快捷,为新课做好准备。激发学生的学习兴趣和求知欲望,使学生在探索中学习。然后在教学比例的基本性质时,我让学生看书自学,再小组交流,这样符合“新课标”的要求,体现了教师的主导作用和学生的主体地位。本节课的学习方式是多样的,有观察比较、小组交流、师生交流、同位交流、多方验证。另外,为了培养学生的能力,我采用了自主观察与讨论相结合的教学方式,而且整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。

但是上完课之后,我发现还存在很多问题。

1、教师激励性的语言还欠缺,还不能用多种语言来激励学生。如果感情更深些,更能激起学生的学习兴趣,使他们能更好的参参与学习。

2、上课心态、情绪还不够平稳,计算机技能、教学机智、自身素养还有待提高。为促进教学目标的顺利完成最后有点赶时间。

3、面对一些即时生成的课程资源,我还不能及时抓彩,把这些有效的教学资源开发、放大,让它临场闪光,从而激发学生参与课堂的热情,让“死”的知识活起来,让“静”的课堂动起来,变单纯的“传递”与“接受”为积极主动的“发展”与“建构”。

我觉得通过这一节课我学到了好多,作为一名教师,不能完全按照自己的意愿去设计课程,要考虑到学生。作为一名教师,在今后的日子里,还要好好努力,在实践中不断完善自己的教学方法。

比例的意义和基本性质教案篇三

这部分内容是比例基本性质的应用,方法是依据比例的基本性质,把比例转化为方程,通过解方程的方法来求解。学习这节内容,可以为接下来学习比例尺和用比例解决问题做准备。

二、教学目标。

1、在解比例的过程中进一步理解和掌握比例的基本性质,学会解比例的方法。

2、联系学生的生活实际创设情境,体现解比例在生产、生活中的广泛应用。

3、利用所学知识解决生活中的问题,进一步培养学生综合运用知识的能力。

三、教学重难点。

1、重点:自主探究出解比例的方法,并能轻松求出比例中的未知项。

突破方法:小组交流讨论,探究比例中未知项的各种计算方法,并从中进行优化。

2、难点:灵活运用解比例的方法解决问题。

突破方法:了解各种和比例知识相关的问题,掌握应用比例的基本性质灵活解决这些问题的方法。

四、教法与学法。

1、教法:教师指导学生通过自主思考,交流讨论掌握解比例的方法。

2、学法:学生独立探究,全班交流,优化出解比例的方法。

五、教学准备。

1、教师:教材例题投影图。

2、学生:常规学习用具。

六、教学过程。

复习导入1、复习。

(1)什么叫做比例?什么叫做比例的基本性质?

(2)用比例的基本性质判断下面哪一组中的`两个比可以组成比例?

18:20和7.2:8、100:0.2和10:0.0022导入新课。

(一)教学例二。

1、投影出教材第42页例二。

2、阅读与理解。

(1)学生独立读题,找出已知条件和所求问题。

(2)小组内交流获得的信息。

3、分析与解答。

(1)分析题意,根据题意描述两个相等的比。模型高度:实际高度=1:10。

(2)指出其中的未知项,说一说你想怎样解答。

设计意图:引导学生先独立思考,再组织学生合作交流。交流中既要听取学生的意见,又要注意引导学生从多角度思考解决问题的方法。

例如,把比看作除法,那么x:320=1:10就可以转化成x/320=1/10,学生就可以运用原来学习解方程的有关知识来解;也可以应用比例的基本性质,把x:320=1:10转化成10x=320*1来解。

10x=320*1(问:根据什么?)x=320*1/10x=32。

答:这做模型高32m。

(二)教学例三。

1、出示教材第42页例三。

解比例2.4/1.5=6/x。

2、让学生说说这个比例中的内项和外项分别是什么。内项是1.5和6,外项是2.4和x。

3、学生独立解答。

教师巡视,进行个别辅导。

4、组织交流订正解:2.4*x=1.5*6x=1.5*6/2.4x=15/4。

5、小结。

提问:解比例的方法是什么?

比例就是一种特殊的方程,不论在书写格式还是验算方法上,它与解方程都是相同的。解比例时,先根据比例的基本性质把比例转化为方程,再按解方程的方法进行解答。

七、巩固练习。

1、教材第42页“做一做”第一题。

这道题设计了三道未知项的位置不相同以及不同形式的比例,通过练习巩固解比例的方法。先让学生独立解答,再进行交流订正。

2、教材第42页“做一做”第二题。

这道题的解题方法和例题类似,可以让学生独立思考解答。

3、在一个比例中,两个外项正好互为倒数,已知一个内项是3,另一个内项是多少?

八、课堂小结。

通过这节课的学习,你有什么收获?

今天这节课,我们学习了解比例的知识。在解比例时,我们先根据比例的基本性质把比例转化成方程,再按照解方程的方法进行解答。

九、板书设计解比例。

例2:解:这座模型的高度是xm。x:320=1:10。

10*x=320*1(根据比例的基本性质)x=320*1/10x=32。

答:这座模型高32m。

比例的意义和基本性质教案篇四

1.知识与技能:认识比例,知道比例的的内项和外项,理解和掌握比例的基本性质,会判断两个比能否组成比例。

2.过程与方法:通过自主探究、合作交流、观察、比较,培养学生分析、比较、抽象和概括的能力,经历认识比例和比例的基本性质的过程。

3.情感态度与价值观:体会国旗中隐含的数学规律,丰富关于国旗的知识,培养学生爱国旗、爱祖国的情感。

探究比例的基本性质和应用意义,会判断两个比能否组成比例。

学生思考回答(挖掘学生生活经验)。

同学们知道的真多,说明同学们平时认真观察,是个有心人。

1.你了解到哪些关于国旗大小的知识?

学生交流,给学生充分的交流机会。

(1)猜测。

预设:生1、长和宽的比值相等;生2、宽和长的比值相等,

(2)小组验证。

每个小组任选两种规格国旗,验证一下每种国旗长和宽之间存在的.规律。

(3)展示交流小组验证结果,学生到黑板前板书得出结论。

预设:每种国旗的长和宽的比都是3:2,他们的比值相等。

每种国旗的宽和长的比是2:3,他们的比值相等。

怎么判断两个比是不是成比例?

试一试,判断下面哪组中的两个比可以组成比例。

2:3和6:94:2和28:405:2和10:420:5和1:4。

2.小组内验证猜测结果。

3.展示验证猜测情况。得出结论,

预设:

“在比例里,两个外项相乘的积就等于两个内项相乘的得数”。

“在比例里,把两个外项乘起来,再把两个内项乘起来,它们的得数是一样的”。

教师归纳总结。

同学们说得对,在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

谁能用分数形式表示以上比例?怎样求两个内项和两个外项的积呢?(分子和分母交叉相乘)。

同学们学习了比例的意义与性质,那么能利用它们解决实际问题吗?

