教学设计的问题(专业21篇)

格式:DOC 上传日期:2023-11-12 18:18:18
教学设计的问题(专业21篇)
时间:2023-11-12 18:18:18     小编:ZS文王

总结可以帮助我们更好地规划未来的学习和工作目标,使我们的努力更有针对性和效果性。总结应该突出最重要的成果和体会,提供清晰的逻辑框架。通过范文的学习,我们可以发现总结的写作并非固定的套路,而是要因材施教。

教学设计的问题篇一

教学目标:

1.在直观的情境中想到转化,并应用图形的平移和旋转知识进行图形的等积,等周长的变形.

2.在解决实际问题过程中体会转化的含义和应用的手段,感受转化在解决这个问题时的价值。

3.进一步积累解决问题的经验,增强解决问题的“转化”意识,提高学好数学的信心.

教学重点:感受“转化”策略的价值,会用“转化”的策略解决问题。

教学难点:会用“转化”的策略解决问题。

教学准备:电子课件、实物投影。

预习作业:

教学过程:

预习效果检测分别出示两组图片。

(3)现在你能看出这两个图形的面积相等吗?学生互相交流合作探究。

学生得出:第一个图形:上面半圆向下平移5格。

第二个图形:下半部分凸出的两个半圆分割出来,以直径的上面端点为中心,分别按顺时针和逆时针方向旋转180度。

教师在电子白板上将图形平移、旋转、拼合,图形的变化过程迅速呈现在学生眼前,学生清晰直观地感受到了,从而化解了理解上的障碍。

师:你知道你刚才比较时运用了什么策略吗?

教师板书转化,将课题补全(用转化的策略解决问题)。

在以往的学习中,我们曾经就运用转化的策略解决过一些问题,回忆一下。同桌交流。学生充分列举,教师媒体配合演示并板书。

这些运用转化的策略解决问题的过程有什么共同点?(把新问题转化成熟悉的或者已经解决过的问题。)。

转化是一种常用的、也是重要的解决问题的策略。下面我们就用转化的策略来解决一些题目。

空间与图形的领域。

1、检查课本练习十四第二题。你是怎样用分数表示图中的涂色部分的?

2、检查课本练一练,指名学生口答。

转化成什么图形可以使计算简便?怎样转化?

3、检查练习十四第三题。

4、试一试:1/2+1/4+1/8+1/16。

这道题你是怎样求和的?小组交流。

5、练一练4(课本练习十四1)。

每一排的点分别表示每一轮参加比赛的球队,把两个点合成一个点的过程表示进行了一场比赛。淘汰制是指每场比赛都要淘汰1支球队。

三、当堂达标:完成补充习题对应的练习并交流反馈。

四、故事启迪,领悟转化的技巧。

数学家爱迪生求灯泡的容积的故事(幻灯片)。

有一次,爱迪生把一只灯泡交给他的助手阿普顿,让他计算一下这只灯泡的容积是多少。阿普顿是普林顿大学数学系高材生,又在德国深造了一年,数学素养相当不错。他拿着这只梨形的灯泡,打量了好半天,又特地找来皮尺,上下量了尺寸,画出了各种示意图,还列出了一道又一道的算式。一个钟头过去了。

爱迪生着急了,跑来问他算出来了没有。“正算到一半。”阿普顿慌忙回答,豆大的汗珠从他的额角上滚了下来。“才算到一半?”爱迪生十分诧异,走近一看,哎呀在阿普顿的面前,好几张白纸上写满了密密麻麻的算式。“何必这么复杂呢?”爱迪生微笑着说,“你把这只灯泡装满水,再把水倒在量杯里,量杯量出来的水的体积,就是我们所需要的容积。”“哦!”阿普顿恍然大悟。他飞快地跑进实验室,不到1分钟,没有经过任何运算,就把灯泡的容积准确地求出来了。

听了这个故事,你明白了什么道理?

五、课堂总结:

多位数学家说过:“什么叫解题?解题就是把题目转化为已经解过的题。今天我们学习了用转化的策略解决问题,在解决问题时我们要善于运用转化,用好转化策略,才能正确解题。

教学设计的问题篇二

1、掌握工程问题的结构特征和解答方法,并能应用于解决实际问题,工程问题应用题教学设计。

2、培养学生的观察、分析及综合概括能力及抽象思维能力。

数量之间的对应关系。

1、谈话。张老师去新华书店买《三国演义》上下集,她所带的钱如果只买上集正好可买20本,只买下集正好可买30本,请问张老师所带的钱最多可买这种书多少套?猜一猜。

2、到底哪位同学猜得正确,通过今天这堂课的学习,我们就能解决这个问题。所以,今天我们继续学习应用题。(板书:应用题)。

1、出示准备。

(1)指名板演,集体练习。

(2)反馈、交流。

2、把300米改为600米、900米、1200米、若干米,分组计算。

(1)通过刚才的计算,我们发现什么变了,什么没有变?为什么?

(2)再观察一下,以上算式都是根据哪个数量关系来进行计算的呢?

(3)如果总米数没有,但还是求两队合修需多少天完成,又该怎么样列式计算呢?

(1)比较。

(2)思考:

a、这条公路的全长不知道怎么办?

b、甲队每天修了这条公路的几分之几?乙队呢?

c、(+)表示什么?

d、根据什么数量关系解答这类应用题的?

2、再比较:例题和准备题在解答方法上有什么相同点?有什么不同点?

3、归纳:象这类工作总量没有直接告诉我们,可用单位"1"表示,用表示工作交率,解答思路与工作问题一样,象这种分数应用题,教案《工程问题应用题教学设计》。我们把它叫做"工程问题"(完整板书)。

4、把工作总量看作"2、3"行不行?分组计算。发现计算结果是一样的。但为了计算简便,工程问题应用题中,我们常把工作总量看作单位"1"。

第一层次:试一试。

(1)指名板演,集体练习。

(2)据式说理。

(3)改变条件和问题。

两队合作4天后,完成这项工程的几分之几?

还剩下几分之几?

第二层次:

下列算式正确的是。

48÷(48÷6+48÷4)。

48÷(+)。

1÷(+)。

(2)只列式不计算。

加工一批零件,甲单独加工8小时完成,乙单独加工10小时完成。

(1)甲单独加工,每小时完成总工作量的。

(2)乙单独加工,每小时完成总工作量的。

(3)甲、乙合做,1小时完成了总工作量的。

(4)甲、乙合做,3小时完成了总工作量的。

(5)甲、乙合做3小时,还剩下总工作量的。

(6)这批零件,甲、乙合做小时完成。

(7)两人合打天才能完成这份稿件的。

第三层次:

工程问题不只限于上述三种量之间的关系,也适用于其他某些量之间的关系。

1、这节课,我们主要学习了什么内容?

3、解这类题的关键是什么?

教学设计的问题篇三

1、 结合具体事例,经历自主解决打折问题的过程。

2、知道打折的含义,能解决有关打折的实际问题。

3、体验分数乘法在生活中的广泛应用,了解许多生活中的问题都可以用数学的方法来解决。

知道打折的含义,能解决有关打折的实际问题。

(1)一袋大米24千克,二分之一袋大米是多少千克?

(2)五(2)班有学生58人,其中女生占六分之四,女生有多少人?

1、揭示课题

学生自由谈论。

教师:那么打折是什么意思?今天,我们学习关于打折的知识。(板书课题)

2、你对于“打折”有哪些了解?

学生自由交流。

学生可能会说:1、打折会比原来便宜。2、比如原来卖10元,5折就卖5元。3、打折对于买家来说,比较合适。4、打折就是降价。5、打折就是处理等。

教师随意出几个几折出售,让学生说明含义。

3、打折问题。

师:大头蛙为我们带来了一个好消息,一个衣服店季节性降价,服装一律六折出售。(出示羽绒服原价)(板书:6折)

提问:280元是这件羽绒服的什么价钱?6折出售后,现价是多少元?你能试着计算吗?

学生计算。交流。交流时让学生说一说是怎样想的。

接着出示其余三件商品的原价,让学生自己算出打折后的价钱。交流。

4、试一试。

出示试一试

学生试着算出打折后的现价。交流后,提出大头蛙的问题:便宜了多少元?让学生试着计算。指名板演。

学生可能出现的情况:1、2100—2100× 2、2100×(1—)交流时让学生说一说是怎么想的。

1、争做优秀售货员。

同学们,我们来分小组做个游戏,争做优秀的售货员。老师为大家带来了几件商品,它们一律八折出售。现在,我们1、3、5组做售货员,2、4、6组做顾客,看哪组“售货员”能用数据打动“顾客”,让“顾客”心甘情愿地买你们组的商品。

学生分组做游戏。如果学生只算出现价,而没有算出便宜多少,引导学生算出来。

2、做题我最棒。

学生读题,让学生找出不懂的词语,解释“让利”,然后让学生计算,交流。

3、我是精明“小顾客”。

同一种冰箱在不同的商场有不同的价格和优惠方式。

商场a:原价是3280元,八折销售。

学生试做,交流。

同学们,通过这节课的学习,对你的生活有哪些帮助?