1.判断下面哪组中的两个比可以组成比例?

(1)6:9和9:12。

(2)1/2:1/5和5/8:1/4。

(3)1.4:2和7:10。

(4)0.5:0.2和10:4。

2.判断。

(1)表示两个比相等的式子叫做比例()。

(2)0.6:1.6与3:4能组成比例()。

(3)如果4a=5b,那么a:b=4:5()。

3.填空。

5:2=80:()。

2:7=():5。

1.2:2.5=():4。

在一个比例里,两个外项互为倒数,其中一个内项是6,另一个内项是()。

在一个比例里,两个内项的积是12,其中一个外项是2.4,另一个外项是()。

4.写出比值是5的两个比,并组成比例。

5.根据3a=5b把能组成的比例写出来。

四、自主反思、深入体验。

通过这节课的学习你有什么收获?

比例的意义和基本性质教案篇五

教学目标:

1.使学生进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

教学重点:比例的基本质性。

教学难点:发现并概括出比例的基本质性。

教学过程:

一、旧知铺垫。

1.什么叫做比例?

2.应用比例的意义,判断下面的比能否组成比例。

2.4:1.6和60:40。

二、探索新知。

1.比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:2.4:1.6=60:40。

内项。

外项。

(2)学生认一认,说一说比例中的外项和内项。

如::=:

外内内外。

项项项项。

2.比例的基本性质。

你能发现比例的外项和内项有什么关系吗?

(1)学生独立探索其中的规律。

(2)与同学交流你的发现。

(3)汇报你的发现,全班交流。

板书:两个外项的积是2.4×40=96。

两个内项的积是1.6×60=96。

外项的积等于内项的积。

(4)举例说明,检验发现。

如::0.5=1.2:。

两个外项的积是×=0.6。

两个内项的积是0.5×1.2=0.6。

外项的积等于内项的积。

如果把比例改成分数形式呢?

如:=。

2.4×40=1.6×60。

等号两边的分子和分母分别交叉相乘,所得的积相等。

(5)归纳。

在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

3.填一填。

(1)=。

()×()=()×()。

(2)0.8:1.2=4:6。

()×()=()×()。

(3)4×5=2×10。

4:()=():()。

=

4.做一做。

完成课文中的“做一做”。

5.课堂小结。

(1)说一说比例的基本性质。

(2)你可以用什么方法来判断两个比能否组成比例?

三、作业。

完成课文练习六第4~6题。

课后记:

比例的意义和基本性质教案篇六

导学目标:

2、通过引导探究、概括归纳、讨论、合作学习,培养学生抽象概括能力。

3、使学生初步感知事物间是相互联系、变化发展的。

导学重点:比例的意义和基本性质。

导学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。

预习学案。

1、什么是比?

2、口算下面各比的值,哪些比的比值相等?

12:1634:185:310:66:10。

导学案。

探究比例的意义。

例1一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下。

时间(时)25。

路程(千米)80200。

80:2=200:55:3=10:66:10=9:15802=。

像这样由两个相等的比组成的式子我们把它叫做比例。

练习:

应用比例的意义判断下面的比例是否正确。

1、20:5=1:42、12:133、0.6:0.2=34:14。

先独立完成,再在小组内交流。

我们已经知道组成一个比的两个数分别叫做这个比的前项和后项,组成比例的四个数也叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

看课本48页,在图上这四面国旗的尺寸中,能找出哪些比来组面比例?

四人小组讨论,老师巡视,给予指导。

请小组汇报讨论结果,老师根据学生的汇报,将组成的比例分类板书在黑板上。

老师结合板书归纳:根据同学们找的结果,我们看到,这四面国旗的长与宽的比值都相等,所以每两面国旗的长与宽的比都可以组成比例。同样,这四面国旗的宽与长的比值也都相等,所以每两面国旗的宽与长的比也都可以组成比例。另外我们还发现每两面国旗的长与长的比值与宽与宽的值也相等,所以每两面国旗的长与长的比,与宽与宽的比也可以组成比例。根据两个相等的比可以组成比例,从四面国旗的尺寸中,我们可以组成许多个比例。

二、比例的基本性质。

板书:

80:2=200:55:3=10:66:10=9:15。

内项。

外项。

观察黑板上的比例式,你以发现比例的内项与外项之间有什么关系吗?小组讨论。教师在学生讨论的基础上总结并在比例式下板书如下,并说明:通过计算,我们发现两个外项的乘积等于两个内项的乘积。

802=200580×5=2×200。

53=1065×6=3×10。

610=9156×15=10×9。

小组合作,举几个这样的例子验证一下。

从上面的计算我们发现,在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

观察黑板上分数形式表示的比例式,内项乘内项怎样乘?外项乘外项怎样乘?得到分子与分母交叉相乘。

练习。

1、6:3=8:52、0.2:2.5=4:50。

3、2:3=12:134、1.2:0.6=10:5。

课堂检测新课标第一网。

1、应用比例的意义判断下面的比例是否正确:

(1)3:5=9:15。

(2)2.5:5=25:0.5。

(3)1002=。

(4)13:2=16:4。

(1)6:9=9:12。

(2)1.4:2=7:10。

(3)5:2=58:14。

(4)34:110=7.5:1。

3.选择题(把正确答案的序号填入括号内)。

(1)()与3:5能组成比例。a.10:6b.13:15c.30:50。

(2)()与5:8能组成比例。a.15:18b.10:16c.3:5。

(3)4:5与()能组成比例。a.14:15b.8:10c.15:12。

(4)7:9与()能组成比例。a.70:90b.17:19c.3:4。

你能比较一下“比”与“比例”有什么联系与区别吗?

板书设计。

一、比例的意义二、比例的基本性质。

表示两个比相等的式子叫做比例。两个外项的积等于两个内项的积。

比例的意义和基本性质教案篇七

1、教学内容:

《比例的意义和基本性质》是人教版数学第十二册的内容。比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等的基础上教学的,是本套教材教学内容的最后一个单元。而本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。

2、教学目标:

根据新课标要求和教材的特点,结合六年级学生的实际水平,可以确定以下教学目标:

(2)认识比例的各部分名称。

(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。

3、教学重、难点:

理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。

4、教法、学法:

根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的`指导思想,主要让学生在“计算——观察、比较——概括——应用”的学习过程中掌握知识。