教学设计的问题篇四

1.生能从具体的生活情境中发现问题,掌握解决问题的步骤和方法,知道可以用不同方法解决问题。

2.培养学生认真观察等良好的学习习惯,初步培养学生发现问题、提出问题、解决问题的能力。

3.通过解决具体问题,培养学生初步的应用意识和热爱数学的良好情感。

一、创设情境,激发兴趣。

1.谈话:同学们,元旦快到了,你们高兴吗?(高兴)为了迎接新年的到来,我们学校举行了一次游园活动。小朋友你们想不想参加?(想)好!老师就带小朋友们一起去参加游园活动,我们唱着歌出发好吗?(唱新年快乐歌)。

2.情境图。

谈话:我们来到了游园点,你们看小朋友们在做什么?(在看木偶戏)。

提问:你从这幅图上看懂了什么?获得了什么信息?

学生回答:原来有22人在看戏;又来了13人;走了6人。

二、主动探索,协作交流,领悟解法。

1.同学们,你们看得真仔细,通过这些信息,你能提出什么数学问题?

(1)原来有22人在看戏,又来了13人。一共有多少人在看戏?

(2)原来有22人在看戏,走了6人。还剩多少人?

对于这两个问题,让学生提出后很快就解答。

(3)原来有22人在看戏,走了6人,又来了13人。现在看戏的有多少人?

(4)原来有22人在看戏,又来了13人,又走了6人。现在看戏的有多少人?

对说出(3)(4)两题的学生给予表扬。

提问:你们会解决“现在看戏的有多少人?这个问题吗?

(1)独立思考。

谈话:在四人小组中说说你的想法,你是怎样算的?

(2)让学生在四人小组中充分地交流,说自己的想法,老师参与学生的讨论之中了解情况。

(3)汇报:并说想法。

3.把学生解决问题的方法记录在黑板上。

(1)22+13=35(人)(2)22-6=16(人)。

35-6=29(人)16+13=29(人)。

(3)22+13-6=29(人)(4)22-6+13=29(人)。

让学生明确(1)、(3)的解题思路是一样的,是同一种方法;(2)、(4)的解题思路是一样的,是同一种方法。

4.比较(1)、(3)和(2)、(4)两种方法的联系。

明确两种方法的结果都是求现在看戏的有多少人,在解决问题的思路上略有不同。

5.谈话:小朋友们看木偶戏看得多高兴呀!你们看这边发生了什么事情?(出示练习一的第1题)。

提问:从这幅图上你看懂了什么?

你能把图意说完整吗?

让学生说明图意,明确计算的问题后,独立列式解答,再让几名学生说解。

问题的方法。

谈话:同学们,你们玩得高兴吗?不知不觉到了中午,我们肚子有点饿了。走,老师带你们到面包房买面包去。

(出示面包房图)。

提问:你从这幅图上看到了什么?

你能提出什么数学问题?(还剩多少个?)。

谁能把这个问题说完整?

(原来面包房里有54个面包,先卖了22个,又卖了8个,现在还剩多少个?)。

提问:谁会列式解答。

提问:你会把22+8=30和54-30=24写成一个算式吗?

你们遇到了什么困难?

有办法来解决这个困难吗?

四人小组讨论,汇报。

选择方法,把想的过程说出来。

三、巩固深化,应用拓展。

1.谈话:游园活动快要结束了,你们看小朋友在干什么?(出示练习一的第2题)[他们在收集拉罐筒。]他们真是环保小卫士。

提问:你会把这幅图的图意说完整吗?

让学生自己解答,再说想法。

做练习一的第4题。学生独立完成,再汇报想法。

同桌交流,自编题目,互相解答。

四、归纳。

1.请同学们说一说,这节课有哪些收获?

2.谈话:请同学们做一名有心人,用本课学习的知识去解决我们身边、生活中的实际问题。

教学设计的问题篇五

1、通过观察、思考、动手操作、合作交流等情境活动,在具体的生活情境中,使学生初步掌握合理有序的搭配方法和策略。

2、结合生活实际,培养学生有序思考问题的能力,使学生养成不重复、不遗漏的全面思考问题的习惯,培养学生解决生活中数学问题的意识。

通过合作学习来解决问题,并且感知:要做到既不重复,也不遗漏,就必须按照一定的顺序去进行观察与操作。

训练学生有序的思考能力和全面思考习惯。

(一)、创设情境、引入新知。

1、这节课我们一起来研究一个有趣的数学问题——搭配中的学问。

2、什么是搭配呢?搭配中又有什么学问和奥妙呢?认真学完了这节课,你们就明白了!

3、“营养配餐中心”的王师傅,交给我们三(5)班的同学一个任务,板书:配菜。

王师傅想在你们当中聘请一名优秀配菜师和两名优秀服务员,你们愿意参加应聘吗?

(二)、搭配菜谱、探究规律。

活动1:给星期一的菜谱配菜。

1、王师傅考大家来了,请看:

课件出示:星期一的菜谱。

荤菜。

肉丸子。

素菜。

白菜。

冬瓜。

2、星期一的菜谱里都有些什么菜啊?你们知道什么是荤菜,什么是素菜吗?

3、王师傅有个要求,请看:一个盒饭中含一个荤菜和一个素菜,你打算怎样配菜呢?

4、学生思考并与同座交流自己的想法。

5、还有别的搭配方法吗?你觉得这样一荤一素搭配好吗?

6、通过刚才的配菜,大家可以看出来,一个荤菜和一个素菜可以有几种搭配方法呢?在学生独立思考与交流的基础上,老师要注意有意识的引导学生学会用图例和方案这两种方法来表示出搭配的过程,但不必特别强求和硬性规定,让学生自由的选择,如果学生有其他有创新的方法,就推荐给大家。

活动2:给星期三的菜谱配菜。

1、星期一大家总结出有2种配菜方法,那么星期三呢,请看:

课件出示星期三的菜谱。

荤菜。

牛排。

素菜。

豆腐。

油菜。

2、如果你能用一荤一素的方法搭配好所有的菜,我王师傅将聘请你为本店的服务员。

(1)请同学在小组内试着配菜,并且把你的想法在小组上交流。

(2)哪个小组愿意把你们的配菜方法说给大家听。

(3)怎样搭配,才不会重复,又不会遗漏呢?

(4)怎样按着一定顺序搭配呢?有几种方法?

(6)其它同学也能按一定的次序进行配菜吗?把你的配菜方法说给同桌听一听。

(7)这两种搭配方法有什么相同和不同的地方?在教学过程中可以将这种配菜现象抽象为数学知识,以荤菜为准,每种荤菜和一种素菜都有2种搭配方法,有两种荤菜就有2乘2等于4(种)方法.

这次的活动都是2种要注意要回答这个问题时,要让学生发现如果你倒过来写这也只能算是一种方法,要注意学生理解成有4种搭配方法,这种错误的想法。

活动3:给星期五的菜谱配菜。

课件出示星期五菜谱。

荤菜。

肉丸子。

素菜。

白菜。

豆腐。

冬瓜。

2、谁能第一个配出所有的菜,王师傅将聘他为我店配菜部的经理。

3、请同学们试着配菜,然后说给大家听。引导学生以一种菜为准与另一种菜搭配.

思考:通过刚才的配菜,同学们发现了什么规律?

让学生自由发现,然后小结:可以用荤菜的数量×素菜的数量=几种配菜方法。

板书:1荤×2素=2种。

2荤×2素=4种。

2荤×3素=6种。

(三)、实践应用、解决问题。

活动1:搭配路线。

2、说说:一共有几条路可以走呢?

(1)你能用字母表示出几条路线吗?

(2)哪一条最近呢?你能帮小淘气选一条吗?

(3)回来时有几条路线呢?你能用字母把路线表示出来?

活动2:搭配服装。

其实,不仅菜要搭配,生活中还有许多需要搭配的地方,笑笑要去外婆家做客,那衣柜里有这样几件衣服:两件是上衣,叫上装,两条裤子和一条裙子叫下装,一件上装和一件下装,要配成一套衣服可以怎样搭配呢?一共有几种搭配方法呢?在配菜的过程中,先让让用序号来表示衣服和裤子,便于叙述.

2、请你和同桌一起试着配一配。

3、那么今天下午笑笑穿哪套衣服去做客合适呢?为什么?谁来帮忙选一选。

4、看来穿衣服也需要搭配,搭配适当,会使我们生活更美好,更加丰富多彩。

活动3:握手中的学问。

(四)、联系生活、课后延伸。

这节课有什么收获?你想利用今天所学的知识设计一些有关搭配的其它问题吗?