二、说程序设计。

课堂教学是学生学习数学知识的获得,能力发展的重要途径。基于此,我设计了如下的教学设计。

(一)复习导入。

让学生根据所给信息写出四个比。目的就是为新授进行铺垫,搭建脚手架,同时也为学生后面区分比例和比打下基础。

(二)教学新课。

第一部分:先出示几个比,让学生计算它们的比值,然后通过观察、比较,给这些比分类。通过学生自己的观察、发现,根据比值是否相等来分类。接着追问:“两个比的比值相等,那他们之间可以用什么符号连接呢?”是让学生深刻地了解到,只要两个比的比值相等,就可以说两个比相等。运用黑板上的几个比例式,告诉学生象这样的式子就叫做比例,给学生直观的印象,然后列举一个反例,让学生对比观察,引导学生发现他们之间的共同特点,抽象概括出比例的意义。教学比例的意义后,及时组织练习。第一个是判断导入部分的四个比能否组成比例,并说明理由。第二个练习是,判断两个比是否能组成比例,在这个过程中,不仅运用了比例的意义,而且对比的性质也有一定的运用,以培养学生从多种角度解决问题的`能力。第三个练习是写出比值是4的两个比,并组成比例。三个练习,每一个都在逐步的延伸,意在达到熟练运用比例的意义解决问题的能力。

第二部分:在认识比例的各部分名称时,我让学生看课件自学,然后让他们自己说说比例里各部分的名称。在揭示比例的基本性质时,我先让学生计算,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。

(三)巩固练习。

在巩固练习环节中,第1题是三个判断题,是对基本概念的巩固。第2题是根据比例的基本性质写出比例,这里需要从学生逆向思维的角度去解决问题。第3题是用四个数组比例,这题学生在组的过程中没有方法和顺序,那么在交流过程中就需要教师去引导学生发现方法,总结规律,使学生不仅把题做对,而且指导自己更好解决问题。第4题是拓展题,让学生根据当前所学的知识猜数,一方面巩固比例的意义和基本性质的知识,另一方面,为下节课“解比例”做铺垫:根据比例的基本性质,如果知道了比例中的任何三项,就可以求出另外一项,这是下节课要研究的内容“解比例”。

三、说教后反思。

这节课是概念教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而且在知识点的获取时,让学生自主观察发现,分析比较,概括出比例的意义和基本性质,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。

新课上完之后,我觉得这节课的内容学生掌握得还比较好,尤其是根据比例的基本性质写出比例,这里需要学生从逆向思维的角度去思考,因此需要加强学生这一方面知识的反复练习,才能使学生熟练掌握比例的基本性质。我觉得通过这一节课我学到了好多,作为一名教师,千万不能完全按照自己的我还要在实践中不断完善自己的教学方法。

比例的意义和基本性质教案篇八

用本课的设计始终围绕教学目标而进行,突出重点,有措施,突出难点有策略,整个教学过程体现了教师为主导,学生为主体的精神,具体而言,有如下两大特色:

1、活了教材,设计者将教学内容分解成20多个问题,每个问题既有侧重,又都围绕着重点来进行,使原先教材上的死知识变成了课堂中的“活问题”,让学生在解决问题中探究知识的形成过程。

2、搞活了课堂。课堂的活有两种形式,一是形式上的活,一是内在的活,即让学生的思维始终处于活跃状态。前一种活是显性的,后一种活是隐性的,比较难以达到,它需要教师对教学内容的深刻理解以及较高的驾驭课堂的能力。本课的活就属于后一种,教师通过指导学生自学、讨论、数量演示等多种方式,来回答教师提出的问题,使学生的思维一直处于活跃状态,故而能事半功倍,较好地完成教学任务。

综上所述,本课的'设计体现了一种较高的教学教育观念—教是为了不教。

本周三,在教学《比例的意义和基本性质》时,通过复习求比值,找出比值相等的比,为教学比例的意义做好铺垫,概括出比例的意义,利用比例意义判断两个比能否组成比例,安排了让学生写出比值相等的比,再组成比例,还安排了四个数组成比例,目的在于加深对比例意义的认识和理解。在认识比例的各部分名称时,我让学生看书自学,然后让他们自己说说比例的各部分的名称。

此外,组织学生探究比例的基本性质,引导学生“分别算一算比例的两个外项和两个内项的积,你发现了什么?”大胆放手,用四个数组成等式这一开放练习产生新鲜有用的教学资源,我通过引导让学生展开讨论,进行了有效的探究。

本节课我注重了对学生的评价,用多种语言来激励学生,但是有的地方还是做的不太好。如果在这里感情更深些,更能激起他们的学习兴趣,使她们能更好的参与学习。在今后的教学的实践中我将不断完善自己的教学方法,提高教学质量。

比例的意义和基本性质教案篇九

2、了解比和比例的区别与联系。

2、在已有知识的基础上,结合实例引出新的知识。

情景图、多媒体课件、习题卡。

出示课题:比例。

看到课题你想到了以前学过的什么知识?(生1,生2等回答)。

我们已经了解了比的这些知识,请做下面练习。

求下面各比的比值。

18:453:52.7:4.5。

求完比值你觉得哪些比有联系?

师:相机板书:3:5=2.7=4.5?

今天我们将深入学习比例的意义,看到课题你想了解什么知识呢?

板书完整课题:比例的意义。

(师趁机板书在黑板右上角)。

本节课我们就来完成这两个目标:

【设计意图:对学生同时进行思想品德教育和爱国教育】。

生各抒己见。

你知道下面这些国旗的长和宽是多少吗?它们有大有小,都符合要求吗?今天我们一起来探讨。

自学指导:

1、请每位同学任选两面国旗,分别计算出它们长与宽的比值和宽与长的比值。

2、发现了什么有趣的现象?

3、把你的发现尝试用算式写下来。

(5分钟后,期待你精彩的分享)。

(二)自学。

学生认真看书自学,教师巡视,督促人人都在认真地思考。

(三)汇报分享。

谁愿意把你的结果和大家分享?师相机板书。

(1)15:2.4=10:1.6(2)60:15=40:10(3)…(4)…。

原来在国旗中有这么多的相等关系。国旗的缩放是按比例进行的。

我们把比值相等的两个比用等号连起来。这样的式子就是比例。请同学读数学课本,40页,用笔勾画出重点词句,并读一读。

师:你还能写出两个比组成的比例吗?先自己选,再在小组里说一说。

生:…。

师:你能根据自己的理解说说什么叫做比例吗?先同桌互说,再小组内互相说一说,再指名汇报。

擦去开始板书中的“?”并把比例可用分数形式表示板书出来。

师:你能说一说组成比例要具备哪些条件吗?

生:…。

生:…。

下面各比能组成比例吗?你是怎样判断的?请写出计算过程。

(1)3:7和9:21。

(2)15∶3和60∶12。

1、把下面的式子进行归类:

(5)72:8=3x3(6)3.6:6=0.6。

比:

比例:()。

思考:你快速做出判断的原因是什么?明白了比和比例有什么区别?