教学设计的问题篇六

教学内容:

人教版《义务教育课程标准实验教科书数学》四年级下册第1。

17、118页例。

1、例2。教学目标:

1.利用生活中的问题,通过动手操作的实践活动让学生发现分的间隔数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。过程与方法:

经历解决实际问题的过程,体验分析解决问题的方法。情感态度与价值观:

体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力,收到热爱劳动,保护环境的教育。教学重点:

理解掌握解决问题的规律。教学难点:

能运用规律解决实际问题。教学、具准备:

尺子、树、纸条等。

教学过程:

一、谈话引入,教学“间隔”1.猜一猜。

同学们你们喜欢猜谜语吗?今天老师给你们带来一则谜语你们想猜吗?两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。这是什么呢?(手)。

2、教学“间隔”的含义。

师:同学们,在我们的身边到处有数学。请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个“空”也可以说成4个“间隔”,5个手指之间有4个间隔,那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)。

师:你们真聪明!发现了手指数与间隔数之间的关系,像这类问题其实就是——植树问题(揭示课题)。今天这节课我们就一起来研究植树问题。

二、探究新知。

1.小黑板出示:

同学们在20米长的小路一边植树,每隔5米栽一棵。一共需要多少棵树苗?

(1)学生读题,理解题意。

(2)独立思考,再小组合作,探究植树的方案。(3)学生在黑板上展示自己的作品。2.师小结各种方法,并板书。

3、尝试应用。

小黑板出示题目:

同学们在100米长的小路一边植树,每隔5米栽一棵(两端都栽),一共需要多少棵树苗?学生独立完成,集体订正。

三、巩固练习。

师:同学们真能干!其实在我们的生活周围存在许多类似的植树问题.学生完成例二后的做一做。

小结:同学们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,只栽一端的话:棵树=间隔数;两端都不栽的话:棵树=间隔数-1;而且还运用规律解决了生活中的实际问题。

四、全课总结。

1.通过这节课的学习你有什么收获?

2.其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树的问题等,这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。

特点。

植树的棵树。

间隔数。

棵数与间隔数的关系两端都栽:

棵数=间隔数+1只栽一端:

棵树=间隔数两端都不栽:

教学反思:

“植树问题”是新课标人教版四年级下册的内容,教材将植树问题分为几个层次:两端都种、两端不种、及封闭图形。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究上都很重要的数学思想方法——化归思想。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。

我所执教的这节课主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节。

一、通过课前活动,以大家都熟悉的手为素材,从让学生初步认识间隔,感知间隔数与手指数的关系。

二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。

三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。

四、多角度的应用练习巩固,拓展学生对植树问题的认识。

反思整个教学过程,我认为这节课有以下几点做得比较好:

一、创设浅显易懂的生活原型,让数学走近生活。

创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。

二、注重学生的自主探索,体验探究之乐。

是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。生活情景图引入后学生动手操作出示实例图示,引导学生在观察、点数形象图形后进行对比,发现两端植树时棵树与间隔数之间的关系!当学生对实物图有了清晰的认识后,教师将形象的图形抽象成线段图,让学生在脱离实物图后,依然能够发现棵树与间隔数之间的关系。学生直观的体会到了植树问题中相关的量,在观察思考后学生则进一步验证了棵树与间隔数之间的关系。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。

三、利用学生资源,加强生生合作。

学生的认知起点与知识结构逻辑起点存在差异。生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。

不足之处是:

1、自己的普通话不过关。

2、时间没掌握好,学生合作探究时花费时间长了,导致延时。

教学设计的问题篇七

“植树问题”在实际生活中应用比较广泛,它通常是指沿着必须的路线植树,这条路线的总长度被平均分成若干个间隔,由于路线的不同以及植树要求不同,路线被分成的间隔数和植树的棵数之间的关系就不同。本节课就是要渗透有关植树问题的一些思想方法,透过学生的动手操作、自主探究来发现现实生活中它们的规律,,抽取出其中的数学模型,然后再用规律解决植树中的相关问题。教学目标:

1.使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。

2.掌握“植树问题”中三种状况:两端都要种,两端都不种,只种一端的解题方法。

教学重难点:

掌握“植树问题”中三种状况:两端都要种,两端都不种,只种一端的解题方法。

教具学具:

绳子、挂图、泡沫、小树、题卡

教学过程:

1.小游戏:

点名学生动手操作,给绳子打3个结并观察:给绳子打3个结,会把绳子分成几个间隔?(有三种状况:4个、3个、2个)(解释“间隔”的意思)

透过刚才的游戏,你得出了什么结论?(强调结数和间隔数的三种关系)点评:透过游戏激趣,引出“间隔”、“间隔数”的概念教学,由于有绳子打结作铺垫,抽象概念得到了具体化,同时间接渗透了间隔与间隔数两者之间的关系,为探究新知打下良好的基础。

2.导入新课:这天这节课我们就来学习和间隔有关的植树问题(板书课题:植树问题)

点评:所选例题具有很强的开放性,同时以“海南国际旅游岛建设”引入例题,体现了数学与生活紧密联系,让学生在简单愉快的生活化的课堂环境中学习数学。

2.分组动手操作(分八小组,每组6人),在泡沫上“植树”,

要求:(1)计算一共需要准备多少棵树苗

(2)思考棵数与间隔数的关系。

点评:学生亲自动手操作,并透过仔细观察、交流讨论,有效促进学生思维活动的体验以及情感的体验过程,提高了学生分析问题和解决问题的潜力,把感性认识上升为理性认识。

3.汇报结果:

(1)两端都种:50÷5+1=11(棵)结论:棵数=间隔数+1

(2)只种一端:50÷5=10(棵)结论:棵数=间隔数

(3)两端都不种:50÷5-1=9(棵)结论:棵数=间隔数-1

4、总结(学生汇报教师书写):

(1)两端都种:棵数=间隔数+1

(2)只种一端:棵数=间隔数

(3)两端都不种:棵数=间隔数-1

点评:孔子说:“吾听吾忘,吾见吾记,吾做吾捂!”学生在动手操作的过程中,仔细观察,用心思考,在操作的过程中充分体验,充分交流,加深对植树问题三种状况的理解。结论的得出也就水到渠成了。

1、做一做:

2、数学竞技场:分组竞赛,每组派代表选题,解答对得相应的分值,解答错则机会让给其他表现好的小组,总分最高的小组获胜。

(1)挂灯笼(20分):要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

(2)插彩旗(20分):校园要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

(6)街道上(50分):在一条全长2000米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

这节课我们学习了什么资料?你还有什么疑问?(植树问题的三种状况)

植树问题

两端都种:棵数=间隔数+1

只种一端:棵数=间隔数

两端都不种:棵数=间隔数-1

例题:寰岛小学决定美化校园,要在长50米的塑胶跑道的

一侧每隔5米植一棵树,一共需要准备多少棵树苗?

两端都种:50÷5+1=11(棵)

只种一端:50÷5=10(棵)

两端都不种:50÷5-1=9(棵)

(1)挂灯笼:要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

(2)插彩旗:校园要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

(6)街道上:在一条全长2000米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

教学后记:

本节课旨在透过学生的学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。总的来说,本节课学生参与面广,用心性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:

本节课,学生以小组为单位,利用手中的学具设计不同的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的构成,提高了学生的思维水平,完善了学生的认知结构。

本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的练习,体现了分参次教学。同时我还从不同的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。由于练习的解答采取竞赛的方式,充分调动了学生学习的用心性,优化了课堂教学效果,大大提高了课堂教学效率。(数学竞技场的练习题学生大约能够做5道题,其余的题可留到第二课时再完成。)

本节课,我透过引导学生动手操作(模拟植树)------交流讨论(植树方案)------得出结论(三种植树问题的解决方法)-----应用结论(解决生活中植树的相关问题),充分体现学生的主体作用,教师只是做了适时的点拨。

教学设计的问题篇八

教学目标:

1、结合现实生活中的具体情境,让学生经历发现问题、解决问题的过程,学会用连乘的方法解决问题。

2、使学生学会分析连乘问题的数量关系,运用合理的解题思路解决问题。

3、培养学生多角度观察问题、解决问题的能力,让学生体会解决问题策略的多样化。

4、培养学生认真观察、积极思考、完整准确表达的习惯,初步形成综合运用数学知识解决问题的能力。

教学重点:使学生能正确分析并解决连乘问题。

教学难点:引导学生寻求解决连乘问题的解题思路,并体会找到中间问题的过程。

教学过程。

一、创设情境,复习导入。

师:同学们,我们先来做一个小练习,请大家看屏幕。(课件出示:在超市的一个货架放着各种包装的面包,爸爸买了其中一种面包4袋,一共多少钱?)。

师:读一读,你能解决这个问题吗?

(学生认真的观察思考,要求一共多少钱所需要的条件。学生会发现不能求出问题,因为不知道1袋面包的价钱)。

师:就是说,要求一共的钱数,需要知道哪两个条件?

(在学生回答后教师课件出示:)。

师:知道这两个条件,就能求出总钱数。那你们刚才说哪个条件不知道?(学生回答后)。

师:我们就补充上这个条件。(课件出示完整题目:每袋面包12元,爸爸买了4袋,一共需要多少元钱?)。

师:现在能解决了吗?该怎么列式计算?(学生独立完成,全班反馈订正)。

(课件出示题目2:开学初,老师给咱班50个同学每人发5个作业本。)。

师:读一读,你能解决这道题吗?(学生会发现这道题没有问题,思考后回答)。

师:你能根据这两个条件,提出合适的问题吗?

课件出示:

(根据学生的补充,教师课件出示完整题目:老师给咱班50个同学每人发5个作业本,老师需要准备多少个作业本?)。

师:请同学们口头解答,同桌互相交流一下。(指名学生口答,课件出示算式)。

师小结:同学们,你们可真了不起,刚才的练习我们知道了要解决一个问题,要有两个条件;还知道了,如果告诉我们两个条件,可以提出问题,这是我们解决问题时所需要的重要本领。这节课我们继续学习“解决问题”。(板书课题:解决问题)。

设计意图:在课的开始,设计两道不完整的题目,一道是缺少条件,一道是没有问题,让学生补充条件、提问题。通过这一学习过程,帮助学生巩固乘法问题的数量关系,同时复习“要求几个几是多少用乘法计算”。通过分析法和综合法引导学生去思考问题,为学生分析、解决两步计算的乘法问题奠定了基础。

二、主体探究新知。

1、创设情境,引出问题。

课件出示课本例1情境图(图略)。

师:大家看,这是同学们在参加广播操比赛。仔细观察,图中告诉了我们哪些信息?(学生根据图说出题中的信息)。

师:通过刚才大家的交流,我们知道了题中告诉我们“每个方阵有8排,每排有10人,3个方阵”三个条件,提出了一个问题“一共有多少人?”。

设计意图:在这一教学环节,让学生经历一个从情境中收集信息、整理信息并且完整地用文字表述问题的过程。指导学生学会认真读题,仔细审题,明确题目中的条件和所求问题,理解题意。

师:认真分析题目中的条件和问题,你能解决这些问题吗?老师相信大家都会解决这个问题。先不忙着列算式,先说一说在分析和解决这个问题时,你是怎么想的?先自己想一想,说一说,然后在小组互相交流。(教师巡视,收集学生是如何分析的信息)。

师:哪个组派代表来说说你们小组是怎么分析的?(根据学生的回答,教师引导)。

师:大家的思路都非常的清晰,那老师要问问你们,为什么要先求1个方阵的人数?用哪两个条件就可以求出这个问题,为什么用这两个条件就能求出1个方阵的人数?3个方阵呢?(学生先自己思考,然后同组交流,集体反馈。教师可根据学生的回答,借助于点子图帮助学生理解为什么先求1个方阵的人数,求一个方阵人数为什么用乘法,怎样求3个方阵的人数。思路图整理如下)。

师:我们一起回忆刚才从要求的问题开始怎样一步一步找到解题思路的。(师生一起说)要求——总人数,就要知道——每个方阵的人数和方阵数。每个方阵的人数不知道就要先求它,用题中的——每个方阵有8排、每排有10人,就能求出每个方阵的人数,根据求出的——每个方阵的人数和有3个方阵,就可以求出总人数。请各自再试着说一说我们刚才是怎么分析的,然后同桌之间互相交流一下。(学生再次的整理思路,熟悉思维过程)。

师:根据刚才我们说的思路,怎样列算式?(学生独立列式解答,反馈后教师板书算式)。

设计意图:通过追问帮助学生理清思路、弄清楚题目中的数量关系。学生一般会有两种方法:一是想要求什么,必须知道什么条件,不知道的条件就是先求的;二是根据题中两个有关系的条件,想到可以求出什么,求出的这个问题,可能就是解决最终问题必需的条件。这两种思考方法其实就是解决问题时常用的分析法和综合法。在这里只给学生渗透这样的思维方式,不明确提出来。通过潜移默化的意识渗透和日积月累的思维训练,让学生逐渐具备独立分析、解决问题的能力,实现“授之以渔”的目的。

师:大家想一想,还有没有别的思路?(教师引导学生理解另外一种思路)。

师:可以看着点子图,和小组同学商量一下。(小组讨论,反馈小组意见,师生共同总结思路)。

师:我们一起来梳理一下,刚才这种解题思路。(师生共同叙述)。

师:根据这种思路这样列算式?用这种方法解决问题时,哪个地方要特别注意?(第一步的单位名称)。

教学设计的问题篇九

1、通过猜测、试验、、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。

2、培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。

发现并理解两端都栽的植树问题中间隔数与棵数的规律。

运用“植树问题”的解题思想解决生活中的实际问题。

课件、直尺、学习纸。

(一)创设情境,引入新课。

教师:你们知道3月12日是什么节日吗?关于植树你知道些什么?(引导学生说诸如植树时两棵数之间有一定的距离,这些距离一般相等……这些与本课学习相关的信息。)。

教师:其实在植树中还隐藏着很多数学问题呢!今天我们这节课就来研究植树中的数学问题。(板书课题:植树问题)。

(二)充分经历,探究新知。

1、大胆猜测,引发冲突。

(1)读一读,说一说。

课件出示例1,引导学生获取相关数学信息。让学生读题,然后指名说一说:从题中你了解到了哪些信息?重点帮助学生弄清楚下列数学信息的含义:

“每隔5米栽一棵”是什么意思?

使学生明确“每隔5米栽一棵”就是指每两棵树之间的距离都是5米,每两棵树之间的距离也叫间隔长度,也可以说成“两棵树之间的间隔是5米”。

“两端要栽”是什么意思?“一边”是什么意思?

(2)猜一猜,想一想。

让学生根据例题中的信息,猜一猜一共要栽多少棵树苗,教师对学生的猜测不发表评论,引导学生积极发表自己的看法。

教师:到底要栽多少棵呢?对不对呢?你打算怎样检验自己的猜想?

引导学生用画线段图的方法进行验证。

(设计意图:帮助学生厘清题意,让学生通过猜想答案,引起认知冲突,激发学生继续探究的欲望。)。

2、借助操作,探究规律。

(1)初步体验,化繁为简。

教师:为什么觉得很麻烦?

学生:因为100米里面有20个5米,太多了。

教师:也就是说100米在这道题中显得数据有点大,因此画图时会比较麻烦。像这样比较复杂的问题,我们可以先从简单一些的情况入手进行研究。比如,我们可以先选取100米中的一小段研究。

(2)教师演示,直观感知。

教师演示课件,边演示边说明。

教师:我们选取100米中的20米来研究,用一条线段表示20米,每隔5米栽一棵,也就是说树的间隔是5米。(教师板书)。

教师;大家看一看,我们把这段路平均分成了几段?也就是有几个间隔?栽了几棵树?

引导学生说出20米长的一条路,间隔长度是5米,有4个这样的间隔,可以栽5棵树。

(设计意图:让学生体会复杂问题可以从简单问题入手的解题策略,并通过课件的演示,向学生示范线段图的画法,为学生下面的自主探究作好准备。)。

(3)动手操作,初步体验。

让学生自由选择100米中的一小段,动手画一画,看一看这一小段上,两端都要栽,一共要栽几棵树。

引导学生观察,在这些不同的画法中,有一个共同的地方:棵树比间隔数多1。

(4)合理推测,感知规律。

教师:不用画线段图,如果这条路长30米、35米……又应栽几棵树呢?请同学们拿出学习纸,填写表格。

学生填写表格,教师巡视,对个别学生进行指导和说明。

学生填写完表格后,小组交流汇报结果。

(5)归纳概括,理解规律。

教师:请大家认真观察表格,你发现在一条线段上栽树(两端要栽),间隔数和棵树有什么关系?将自己的发现在小组内说一说。

学生汇报自己的发现。

引导学生发现两端都栽树,植树的棵数比间隔数多1,也可以说间隔数比棵数少1。

教师:为什么两端都栽树,棵数比间隔数多1?

学生回答后,教师借助课件演示帮助学生进一步直观理解。

(设计意图:学生动手操作,合作交流。让学生在不断的操作和交流中,经历了观察、发现和感受的全过程,学到了解决问题的方法。)。

(6)即时巩固,强化规律。

(设计意图:通过这个小练习,使学生进一步掌握在两端都栽的情况下,树的棵数和间隔数之间的关系。)。

3、运用规律,验证例1。

学生尝试列式解决问题,教师巡视,有针对性地指导。

(设计意图:让学生经历猜测——试验——验证的探究过程,同时让学生明确每步算式的意义,以便于学生更好地理解植树问题的数学模型。)。

(三)回归生活,实际应用。

1、“做一做”第1题。

教师:这道题里没有植树呀,能用我们今天学的方法解决吗?

使学生明确应用植树问题的规律,可以解决生活中很多类似问题。在本题中把一盏路灯看成一棵树,也能用植树问题的规律来解决。

教师:其实植树问题,并不只是与植树相关,生活中有很多问题和植树问题相似,比如安装路灯、电线杆、设立车站等。

2、练习二十四1、2、3题。

让学生进一步感受到植树问题在生活中的广泛应用。

3、练习二十四第4题。

教师:这一题与例题有什么不同?

老师引导学生找出此题与例题的区别。例题是知道全长与间隔长度求棵数,而本题是知道间隔长度与棵数求路的全长。

教师:你是怎样计算的?为什么用36减1?