2、判断:

(1)、有两个比组成的式子叫做比例。()。

(2)、如果两个比可以组成比例,那么这两个比。

的比值一定相等。()。

(3)、比值相等的两个比可以组成比例。()。

(4)、0.1∶0.3与2∶6能组成比例。()。

(5)、组成比例的两个比一定是最简的整数比.()。

1、写出比值是7的两个比,并组成比例。

2、12的因数有(),从12的因数中挑选4个数组成比例是()。

今天这节课你有什么收获?

第43页第2、3题。

判断下面每组中的两个比能不能组成比例。

30:5和48:812:0.4和3:5。

表示两个比相等的式子叫做比例。

比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

本节课属于概念教学,分五个环节设计教学,利用十五个问题贯穿整节课,以问导学,以问导疑,以问导思,以问导获,注重培养了学生的各种能力,全课体现了以下几个特点:。

1.关注了学生已有的知识与经验。课的开始从引导学生复习比的知识入手,通过求比值相等的两个比,可以用“=”连起来,自然而然的`引出比例,这样的设计符合学生的认知规律。

2.注重数学知识与生活的联系。数学来源于生活,更应用与生活,本节课从从学生熟悉的国旗引入比例,在求大小不同的国旗的长与宽的比值中学习比例的意义,通过观察、探讨大大小小的国旗的长与宽、宽与长、长与长、宽与宽的比值关系中,加深学生对比和比例的关系,比例意义的理解和掌握。最后通过照片,让学生感受到数学知识离不开生活,生活中处处有数学知识。

3.课堂采用以问导学的策略,用十五个问题贯穿了整节课,以问题引导学生思考,促进学生思考,用问题激发学生的兴趣,用问题控制学生的注意力,用问题拓展学生的思路,用提问强化学生的认知,用问题促进师生之间的交往互动。培养了学生的问题意识,培养学生的自学能力、思维能力、观察能力、表达能力等,从而提高学生解决问题的能力。

4.采用探究式的学习方式。对新课的教学,教师不是把现成的答案强加于学生,而是让学生通过观察、计算、思考、阅读等方式初步感知新知,再进一步提问“你能根据自己的理解说说什么叫做比例吗,”、“你能说一说组成比例要具备哪些条件吗,”、“你还能找出那些比组成比例,”等引导学生思考、探究,学生在合作交流中产生思维碰撞,这样,学生的体验和感受都很深刻。

5.设计了多种形式的练习,升华了学生的思维。练习是巩固新知、发展思维的有效手段。思维目标的实现需要通过一定的练习来完成,本节课设计了六种不同层次、不同功能的练习,有利于学生对比例意义的巩固,有利于提高学生思维的敏捷性,有利于培养学生解决生活中实际问题的能力和习惯。

比例的意义和基本性质教案篇十

1、教学内容:

2、教学目标:

根据新课标要求和教材的特点,结合六年级同学的实际水平,可以确定以下教学目标:

(2)认识比例的各局部名称。

(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。

3、教学重、难点:

理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。

4、教法、学法:

根据本节教材内容和编排特点,为了更好地突出重点,突破难点,依照同学的认知规律,遵循教师为主导,同学为主体,训练为主线的指导思想,主要让同学在“计算——观察、比较——概括——应用”的学习过程中掌握知识。

课堂教学是同学学习数学知识的获得,能力发展的重要途径。基于此,我设计了如下的优秀教案。

(一)复习导入。

让同学根据所给信息写出四个比。目的就是为新授进行铺垫,搭建脚手架,同时也为同学后面区分比例和比打下基础。

(二)教学新课。

分成两部分:第一部分,教学比例的意义;第二部分,教学比例的基本性质。

第一部分:先出示几个比,让同学计算它们的比值,然后通过观察、比较,给这些比分类。通过同学自身的观察、发现,根据比值是否相等来分类。接着追问:“两个比的比值相等,那他们之间可以用什么符号连接呢?”是让同学深刻地了解到,只要两个比的比值相等,就可以说两个比相等。运用黑板上的几个比例式,告诉同学表示两个比相等的式子叫做比例,另外结合教材引导学生观察,在一个比例中,两端的两项叫做比例的外项,中间的两项叫做比例的内项。给同学直观的印象,然后列举几个例子,让同学对比观察,引导同学认识比例的外项和内项以及他们之间的一些特点,并适时组织练习。

第二部分:在认识比例的各局部名称后,我借助多媒体课件,让他们自身说说比例里各局部的名称。通过观察讨论总结出比例的基本性质:在一个比例中,两个外项的积等于两个内项的积,叫做比例的基本性质。在揭示比例的基本性质时,我先让同学计算,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。

(三)巩固练习。

在巩固练习环节中,第1题是用2,3,4,6四个数组成比例,是对基本概念的巩固。第2题是根据比例的基本性质写出比例,这里需要从同学逆向思维的角度去解决问题。第3题是拓展题,让同学根据当前所学的知识猜数,一方面巩固比例的意义和基本性质的知识,另一方面,为下节课“解比例”做铺垫:根据比例的基本性质,假如知道了比例中的任何三项,就可以求出另外一项,这是下节课要研究的内容“解比例”。最后通过例题和练习进行巩固这节课所学的内容。最后我进行了课堂总结,/soft/让学生自己归纳:本节课你有什么收获?你还有什么疑惑?起到了画龙点睛的作用。在一堂课结束之前,我还安排了一定的作业时间,既当堂检查了教学效果,又减轻了学生的课后负担,并在作业时,我进行了个别辅导,让后进生能得到进一步的理解和掌握。

学习无止境,在今后的教学中,我会更加努力地钻研教材、设计教法,力争使每一节数学课都能达到理想的教学效果。最后我忠心希望各位领导、老师多提宝贵意见,谢谢大家!

比例的意义和基本性质教案篇十一

1进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

2.判断下面的两个比能不能组成比例。

6∶10和9∶15。

1.进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

活动一(进一步理解比例的意义,懂得比例各部分名称。)。

组成比例的四个数,叫做比例的()。

两端的两项叫做比例的()。

中间的两项叫做比例的()。

在24:16=60:40中,()和()是比例的外项,

()和()是比例的内项。

活动二(经历探索比例基本性质的过程,理解并掌握比例的基本性质。)。

2.把24:16=60:40改写成分数形式是:

接着把等号两边的分子和分母分别交叉相乘,所得的积有什么关系?

0.2∶2.5和4∶506∶9和9∶12。

完成p34做一做。

比例的意义和基本性质教案篇十二

九年义务教育六年制小学数学第十二册第10~11页。

师:什么叫比例?下面每组中的两个比能否组成比例?出示:

学生根据比例的意义进行判断,教师结合回答板书:

师:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项(板书:外项、内项)。

师:刚才,你们是根据比例的意义先求出比值再作出判断的。老师不是这样想的,可很快就判断好了,想知道其中的秘密吗?告诉你们,老师是运用了比例的基本性质进行判断的。

同学们在窃窃私语:什么是比例的基本性质?好奇心一下子被激发了。

师:同学们,比例中的两个外项与两个内项之间存在着一种关系,你能发现吗?

大家默默地观察着上面的几个比例,不一会儿,一些学生脸上露出惊喜的神色,按捺不住激动的心情,开始转身与周围的同学交流,教室里的气氛有点热闹起来。

这下,学生们又静了下来,认真地思考着老师的问题,许多学生在纸上写着比例进行着验证。

师:现在,请前后四人为组,将你发现的规律与同伴交流一下,看看大家是否同意?

学生在小组内进行着热烈的交流和讨论,并积极代表小组进行汇报。

生:我们发现了这样一个规律,比例中的两个外项的乘积与两个内项的乘积是相等的。我们还自己写了比例,发现这个规律是正确的。

教师将学生所举比例故意写成分数形式3/8=6/16,追问:哪两个是内项,哪两个是外项,让学生算出积并结合回答板书:

师:老师也写了一个比例(板书:3∶2=5∶4),怎么两个外项的积不等于两个内项的积!你们发现的规律可能是有问题的。

教师的这一问,还真把一部分学生给吓着了。不过,大家很快发现老师把比例写错了。

生:(机灵地)老师,你举的例子从反面证明了我们发现的规律是正确的。因为3∶2和5∶4这两个比是不能组成比例的。只有在比例中,两个外项的积等于两个内项的积。

师:很有道理!同学们很会观察,很会猜想,很会验证,自己发现了比例的基本性质。

板书:在比例中,两个外项的积等于两个内项的积。这叫做比例的基本性质。

有学生回答“因为3与8两个内项的积不等于6与5两个外项的积,所以,这两个比不能组成比例。教师对此引导学生展开严密的思考,假如6:3和8:5是能够组成比例的,则两个外项的积必定等于两个内项的积,而现在3与8的积不等于6与5的积,所以,假设是错的,也就是6∶3和8∶5这两个比是不能够组成比例的。

对于这一反例的判断,教师没有简单地让学生就事论事,而是不断地让学生就事论理,在说理的过程中不断地加深对比例性质的理解,同时进行较为严格的逻辑思维训练,培养学生的语言表达能力。

师:如果让你根据“2×9=3×6”写出比例,你行吗?你能写出多少个呢?

问题一提出,学生就积极地尝试着写比例,不一会儿,学生争着要在投影上展示自己所写的比例。有趣的是,学生将数字移来移去,有的比例重复出现,有的比例则被遗漏,台下的学生不停地为台上的伙伴出主意,有些学生忍不住喊着“我来”,教室里气氛热烈……针对学生用尝试的方法出现重复或遗漏的现象,教师激发引导说:同学们学习的热情很高,但仅凭热情往往还不能有效地解决问题,象这样一个一个举例写出,难免会有重复或遗漏,怎样思考才能很快地一个不漏地写出?根据比例的基本性质,若把2放在内项的位置上,那么,9应该放在什么位置上?把2和9同时放在内项位置上,共能写出几个比例?2和9只有同时放在内项的位置上吗?学生受到启发,写出了所有的比例。在学生经历这样一番尝试实践的基础上,教师引导学生反思体验:用尝试的方法去一个一个地写,还是从比例的基本性质出发进行有序思考,你们觉得哪种方法能更有效地解决问题?学生自然体会到后者更好,并表示会这样思考问题了。

师:你能用“3、4、5、8”这四个数组成比例吗?若能,请把组成的比例写出来。

基本性质出发进行思考作出判断给予充分肯定。

师:你能从3、4、5、8中换掉一个数,使之能组成比例吗?

许多学生凭籍直觉很快把“5”换成“6”,教师在给学生肯定后继续追问:若要换下其中的任意一个数,你行吗?这一问题将学生的思维引向深入。经过独立思考、集体讨论,大家将要换上的数用字母x表示,由比例的基本性质建立多个不同的方程,求出各方程的解,有效地解决了问题。

师:同学们真行!不仅探索发现了比例的基本性质,还能自觉地运用比例的基本性质,去判断两个比能否组成比例,去求比例中的未知项。

比例的意义和基本性质教案篇十三

一、引入新课干净利落。

上课伊始,教师提问什么叫“比”,并举例,然后出示几组比,提生算出比值,观察这两个比,你有什么发现?生:比值一样,可以用等号连接。在数学。

教学。

中,知识的引入时机不同,得到的教学效果也不同。引入得过早可能使教学显得过于急促、突兀,过晚又可能使教学显得过于拖拉、罗嗦。这节课教师通过几个简短地师生对话,应用新旧知识间的迁移引入新知,干脆利落。

二、教学设计层次分明。

从比例的意义,探究比例的基本性质,再到比例的各部分名称,各环节的连接都是在师生默契的对话中顺利进行。我们知道,在数学教学中,每个教学内容一般都以活动的形式表现出来。由于每次活动的目的与要求、内容与形式不尽相同,就可能造成活动板块之间的割裂。教师一般通过设计过度语言或采用前呼后应等手法来弥补这种“裂痕”,使各个环节融会贯通、浑然一体。但在具体操作上难免有生硬预设嫌疑,汪老师注重联系点的有效生成,所以自然、流利。

三、

指导练习的方法有趣易记。

这节课的巩固练习有这样的一道题,根据一个乘法算式写出比例式,怎样写不重复不遗漏,每位老师都会和学生探讨一定的方法,老师在这节课上揭示的方法比较实用。

1、两节课思路清晰,环环相扣,师生互动性良好。

2、在数学教学中,知识的引入时机不同,得到的教学效果也不同。这节课李波通过主题图的发散认识,简单明了的开始探究活动,王英芳则是在教室的引导中让学生发现每组的特点,条理清晰。

3、在数学教学中,教师都会特别强调一些关键性知识、易混淆知识和易疏忽知识时,常会采用加重语气、改变字样、运用比较或反复训练等方法,让学生特别重视这些注意点,防患于未然。而这节课两位老师采取放手让学生去判断,形成认知冲突。通过这节课我体会到:其实强调一些关键性知识、易混淆知识和易疏忽知识,也可以采用先让学生“吃一垫”来加深体验,然后“长一智”而自觉引起注意,成熟于已然。

4、从探究比例的意义到比例的各部分名称,再到探究比例的基本性质。各环节的连接都是在师生默契的对话中顺利进行。

5、我们知道,在数学教学中,每个教学内容一般都以活动的形式表现出来。由于每次活动的目的与要求、内容与形式不尽相同,就可能造成活动板块之间的割裂。教师一般通过设计过度语言或采用前呼后应等手法来弥补这种“裂痕”,使各个环节融会贯通、浑然一体。但在具体操作上难免有生硬预设嫌疑,两位老师都能注重联系点的有效生成,所以自然、流利。