(设计意图:运用植树问题的数学模型解决生活中的类似问题,把植树问题进行拓展应用,使学生能举一反三,触类旁通,并让学生体会到数学与实际生活的紧密联系。)。

(四)课堂小结,畅谈收获。

通过本节课的学习,让学生了解两端都栽的情况下,棵数和间隔数的关系,这部分内容比较抽象,为了将难点化简,讲授新知前,我利用手指游戏导入,孩子很感兴趣,而且初步感受到了棵数、间隔数的关系。再从生活中抽取简单的植树现象,加以提炼,建立数学模型,再将这一数学模型应用于生活实际。

从学生感兴趣的猜谜和游戏入手,创设轻松愉悦的氛围,让学生初步感知棵数、间隔数的关系,为进一步的探究奠定了基础。这种学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。

体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,为学生提供了充分思考的时间与空间,让学生从简单的问题入手,借助直观的图示,探索植树问题两端要栽的规律。借助图形,建立知识表象,注重对数形结合意识的渗透,使学生得到启迪,悟到方法,从而建立起学习的信心,进一步解决较复杂的问题,渗透一种化归思想。

“数学来源于生活,而又应该为生活服务。”让学生认识到只要善于观察,就会发现生活中的许多事例跟植树问题相似,引导学生要灵活运用所学知识来解决生活中的一些实际问题。

但这节课也有我颇感不足的地方,我觉得自己对学生的学习起点没有充分把握,没有注重学生逆向思维的培养,也没能很好地关注到全体学生,在以后的教学中,我还要注意把握好教材的度,适当进行取舍,更合理的安排好教学时间。

教学设计的问题篇十

1、使学生初步学会解答求一个数比另一个数多(少)几的应用题。

2、培养学生观察能力,实际操作能力及初步分析和推理能力。

3、通过操作培养学生的动手操作能力。

3、让学生经历自己提出问题、自己解决问题的过程,培养学生的自主探究能力。

4、生活情境的模拟教学,使学生体会到生活数学无处不在,培养学生在生活中发现问题,解决问题的`能力。

多媒体课件。

1、看一看。

师:你看到这副画,想说什么?

生:一和同样多。

师:你怎么知道是同样多?

生1:有5个,也有5个。

生2:和一个一个可以相对的。

师:小朋友都回答的非常好,给你们小组各加一颗五角星。(学生回答对了问题教师要及时给该小组加五角星。)。

2、摆一摆。

请小朋友们拿出你们的学具,第一行摆5个,第二行摆7个。

看着你摆的图,谁能提数学问题。

生1:比少几个?

生2:比多几个?

1、跳绳比赛。

小白兔和小猫在比赛跳绳,我们看看谁能赢?

小白兔比小猫多跳了下?

小猫比小白兔少跳了下?

2、采松果。

两只松鼠在比赛采松果,哪只松鼠采的更多呢?

3、钓鱼比赛。

三只小猫每人拿了一只水桶,一根鱼竿,你猜它们在比赛什么?

对在比赛钓鱼,它们可认真了?我们赶紧去看看!

看着这幅钓鱼图,你能提出哪些问题?小组比赛,哪一组问题提的多,答的好,就能获"星级小组"!

小组讨论汇报情况,教师及时评价鼓励。

现在我们来看看各小组得到了多少五角星,哪一组最少,哪一组最多?

你根据各小组的五角星能提出哪些数学问题?

如:第一组第二组第三组第四组。

生:第一组比第二组少1个;第四组比第三组多个,比第1组多2个……。

p73做一做。

教学设计的问题篇十一

1、通过观察、操作、抽象、概括、合作和交流等活动中,感知解决问题的多样性,掌握两类事物一共有多少种不同的搭配方法的规律。

2、通过有序搭配培养学生的有序思考和全面思考问题的习惯。

3、学生在探索规律的过程中,增强与他人合作交流的意识,获得一些成功的体验,提高学习数学的兴趣和信心。

:学会有序地思考,掌握求两类事物搭配方法数的规律。

:学会探究规律的方法。

:图片(教具和学具)、课件。

一、创设情境,谈话导入。

谁先来和我握手?(一边握手)我想要和每一位同学都握一次手,我一共要握多少次手?要想正好握满54次手,在握手的时候我们应该注意什么呢?(不要重复!不要漏掉!)怎样才能确保既不重复又不遗漏呢?(板书:按顺序,有条理)。

你觉得我们按什么样的顺序握比较好?除了让我找同学握手,还可以怎么握?(可以是老师按顺序找学生握,也可以学生按顺序找老师握。)。

2、在数学上,我们把握手这一类的问题叫做搭配问题(板书:搭配)。今天这节课我们就来研究搭配的规律。(板书:的规律)。

二、动手操作,探究规律。

1、(出示动画)下面先请同学们看屏幕,谁能说说图中的小明想要做什么?(小明要买一个木偶再配一顶帽子)。

老师也准备了木偶和帽子,(教师在黑板上出示五张图片)看到这些,你想提出什么问题?学生的问题可能有:

a、小明为什么要买木偶娃娃呢?(让学生各抒己见)。

b、小明最喜欢哪一种搭配呢?(你最喜欢哪一种搭配?)。

c、一共有多少种搭配的方法?

谁能给大家想个好办法来帮助大家解决这个问题?(让学生各抒己见。配一配、连一连、算一算)。

(1)我们可以先动手配一配。(板书:配一配)。

我们在搭配的时候,应该注意什么问题?下面就请同座位同学合作,用学具配一配,看看哪两个同学搭配得最有条理。

请一位同学上黑板给大家说一说,你是按什么顺序来搭配的?(请学生演示:可以先选定一个木偶,再用它和两顶帽子分别搭配。每个木偶都有两种配法,三个木偶一共就有23=6种配法。)。

还可以按什么顺序搭配?(请学生演示:还可以先选定一顶帽子,再用它和三个木偶分别搭配。每顶帽子都有三种配法,两顶帽子一共就有32=6种配法。)。

(2)除了动手配一配,还有什么好办法能帮助我们解答这个问题?(板书:连一连)(出示图形)请同学看屏幕,如果用我们图形表示帽子和木偶,你会连吗?请同学们打开课本第51页,用尺在书上连一连。

谁能告诉大家你是按什么顺序连的?有没有连得不相同的?(请学生在黑板上指出来,然后教师出示投影。)。

(3)刚才我们用配一配和连一连的方法解答了这道题,你们从中有没有发现什么规律?(木偶的个数和帽子顶数的乘积就是搭配的种数。)这道题应该怎样列式计算呢?(板书:32=6(种))。

三、全课小结。

四、巩固运用,深化规律。

2、再请同学们看屏幕,你是怎么想的?还有别的想法吗?

3、再请同学们看屏幕,你是怎么想的?

4、老师还有一道思考题,大家想不想试一试?(出示思考题)同学们可以写一写,看谁想出答案最多,排得最有序。

五、小结:

今天这节课同学不仅仅学会了搭配的规律,更重要的是掌握了探究数学问题的方法和应该注意的问题,希望同学今后能运用这些方法掌握更多的数学知识。

教学设计的问题篇十二

3、课时:1课时

【教师课前准备】在编写教案前,先阅读网上大量有关《植树问题》的优秀案例,理解不同版本的教学设计,以便更有效地进行教材重组。

【学生课前准备】预习

《义务教育课程标准实验教科书 数学》(人教版)四年级下册第117页。

教材简析:

本册的“数学广角”主要是渗透有关植树问题的方法,通过现实生活中的一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用这些规律来解决生活中的一些简单实际问题。

在本节课里,学生第一次接触到“植树问题”。解决植树问题的思想方法是实际生活中应用比较广泛的“复杂问题简单化”的数学方法。让学生能够理解植树问题中两端都栽的情况下数量之间的关系,并能解决生活中的一些简单实际问题。教学中,要引导学生通过观察、猜测、实验、推理等活动,初步体会植树问题的数学思想方法,感受数学的魅力。同时让学生学会应用植树问题的规律解决一些简单的实际问题,培养学生观察、分析及推理的能力,培养他们探索数学问题的兴趣和发现、欣赏数学美的意识。

学情简析:

“植树问题”原本属于经典的奥数教学内容,新课程教材把它放到了4年级下册的“数学广角”中让所有的学生学习,说明这一教学内容本身具有很高的数学思维含量和很强的探究空间,既需要教师本身的有效引领,也需要学生的自主探究。从学生的思维特点看,3、4年级的学生仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。教学时可以从实际的问题入手,引导学生在分析、思考问题的过程中,逐步发现隐含于不同情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决问题中的应用。

教学目标

知识与技能:使学生经历将实际问题抽象出数学模型的过程,掌握植树问题中棵数与间隔数之间的关系,并能利用这一关系解决简单的新的实际问题。 过程与方法:通过观察、猜想、验证、推理等活动,使学生经历和体验“复杂问题简单化”、“一一对应”等解题策略和数学思想方法。

情感态度和价值观:感受数学在日常生活中的广泛应用,体会数学的价值,激发热爱数学的情感。

教学重、难点

重点:让学生探究发现植树问题(两端都栽)的规律,经历数学建模的过程,体验“复杂问题简单化”的解题策略和数学思想方法。

难点:在探究活动中发现规律,抽取数学模型,并能够用发现的规律来解决生活中的一些简单实际问题。

教具、学具

教具:课件

学具:直尺、小棒

1、自主探究法 学生在植树探究的学习过程中,通过分析综合、抽象概括、归类梳理的数学活动,在分析、思考问题的过程中,逐步发现隐含于不同情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决问题中的应用。

2、激励评价法 评价时遵循“没有差生,只有差异”的教学理念。采用多维和多级的评价方式,尊重学生的人格、情感和差异,形成融洽的师生关系,帮助每个学生了解自己的学习能力和水平。

课前活动

1. 活动

师:在上课之前,老师了解了一下,发现我们班很多同学都很喜欢唱歌,现在离上课还有一点时间,我们一起来唱一首《幸福拍手歌》好吗?(齐唱:幸福拍手歌)

师:看着老师的手,你从中得到了什么数字?(5,5个手指)

师:老师从中也得到了一个数字—4,你们知道它指的是什么吗?