这节课美中不足的是:学生的合作能力没有得到培养,学生的互动只停留在一般问题的反馈与补充的层面,数学味的问题答辩的浓度不大,可见学生真正数学探究的素养还没有得到深层次的挖掘与开发。

比例的意义是在前面学习比的意义和比的基本性质的基础上进行教学的。在这节课上孔石磊老师通过播放歌曲《五星红旗》,潜移默化地对学生进行了爱国旗、爱祖国的思想品德教育,学生沉浸在美妙的歌声中,不知不觉地走进新知的学习中。

亮点:

1、利用不同场景中的`国旗引入,让学生体会国旗中隐含的数学知识。教学中教师首先通过化简比和求比值,让学生发现其中的规律,即这三面国旗长与宽的比值相等,化简比相同,也就是长与宽的比都相等;然后介绍国旗法,让学生知晓国旗的长与宽的比就是3:2,从而发现隐藏在国旗中的秘密。

2、整体教学设计紧凑,教学内容丰富。在整节课中教师不仅教学了比例的意义、比例的各部分名称,还教学了比例的基本性质、比和比例的区别,在知识的拓展中,还进行了知识链接,渗透数学文化和数学思想。教学知识点比较多,利于学生整体建构知识之间的联系,学生既可以利用比例的意义判断两个比是否能组成比例,还可以利用比例的基本性质来判断,学生可以有不同的选择。另外,教师在教学比例和比的区别中,可以从意义、组成和性质三方面完整地辨析比和比例。

建议:

1、在国旗的教育方面,通过国旗法,教师还可以有一个点睛之笔,就是正因为不同大小的国旗,它们长与宽的比都是3:2,这也正是国旗的魅力所在。

2、教学知识点多,容易导致学生疲于走马观花式的听讲,学生静心思考、反思消化明显存在不足。对于比例意义和比例的基本性质的理解处于浅层知识状态。

3、用字母表示分数形式的比例,还应让学生加强练习,巩固分数形式的比例的书写格式。

4、对于概念教学中比例的意义和比例的基本性质,应注重从多个具体事例抽象出概念的核心,进而。

总结。

比例的意义和基本性质教案篇十四

一、说教材。

1、教学内容:

《比例的意义和基本性质》是浙教版数学第十二册的内容。比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等得基础上教学的,是本套教材教学内容的最后一个单元。而本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。

2、教学目标:

根据新课标要求和教材的特点,结合六年级学生的实际水平,可以确定以下教学目标:

(2)认识比例的各部分名称。

(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。

3、教学重、难点:

理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。

4、教法、学法:

根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“计算——观察、比较——概括——应用”的学习过程中掌握知识。

二、说程序设计。

课堂教学是学生学习数学知识的获得,能力发展的重要途径。基于此,我设计了如下的教学设计。

(一)复习导入。

让学生根据所给信息写出四个比。目的就是为新授进行铺垫,搭建脚手架,同时也为学生后面区分比例和比打下基础。

(二)教学新课。

分成两部分:第一部分,教学比例的意义;第二部分,教学比例的基本性质。

第一部分:

先出示几个比,让学生计算它们的比值,然后通过观察、比较,给这些比分类。通过学生自己的观察、发现,根据比值是否相等来分类。接着追问:“两个比的比值相等,那他们之间可以用什么符号连接呢?”是让学生深刻地了解到,只要两个比的比值相等,就可以说两个比相等。运用黑板上的几个比例式,告诉学生象这样的式子就叫做比例,给学生直观的印象,然后列举一个反例,让学生对比观察,引导学生发现他们之间的共同特点,抽象概括出比例的意义。教学比例的意义后,及时组织练习。第一个是判断导入部分的四个比能否组成比例,并说明理由。第二个练习是,判断两个比是否能组成比例,在这个过程中,不仅运用了比例的意义,而且对比的性质也有一定的'运用,以培养学生从多种角度解决问题的能力。第三个练习是写出比值是4的两个比,并组成比例。三个练习,每一个都在逐步的延伸,意在达到熟练运用比例的意义解决问题的能力。

第二部分:

在认识比例的各部分名称时,我让学生看课件自学,然后让他们自己说说比例里各部分的名称。在揭示比例的基本性质时,我先让学生计算,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。

(三)巩固练习。

在巩固练习环节中:第1题是三个判断题,是对基本概念的巩固。

第2题是根据比例的基本性质写出比例,这里需要从学生逆向思维的角度去解决问题。

第3题是用四个数组比例,这题学生在组的过程中没有方法和顺序,那么在交流过程中就需要教师去引导学生发现方法,总结规律,使学生不仅把题做对,而且指导自己更好解决问题。

第4题是拓展题,让学生根据当前所学的知识猜数,一方面巩固比例的意义和基本性质的知识,另一方面,为下节课“解比例”做铺垫:根据比例的基本性质,如果知道了比例中的任何三项,就可以求出另外一项,这是下节课要研究的内容“解比例”。

三、说教后反思。

这节课是概念教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而且在知识点的获取时,让学生自主观察发现,分析比较,概括出比例的意义和基本性质,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。

但是上完之后,我总觉得:学生掌握得不是很好,尤其是根据比例的基本性质写出比例,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。其实这一环节,我在四班试教时已经发现,在本班的上课中,我在板书中已有强调,也许还是强调的不够到位。整节课时间比较紧张,后面巩固练习和课堂小结的环节有点匆匆过场的味道,与自己曾设想的场景一定的差距。自己激励性的语言还欠缺,这也将影响到学生的学习情绪。

我觉得通过这一节课我学到了好多,作为一名教师,不能完全按照自己的意愿去设计课程,要考虑到学生。在今后的日子里,还得在实践中不断完善自己的教学方法。

比例的意义和基本性质教案篇十五

比例的意义和基本性质,是在学生学习了“比”后进行教学的,导入新课时出示三面国旗,并通过求长和宽比值,引导学生观察,然后提问学生发现什么?在学生充分感知的基础上,揭示比例的意义。在此同时还要使学生在学习过程中,在判断两个比能否组成比例时,关键看这两个比的比值是否相等。

为强化理解在这时我安排了随堂练习:

1、写出比值是1.5的比,并组成比例。

2、练习八第一题。

第一步,区别比和比例,提出问题:比和比例有什么联系和区别?学生回答后,教学比例各部分的名称,同时提示比例还可以写成分数的形式,并由学生自己标出所写的内项、外项。

第二步,通过学生自己计算内项的积和外项的积,发现比例的基本性质并加以概括。

让学生应用比例的性质验证自己写的比例成立不成立,使学生明白,验证比例式是否成立,

课堂小结:判断两个比能否组成比例有两种方法:

1、求比值。

课堂上安排了反馈练习,进一步加深学生对比例性质的认识与掌握。

第三步,为了进一步加深对比例的基本性质的理解,我精心设计了由易到难得两种类型练习。

昨天区教研员吴老师到我们学校来指导教案,给我带来很大的帮助。耐心的吴老师,帮我把课的重点应该怎么突出,难点应该怎么化解讲了一遍。细心的吴老师,还建议我去参考一下国标本中的相关内容。匆匆忙忙不够认真的我,却忘记带笔和本子做记录,只能凭大脑记忆思路了,而我当时还没有备课(原本没打算上这课的)。只好从一下班就开始加紧,一直到晚上十一点,教案和课件才完成(先自我反省一下)。

总体感觉这篇教学设计的思路比较有条理,一开始复习比的相关知识,由求比值引入根据比值是否相等来进行分类,从而得出比例的意义,而通过观察比例,发现组成比例的条件。在教学例1的过程中,先让学生找到要求的比,再通过比例的意义判断能否组成比例,组成的是怎样的比例式,同时也让学生联系以前的内容对应找出比和比例的区别,使学生不仅能明确比和比例的不同之处,更能对比例的意义产生更进一步的理解。而正因为比例和比不同,所以具有着不同的各部分名称。让学生自学进行了解各部分名称,用一组前面用过的练习题让学生找出比例的内项和外项,同时用启发性的问题“你能找出比例中乘积相等的数吗”引导学生自己去观察思考发现外项积等于内项积,从而得到并归纳出比例的基本性质。由此可得到判断两个比能否组成比例的方法。最后进行小结。

上完课后,我自己首先的感觉是虽然有学生自主的探究,但还没能完全放的开,思路还不够开阔。而且因为时间的关系,前面问的比较琐碎后面缺少了五分钟让我把最后一道设计好的开放性的题目出示出来。同时我也在反思如果我再上一遍这节课,我会怎么上?我想到的是前面有的问题比如让学生说判断思路的时候,可以请一两位做代表回答一下就可以了,因为方法已经掌握了,就不需要请太多的人重复说,这样可以抓紧时间让学生做几道灵活一点的题目,比如已经比例中的三个项,如何求第四个项,比如给四个数字,可以组成哪些比例。这些我事先也考虑到了,但是没能教学进去,需要以后注意。我还在想,其实这堂课中概念部分的教学并不难,可以让学生在练习本上适当记录一些关键点,依据关键点回答就可以了,不必要把整个过程都写下来,否则也是耽误时间。我想了很多,但想的大多是在希望自己能在前面更紧凑以扩展后面的思路上。本来我还挺高兴自己在课后能感觉出一点东东的,但后来在听了陈老师的指导后,我才知道自己反思的`真肤浅:

陈老师给我的教学设计提了几点意见:

1,我的复习提问是问一句学生回答一句的,问了三个问题“什么是比”“什么是比值”“怎样求比值”。陈老师说,可以打开一点,直接问:你能回顾出以前学过的比的哪些知识?我一听就感觉出了,自己问的范围很狭小,如果那样问,学生的回忆搜索就被打开了,也许学生不仅能想到比,想到比值,还能想到比的各部分名称,还能想到比的基本性质,这都是和我这节新授课的内容有关联的,复习一下,对于后面比较比和比例的区别有很大的好处。我又反思“我怎么没想到呢?”然后我给自己的解释是,怕学生打的太开耽误时间:(后来我又想,只要学生熟练,其实口答几句话也耽误不了什么时间的......哎,我们上课总是会在时间上斤斤计较......不够大气......

2,我在教学例1的时候本来感觉挺简单的,学生回答的甚至比我想象中的还要好,因为我课前一再强调要回答完整,其实这节课我们学生回答问题我自己挺满意的,因为什么所以什么都说的很完整。但陈老师就点明,可以在这里渗透正比例的意义,因为两个比的比值相等,而它们的比值是什么呢?就是单价。如果买的本数增多,相应的钱数也就是总价也会随之增多。这是我没想到的,我没能想到这个深度。要反省。

3,在比较比和比例的区别的时候,学生说的挺多,什么比例有四个数比有两个数,比是一个比比例是两个比,比没有等号比例有等号。我觉得他们说的都挺对,当时还挺高兴的。后来想想,陈老师说,这都是表面上的区别,而意义上的区别其实才更重要。比是两个数相除,而比例是表示两个比相等的式子,从意义上来说就完全不一样,这对突出本节课的重点比例的意义就很有帮助。我一想,对哦,还是自己考虑不完善。而且从意义上的区别说下去后,正因为他们的意义不同,比有前项后项,那么比例中的四个数应该叫什么呢?就可以顺利引入下面的内容比例的各部分名称。

4,陈老师提的第4点是我上完课就想到的,就是练习题的开放性不够,判断两个比能否组成比例不只有意义和性质两种思路,其实还可以用化简比来求,我本来想在开放性的题目中通过让学生自己的探索去发现的,但没能来及上到这里就下课了,少了五分钟。

非常感谢陈老师的指导,为我在课堂教学及内容设计的“广”和“深”上都提供了很大的帮助,让我知道要上好一节课确实很不容易,自己备完感觉好象过程挺流畅了,但其实认真思考下来,可推敲的地方还有很多,可挖掘的地方也还有很多。谢谢老师的指导!希望陈老师朱老师有空的时候多到我们学校来指导指导我们,我很希望自己可以做到更好!

比例的意义和基本性质教案篇十六

同课异构能提高教师的教学基本功,对教师的常态课也是一种检验,同时,能与同事取长补短,教学反思:。通过同事的评课,能发现自身上课存在的问题,特别是习惯性的问题。

本次的上课内容是《比例的意义和基本性质》,我在通读教材的基础上,理清思路,寻找解决本节难点知识的妥善方法,并制作课件。课讲完后,仔细分析:

比例的意义和基本性质,是在学生学习了“比”后进行的。而“比’是上个学期学习的知识。根据我对学生的了解,他们的大多数会把学过的不相关的东西忘到脑后,因此,先设计了一组复习题,不仅让他们复习了比的定义,还对化简比、求比值的概念在脑中闪动一下,并通过求不同比的比值的计算,唤醒他们的记忆,为学习比例的意义打好铺垫。因此学生在根据比例的意义判断两个比能否组成比例时,学生掌握的很好。

本学期鼓励学生预习,大多数学生能认真预习,但也会有个别学困生,只为了完成老师布置的任务,仅在书上画一画,留留痕而已,教学反思《教学反思:》。本节概念性的东西较多,学生的理解水平以达到理解:比例的定义、项、内项、外项、内项的积、外项的积等等。因此对此类知识,大胆放手,让学生说,让学生找,这样节省了上课时间,学生的能力也得到提升。

每个知识点都紧跟相应的习题,这样可以及时巩固新知,同时能发现学生掌握的情况。在学习了比例的基本性质后,我鼓励学生逆向思维,根据一个乘法等式,写出比例,把那个告知学生有多个比例,这样能推动学生积极思考,培养学生的发散思维。