师:你们发现手指数与间隔数的关系了吗?谁能说一说?

2.引入

师:连手上都有这么多数学奥秘,看来数学真是无处不在!现在我们可以开始上课了吗?

【设计意图】以学生熟悉的手为素材,初步感受手指数与间隔数有关系,后面的学习做好铺垫,同时使学生感受数学与生活的密切联系。

一、 创设情境,揭示课题

教师出示几幅有关北方沙尘暴的图片,引出植树的话题。

师:在我国的北方,冬天经常会出现沙尘天气,你们听说过吗?

生:听说过。

师:请同学们看一段录像。

生观看

师:沙尘暴给人们的生产和生活都带来了非常大的危害。同学们,你们知道吗?沙尘天气实际上是大自然对人类的一种惩罚。由于我们人类过去滥砍滥伐,破坏自然资源和生态环境,才造成今天的恶果。

师:要治理沙尘天气,最好的办法是什么?

生:植树造林

师:对,植树造林。你们看,上至国家领导,下至学生,都积极投身到植树造林的活动。看到这一排排整齐的小树,如果我们从数学的角度来分析,这里面还有很多有趣的数学问题呢。这节课,我们就来研究植树中的数学问题。

【设计意图】通过沙尘暴的图片、视频引入新课,过渡自然、真实,并能调动学生学习的主动性和趣味性。

二、提出问题 初步解决

1、出示问题

2、理解题意

(出示课件)

师:学校都有哪些要求呀?

理解“每隔五米种一棵”“两端都栽”“一边”

要准备多少棵树苗呢?能帮同学们解决一下吗?做在我们的一号题卡上吧。

3、动笔计算

4、反馈答案

方法一:1000÷5=200(棵)

方法二:1000÷5=200(棵) 200 +2=202(棵)

方法三:1000÷5=200(棵) 200 +1=201(棵)

??

【设计意图】教学要建立在学生原有的经验基础上。这个环节,通过让学生做一做,激活学生的原有经验。出现几种不同的答案,留下悬念,引发思考,激发学生的探究欲望。

三、自主探究 发现规律 1、自主探究

画图实际种一种。

师:老师也有同感,一棵一棵种到1000米确实太麻烦了。有更简单的方法吗?

预设:(当学生想到方案)

生:可以先在短一点的路上栽树

师:你的想法很独特,很有自己的见解,其实,你的这种方法就是我们数学研究上的一种重要的方法,这种方法就是遇到复杂问题先想简单的,从简单问题入手来研究。板书:复杂问题 简单问题。

(当学生没有想到方案)

师引导:其实像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法就是遇到复杂问题先想简单的,从简单问题入手来研究。板书:复杂问题 简单问题。

师:按照这样的思路,1000米太长了,我们先在10米、15米、20米??的距离上能种树 ,每隔5米种一棵,两端都栽,看能不能发现什么规律,找到了规律,我们再来解决1000米距离上种树的问题。

(出示课件)

师:请大家任选其中一种情况,利用老师所准备的学具--画纸或小棒,画一画、摆一摆或模拟实际种一种探究间隔数与棵树各是多少。

【设计意图】创造矛盾,激发学生探究欲望,并恰当的向学生渗透“复杂问题简单化”这一数学思想。

2、发现规律

大家仔细观察表格,想一想,看一看,有什么发现?把你的发现和小组内的同学说一说。

(课件演示)

一个间隔对应一棵,这样一直对应下去,100个间隔有100棵树,但种完了吗?

【设计意图】让学生体会到,不管数字多大,用“一一对应”的方法,最后还要不是一棵,才达到两端都栽的结果。

3、总结规律

师:谁来总结一下在两端都栽的情况下,棵树与间隔数的关系?

【设计意图】让学生体会到研究问题可以从简单入手,将困难的变为容易的,将复杂的变为简单的,用这样的方法,可以有效的解决问题。把抽象的数学思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。

3、运用规律

【设计意图】就植树问题举一反三,巩固“植树问题”数学模型。

四、解决问题 巩固提高

瞧,咱们刚刚探讨出来的规律就运用的这么好,真厉害。利用植树问题的规律不仅能解决植树问题,还能解决生活中的实际问题,比如说安路灯、上楼梯、听钟声、挂灯笼、过车站等等。

【设计意图】再现生活中的类似“植树问题’,通过不同层次的练习,培养学生灵活运用规律解决问题的能力。

五、回顾总结 拓展延伸

1、今天我们学会了什么? 你是用什么方法学到的?

2、拓展延伸。(出示课件) “只栽一端”“两端都不栽”的情况下棵树与间隔数又有什么样的关系。

【设计意图】拓展延伸环节是学生对后续的学习有一个初步的认识,激发进一步学习热情。

教学设计的问题篇十三

1、使学生了解生活中的一些简单搭配现象,通过操作提出不同的搭配方案。

2、使学生在探索不同搭配方案的过程中发现一些简单的规律,初步体会有序思想和符号化思想。

3、使学生在活动中增强探索数学规律的兴趣,积累积极的数学学习情感。

4、引导学生使用数学方法解决实际生活中的问题,学会表达解决问题的大致过程;培养学生的合作意识和人际交往能力。

自主探究,掌握有序搭配方法,并用所学知识解决实际生活的问题。

怎样搭配可以不重复、不遗漏。

课件、小衣服的学具图片、记录纸、作业纸。

“石头,剪子,布”游戏。

一、创设情境,初步感知搭配。

(多媒体显示无锡的风景图片)无锡有许多的旅游景点,吸引着越来越多的中外游客。小红和爸爸妈妈也想来无锡玩。

为了这次旅游,妈妈给小红准备了2件上衣:(出示学具)一件绿色的和一件黄色的,还准备了3条裙子:粉红色的,蓝色的和大红色的。

用什么颜色的上衣配什么颜色的裙子呢?请同学们给她提些建议吧。

学生口述,教师操作。

小结:像这样,一件上衣配一条裙子,就是把上衣和裙子进行搭配。(板书:搭配。)。

二、合作探究,体会有序思想。

1、合作探究。

同桌合作,把所有的搭配情况都找出来,让小红自己挑。

合作要求:同桌两人,一人拿学具进行搭配,另外一人把搭配的情况记录在表格中。

2、汇报过程。

请同学汇报搭配过程,教师演示过程。

小结:同学们都找到了六种不同的搭配方法。

3、比较方法。

通过刚才的仔细观察,你觉得你更喜欢哪一组同学搭配的方法呢?为什么呢?

学生交流,体会有序的好处。

小结:有序地搭配可以做到既不重复也不遗漏。

(板书:有序,不重复,不遗漏。)。

4、理解不同的搭配方法。

(1)谁能具体地说说看,这一组是怎样有序搭配的呢?

学生交流。

小结:这组同学是先拿上衣有序搭配的。

(2)除了先拿上衣有序地搭配,还有其他的方法吗?

学生讨论,发现也可以先拿裙子进行有序搭配。

请两位学生合作完成先拿裙子的有序搭配。

5、小结。

(电脑演示)把2件上衣和3条裙子进行搭配,可以先拿上衣有序搭配,也可以先拿裙子有序搭配。

三、创新表示,体会符号思想。

小红的爸爸为了这次旅游,准备了3条领带和3件衬衫。

1、讨论表示方法。

同桌讨论。全班交流,教师提示连线的方法。

2、在作业纸上表示。

请同学们用自己喜欢的方法在作业纸上有序地表示出这些搭配的方法。

汇报展示学生作业,简要评析。

小结:同学们想到的方法真多,有画实物的,有画简单图形的,还有用字母或数字表示的。

3、比较方法。

这么多的表示方法,你更喜欢哪一种呢?为什么呢?

小结:看来,用简单的图形、字母或数字等符号表示的方法更简洁明了。

4、小结。

(电脑演示)电脑小博士就是用简单图形表示的,它用梯形表示领带,用长方形表示衬衫。把3条领带和3件衬衫进行搭配,可以先拿领带有序搭配(电脑连线),也可以先拿衬衫进行有序搭配(电脑连线)。

四、通过变化,体会搭配规律。

1、如果领带的条数不变,衬衫减少一件,搭配的总数是多少呢?