这类题,是书中带花的题,应该选作,而我在这里选用,意在考察学生能否灵活运用新知。同时发现规律:可以把等式左边的两个因数,作为比例的两个外项(内项),能学出八个比例。最后课堂测验,我出了两个内项互为倒数这个隐含条件,并且使用字母表示的比例式,应该是有较大的难度,也是为了看学生新旧知识的融合情况。

课堂测验看出大多数学生填对了结果是还有20个学生填的是其他两个字母的积。设计的实际应用题,学生也能运用反比例分配的方式解决;还有学生能根据比例的基本性质,列出算式;还有的用比例填空的形式解决了这个问题,挺让我惊喜的,学生的思维很灵动。

本节课存在的问题有:

课前预设没考虑到学生能提出这样的问题,所以当学生提出问题时,自己的大脑处于抑制状态,根本没听清孩子的问题,还让他说了两遍,我也没能领会过来。如果当时让孩子直接解答出自己提出的问题,那会让老师如醍醐灌顶,这样可能会创造出课堂的亮点,更可能树立这个学生的自己心,激发他学习的热情。可悔之晚矣!

对于解比例,我以为:学生在学好了比例的基本性质后,解比例应该如囊中取物。因此只让学生口述了根据比例的基本性质,求比例中的未知项。因此出现了,未知数写在等号的右边,几个学困生不会解比例。如果加上一个板演,哪怕是只要一步:把比例变成方程,那就不会出现类似的问题。

每一次的课,总会有一些优点,同时会存在问题,只有在不断反思中,才能提高自己的教学素养,才能开辟出一片新的绿地。

5

用本课的设计始终围绕教学目标而进行,突出重点,有措施,突出难点有策略,整个教学过程体现了教师为主导,学生为主体的精神,具体而言,有如下两大特色:

1、活了教材,设计者将教学内容分解成20多个问题,每个问题既有侧重,又都围绕着重点来进行,使原先教材上的死知识变成了课堂中的“活问题”,让学生在解决问题中探究知识的形成过程。

2、搞活了课堂。课堂的活有两种形式,一是形式上的活,一是内在的活,即让学生的思维始终处于活跃状态。前一种活是显性的,后一种活是隐性的,比较难以达到,它需要教师对教学内容的深刻理解以及较高的驾驭课堂的能力。本课的活就属于后一种,教师通过指导学生自学、讨论、数量演示等多种方式,来回答教师提出的问题,使学生的思维一直处于活跃状态,故而能事半功倍,较好地完成教学任务。

综上所述,本课的设计体现了一种较高的教学教育观念—教是为了不教。

比例的意义和基本性质教案篇十七

数学教案设计是数学课堂教学活动的一个重要组成部分,下面要为大家分享的就是比和比例教案,希望你会喜欢!

培养学生的观察能力、判断能力。

一、回顾旧知,复习铺垫。

1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。

教师把学生举的例子板书出来。

2、老师也准备了几个比,想让同学们求出他们的比值,并根据比值分类。

2:34.5:2.710:6。

80:44:610:1/2。

提问:你是怎样分类的?

教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:两个比相等4.5:2.7=10:612:16=3/5:4/580:4=10:1/2)像这样的式子叫做比例。这就是这节课我们要学习的内容。(板书课题:比例的意义)。

二、引导探究,学习新知。

(1)教学例题。

先出示教材上的四幅图,请同学说说图的内容。找一找四幅图中有什么共同的东西。再出示四面国旗长、宽的尺寸。

师:选择其中两面国旗(例如操场和教室的国旗),请同学们分别写出它们长与宽的比,并求出比值。

提问:根据求出的比值,你发现了什么?(两个比的比值相等)。

教师边总结边板书:因为这两个比的比值相等,所以我们也可以写成一个等式。

2.4∶1.6=60∶40像这样由两个相等的比组成的式子我们把它叫做比例。

师:在图上这四面国旗的尺寸中,还能找出哪些比来组成比例?

比例也可以写成分数形式:4.5/2.7=10/6请同学们很快地把黑板上我们写出的比例,改写成分数形式。

同学们,老师刚才写出的这些式子叫做比例,那么谁能用一句话把比例的意义总结出来呢?(根据学生的回答板书比例的意义。)。

(3)判断。举一个反例:那么2:3和6:4能组成比例吗?为什么?

“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?(看两个比的比值是否相等)如果不能一眼看出两个比是不是相等的,怎么办?”(根据比例的意义去判断)。

根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比比值求出来以后再看。

(4)比较“比”和“比例”两个概念。

引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

(5)反馈训练。

用手势判断下面卡片上的两个比能不能组成比例。

6:3和12:635:7和45:9。

20:5和16:80.8:0.4和4:2。

(()1)自学课本,了解比例各部分的名称,理解各部分的名称与各项在比例中的位置有关。

(2)检查自学情况:指名说出黑板上各比例的内外项。

两个外项的积是4.5×6=27。

两个内项的积是2.7×10=27。

(4)计算验证,达成共识。

师:“是不是所有的比例都有这样的性质呢?”让学生分组计算判断前面的比例式,发现所有的比例式都有这个共同的规律。

师:通过计算,大家,谁能用一句话把这个规律概括出来?

教师归纳并板书:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

师:“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着4.5/2.7=10/6)“这个比例的外项是哪两个数呢?内项呢?”

学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。

(6)判断。前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。

反馈训练:应用比例的基本性质判断3:4和6:8能不能组成比例。

三、巩固深化,拓展思维。

(一)判断。

1.两个比可以组成一个比例。()。

2.比和比例都是表示两个数的倍数关系。()。

3.8:2和1:4能组成比例。()。

(二)、用你喜欢的方式,判断下面那组中的两个比可以组成比例。把组成的比例写出来。

(1)6:9和9:12(2)14:2和7:1。

(3)0.5:0.2和5:2(4)0.8:0.4和0.3:0.6。

(三)填空。

(1)一个比例的两个外项互为倒数,则两个内项的积是(),如果其中一个内项是2/3,则另一个内项是(),如果一个比例中,两个外项分别是7和8,那么两个内项的和一定是()。

(2)如果2:3=8:12,那么,()x()=()x()。

(3)写出比值是4的两个比是()、(),组成比例是()。

(4)如果5a=3b,那么,a:b=():()。

(四)下面的四个数可以组成比例吗?如果能,能组成几个?把组成的比例写出来。

2、3、4和6。

拓展题:猜猜括号里可以填几?

5:2=10:()2:7=():0.71.2:2.5=():25。

四、全课小结,提高认识。

五、布置作业。

练习六2、3、5。

【本文地址:http://www.xuefen.com.cn/zuowen/11388837.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档