交流。(板书:3×2=6。)。

2、如果衬衫的件数不变,领带增加一条,搭配的总数又是多少呢?

交流。(板书:4×3=12。)。

3、通过刚才的变化,你有没有发现,搭配的总数和什么有关系?有什么样的关系呢?

讨论交流。

小结:领带条数与衬衫件数的乘积就是搭配的方法数,这就是搭配的规律。(板书完成课题:搭配的规律。)。

五、尝试运用规律,解决生活中的问题。

(电脑演示)穿上漂亮的衣服,小红和爸爸、妈妈高高兴兴地来到了无锡。

打开地图,他们准备从火车站出发,经过五爱广场,到锡惠公园去玩。

(1)从火车站到锡惠公园,一共有多少种不同的走法呢?

学生交流。

(2)这么多的走法,选哪一种呢?

学生交流。

小结:当搭配的结果很多时,要注意选择最合适的搭配。

xx公园里有许多的有奖游戏,小红的运气真不错,她得奖了。来到领奖处,让我们听听领奖处的叔叔跟她说了什么。

(电脑录音)“小朋友,恭喜你得奖。你可以选一个木偶,配上一顶帽子,或者配上一条围巾作为奖品。领奖之前我可要先考考你喔。现在有三种木偶,二种帽子,三条围巾,你一共有多少种选择呢?”

学生交流不同的算法。

在同学们的帮助下,小红拿到了喜爱的奖品。小红一家人继续在xx公园快乐地游玩。

同桌商量,试着玩一玩。

汇报:请一组来玩。

交流玩法:一位同学连续出三次石头、石头、石头,另一位同学依次出石头、剪子、布。就这样连续地玩下去。

同桌两人玩一玩,然后交换一下角色,再玩一玩。

小结:原来游戏中也有数学问题,在这个游戏中一共有9种不同的搭配。

六、全课小结,引导延伸。

今天,我们一起寻找了搭配的规律。通过学习,你有什么收获与体会呢?

小结:只要我们时常能用数学的眼光观察生活、思考问题,就会有更多新发现。

教学设计的问题篇十四

数学广角——优化(沏茶问题)。

主备人。

赵越。

课型。

新授。

时间。

2016.11.11。

教学目标。

1.学生通过简单的实例,初步体会合理安排时间在解决实际问题中的应用,认识解决问题策略的多样性,形成寻找解决问题最优方案的意识。

2.通过自主探索、合作交流,让学生经历解决问题的过程,初步培养学生的应用意识和解决实际问题的能力。

3.让学生感受到合理安排时间的重要性,体会数学在日常生活中的广泛应用。

重点。

使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的良好意识和能力。

难点。

引导学生从优化的角度在解决问题的多种方案中寻找最优方案。

内容。

环节。

学习流程。

学生活动。

一、联系实际,谈话导入。

二、创设情境。

三、

自主学习,交流展示。

四、知识应用,扩展提升。

五、当堂达标。

六、畅谈收获,寄语。

总结。

老师每天做家务要用20分钟,听音乐10分钟,做完这两件事情需要多少分钟?

在生活中如果我们能够合理安排,不仅能节省时间,还能大大提高我们做事的效率。那今天我们就用同样的方法来学习《沏茶问题》。

1.出示数学书104页例1的情境图。

2.出示沏茶的工序。

怎样才能最快让客人喝上茶呢?

1.出示学习要求。

(1)独立思考,设计方案,完成学习单的内容。

(2)小组交流讨论自己的设计思路。

(3)选择最优方案摆在黑板上,准备展示。

2.小组展示。

3.师生共同总结合理安排时间的窍门。

4.讲解流程图。

5.总结。

1.学生独自完成练习。

2.小对子互相说一说。

3.集体订正。

独立完成,集体订正,统计结果。

通过这节课的学习,你有什么收获吗?请把你的收获分享给大家!

学生自由回答。

引出“同时”

学生自由回答。

引出沏茶的工序。

学生独立用工序图摆一摆,说一说,并用自己喜欢的方式表示出来。

小组交流自己的设计思路,选择即合理又省时的方案进行预展。

总结合理安排时间的窍门。

学生说自己的想法。

学生自由发言。

学生练习。

用“先……再……然后……最后……”表述。

学生畅谈收获。

顺序。

同时。

时间。

教学设计的问题篇十五

1、在摸一摸、摆一摆、想一想、说一说等实践活动中发现间隔数与植树棵数之间的关系。

2、在亲身体验、交流中,进一步理解间隔数与棵数之间规律,并解决生活中的植树问题。

3、在学习活动中,体会数学与生活的密切联系,锻炼数学思维能力,体验数学思想方法在解决问题上的应用,感受日常生活中处处有数学,进一步激发学生学习和探索的兴趣。

理解“植树问题(两端要种)”的特征,应用规律解决问题。

让学生发现植树的棵数和间隔数之间的关系。应用规律解决问题。

课件。

一、初步感知间隔的含义。

1、肢体体验:同学们都有一双灵巧的小手,它不但会写字、画画、干活,在它里面还蕴藏着有趣的数学知识,你想了解它吗?请举起你的右手,并将五指伸直、张开、用左手摸摸右手,数一数,五个手指有几个空格?(4个空格),师:在数学上,我们把这个空格叫“间隔”。也就是说,大小拇指在一只手的两端:5个手指之间有几个间隔?(4个间隔)。弯弯你的大拇指看:4个手指之间有几个间隔?(4个间隔);把大、小拇指一齐弯弯看:3个手指之间有几个间隔?(4个间隔),那么,将5个手指换成小树,5棵小树之间有几个间隔(4个)。

师:生活中的“间隔”到处可见,你知道生活中还有哪些间隔吗?(两棵树之间、两个同学之间、楼梯、锯木头、敲钟…都有间隔。)。

2、引入课题:师:树可以美化环境,清新空气,我们要多植树。在一条直线上种树,每两棵树之间相等的段数叫做间隔数,每个间隔的长度叫间距,也叫株距。间隔数与棵数的'关系,数学里统称植树问题,这就是我们今天要探究的内容——在一条不封闭的直路上的“植树问题”。(揭题,板书:植树问题)。

二、探究规律,解决问题。

1、找出两端都种树的规律。

植树问题情景1,师出示:例1、同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?师:请同学们默读题目,谁来分析一下这道题的条件、问题、关键词和单位?要求一共需多少棵树苗?先要知道两端都栽树,棵数与间隔数有什么关系?要解决这个问题,实践是检验真理的唯一标准,但是100米这个数字有点大,不好验证,在遇到比较复杂的问题时,我们可以先用比较简单的例子来验证。

师:现在我们用研究出的两端都栽树,棵数等于间隔数加1的规律来解决例1中的问题,在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?生:100÷5=20(个间隔)20+1=21(棵)。利用两端都栽树,棵数=间隔数+1”这个规律解决了两端都植树的问题。

走进生活:

(一)目标检测:

1、排列在同一条直线上的16棵树之间有()个间隔。2、从第1棵树到最后1棵树之间有30个间隔,一共有()棵树。

(二)闯关题。

2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?

3.5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

4、小明从1楼到3楼需走36级台阶,小明从1楼到6楼需走多少级台阶?

5.15个军人站成一列,每两个军人间距离为1米,这列队伍有多长?

实地考察。

两端要栽:棵数=间隔数+1;

教学设计的问题篇十六

相遇问题是和人们生活、生产息息相关的数学的知识。本课研究两个物体在运动中的速度、时间和路程的数量关系。在这之前,学生已掌握的是关于一个物体运动的情况,了解了速度、时间、路程的相关概念,有一定的生活经验,但欠缺生活经验与所学知识之间的联系。

设计思想:

(1)注重生活资源与课堂资源的整合,为学生创新奠定必要的认知基础。

(2)注重数学素养和信息素养的整合,为学生创新提供另一条思考的路径。

理念:

(1)注重将已有的知识、经验与教师通过书本、网络所提供的资源进行整合,从而实现教学目的。

(1)知识与技能:

了解相遇问题的应用题的基本结构,掌握解题方法。

(2)过程与方法:

经历观察、分析、概括的过程,使学生逐步形成观察、分析、概括的能力。通过自主探索,动手实践,合作交流,培养学生解决实际问题的能力。

(3)情感态度与价值观:

a:激发学生主动参与活动的热情,培养人人参与学习和自觉把数学知识应用实际生活的意识。

b:培养学生在生活中提出数学问题的意识。

重点:了解相遇问题的应用题的基本结构,掌握解题方法。

难点:掌握相遇问题的出发时间、出发地点、运动方向、运动结果的知识要点及相互关系。

(一)创设情境

1、复习旧知,引发联想

画面演示,画外音叙述:

这是一列货车,每小时行50千米,照这样的速度,4小时能行多少千米?

这是一列客车,每小时行60千米,照这样的速度,4小时能行多少千米?

请学生谈谈对这两道题的想法。

2、学生表演,理解概念

刚才,大家对前面的知识掌握的很好,今天,我们就要在速度、时间、路程关系的基础上,研究稍复杂的行程问题(师板书课题)。在学习新课之前,有四个词,请同学们理解一下。可以一人单独思考,用双手演示进行理解,也可以两人配合表演。

屏幕上依次闪动出现:相对、同时、相遇、相距

(1)请学生用动作和语言把这四个词的意思表演出来。注意:相遇与相距的区分。

(2)老师叙述,学生表演。

两个小朋友从甲乙两地同时相对而行,5分钟时,两人相遇了。

提问:问这两位同学,每人走几分钟,再问大家,他们同时走了几分钟。

(二)尝试探索

1、出示例题

2、提出问题

看到例题,你会想到什么问题?

师生对问题进行筛选,重点解决下面几个问题:

(1)他们两1分钟走了多少路?2分钟呢?3分钟呢?

(2)4分钟的时候会出现什么情况?

(3)他们相遇时,小强和小丽所走的路程与他们两家相距多少米有什么关系?(让全班同学闭上眼睛思考)

3、列式讨论

(1)请同学用算式表达自己的思考过程。要能说出每一步的意思。

主要有两种思路:

第一种:65×4+70×4

第二种:(65+70)×4

4、认识速度和

5、质疑

“对这道题还有什么不同的想法或问题吗”

(三)巩固发展

1、基本练习

2、看图说题,列出综合算式。小组讨论,一人说题,其他人列式。

3、游戏

再请两位同学表演,并提问两人相对而行可能出现什么情况?

(1)两人相遇;

(2)行走一段未相遇;

(3)相遇后继续行走。

给两位同学带上不同的头饰。头饰上标有65米、70米字样,分别表示速度。

教师一边叙述,一边出示5分钟时间的牌子。

教学设计的问题篇十七

苏教版小学六年级数学上册第四单元解决问题的策略第1课时,教材第68页—69页例2和练一练。

1、引导学生经历解决问题的过程,能有序、有效地思考、分析数量关系,初步学会用假设的策略解决含有两个未知数的实际问题。

2、能对解决问题的过程进行反思,初步感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。

3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

能有序、有效地思考、分析实际问题中的数量关系。

感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。

课件、导学单、教具。

一、复习铺垫。

1、出示下面的问题,让学生列式解答。

把720毫升果汁倒人9个同样的小杯子里,正好倒满。平均每个杯子的容量是多少毫升?

数量关系:()个小杯的容量=720毫升。

口头列式解答。

提问:和第1题相比,这道题难在哪里?(第1题是把720毫升果汁倒入一种杯子里,可以直接用除法计,这一道题是把720毫升果汁倒入两种杯子里,题中有两个未知数量。)。

3、揭示课题:这道题可以怎样解答呢?今天我们就来研究解决这样的实际问题的策略。(板书课题:解决问题的策略)。

二、探索策略。

1、教学例1。

(1)理解题意。

谈话:请同学们先观察题中的条件和问题,想一想,根据题意,你。

能找到怎样的数量关系,和小组里的同学说说你是怎样理解这些数量关系的。

揭示:6个小杯的容量+1个大杯的容证=720毫升。

大杯的容量x=小杯的容量小杯的容量x3=大杯的容量。

(2)确定思路。

谈话:我们知道,在遇到比较复杂的问题时,要想办法把复杂的问题转化成简单的问题。你有办法把这个问题变得简单吗?请先联系刚才理解数量关系式想一想,再和同学说说你准备怎样解决这个问题。

反馈:请把你的解题思路分享给大家。

学生想到的思路可能有以下几种,结合学生的交流,分别作如下引导:

思路一:假设把720毫升果汁全部倒入小杯。

问:把720毫升果计全部倒入小杯,1个大杯要换成几个小杯?把大杯换成小杯后,正好倒满多少个小杯?先画线段图分析。

思路二:假设把720毫升果汁全部倒入大杯,6个小杯换成几个大杯?把小杯换成大杯后,正好倒满多少个大杯?先画线段图分析。

思路三:列方程解。

小结:根据题中的数量关系,同学们想到了解决问题的不同思路。上面的几种思路都是抓住哪一个数量关系展开思考的?像这样通过假设把复杂问题转化为简单问题的方法,也是常用的解决问题的策略。(板书:假设)。

(3)列式解答并检验。

谈话:选择一种方法完成解答,并检验解题的过程和结果。

完成解答后,让学生说说列式、检验的方法和结果。

(4)回顾反思。

(5)教学第二种思路。

学生独立思考,列式计算,教师巡视。

指名交流解题时的思考过程,以及列式计算的过程和结果。

(6)比较和回顾。

提回:通过解答上面的问题,你有哪些收获和体会?

让学生先在小组里说一说,再组织全班交流。

2、完成“练一练”。

(1)出示题目,提问:要求桌子和椅子的单价、可以怎样进行假设?让学生按自己的思路完成解答,教师巡视。

(2)让不同思路的学生展示自己解题的过程。

三、巩固练习。

完成练习十一第1—3题。

四、课堂总结。

今天这节课我们学了什么?你有哪些收获和体会?还有什么疑问?

教学设计的问题篇十八

教学目标:

知识与技能:1.使学生了解含有两个未知数的实际问题的特点,理解并掌握它的数量关系,会列方程进行解决。2.培养学生发现问题,分析问题,解决问题的能力。

过程与方法:让学生在独立思考,交流互动当中经历解决问题的过程,掌握解决问题的方法和步骤。

情感,态度与价值观:通过学习,使学生了解地球的知识,感受数学与生活的联系,激发学生的学习兴趣。

教学重点:学会解决含有两个未知数的问题。

教学难点:分析数量关系。

教学准备:多媒体课件。

教学模式:多媒体教学。

教学过程:

一.准备题。

1.想一想,填一填。

(1).学校科技组有女同学人,男同学人数是女同学的3倍。

男同学有人;

男女同学共有()人;

男同学比女同学多()人。

(2).校园里栽了棵柳树,栽的松树是柳树的2.5倍。

松树栽了()棵;

柳树比松树少栽()棵。

2.解下面的方程。

二.引入新课。

多媒体出示图片:破坏生态环境的后果,引发学生感想。

出示植树造林图片,感受大自然的美。

三.探究新知。

1.观察主题图。

你从中知道了哪些信息?说说看。(师板书条件)。

想一想:可以提出什么数学问题?(师补充板书)。

2.引导学生分析问题,解决问题。

(1).学生自由读题,理解题意。

(2).引导学生画线段图,分析数量关系。

种树面积:

种草面积:共12.5亩。

提问:题中有两个未知数,怎么办?怎样设未知数?

启发学生思考,讨论,然后交流自己的方法,教师在线段图上标出亩和。

1.5亩。

教师:借助线段图,会解决这个问题吗?试试看。

(3).学生独立解决问题,完成后组织交流,汇报解法。师板书解题过程,进行检验。

3.回顾解题过程,加深对题目的进一步理解,并评价学生的做法,激发学习的积极性。

四.巩固练习。

同学们知道地球的形状吗?

1.观察地球的图片,介绍地球表面的情况,了解表面积的含义。

2.自学教材例题,在深入分析题意的基础上,让学生画出线段图,进一步理解数量关系,掌握解法。

五.深化练习。

1.将主题图中的“我家今年共种了12.5亩的草和树”改为“我家今年种的草比树多2.5亩”。

让学生编题,鼓励学生积极思考,分析数量关系。同伴之间进行讨论和交流,画出线段图进行解决,然后组织全班交流,学习解题方法和步骤。

2.比较两题的异同,引导学生在理解的基础上掌握“和倍”、“差倍”问题的一般解法。

2.数学小博士。

六.全课总结。

引导学生回顾全课,总结本节课解决问题的特点,解决问题的方法和步骤,强调怎样设未知数,要求先分析数量关系再进行解答。

七.布置作业。

教后反思:

一、教材的处理。

数学来源于生活,生活中处处有数学。课前设计中,我紧密联系学生的生活实际,创设了“种草种树”的教学情境,让学生在这一情境中不但学习了新知,而且开阔了眼界,丰富了教学内容。紧接着,通过对教材例题的自学和练习,进一步巩固上面学到的方法。然后,改变情境图中的一个条件,启发学生继续学习,学生在前面学习的基础上,学会运用迁移类推的方法,通过思考、交流、分析、解答,获得了解决这类问题的方法。又经过比较,使学生清楚地认识到两道题的联系与区别,提高辨别能力和解决问题的能力。

二、本节课目标完成情况。

在教学过程中,我紧紧围绕课前预设的三维目标实施教与学的双边活动,从教学实施的过程来看,基本上达到了预期的目标。大多数学生掌握了稍复杂问题的解决方法,尽管有些学生会做还不会说,大部分学生能够有根据、有步骤地解决问题。在学生学习的过程中,我能不断评价鼓励学生,使学生既掌握了知识,发展了能力,又使学生体验到了数学在生活中的应用,尝到了成功的快乐。

三、课件的应用。

解决问题,就是要解决生活中的问题。因此本节课上我用多媒体课件出示情境,把学生带入了一个个活生生的场面,使学生产生主动探究的愿望,培养了自主探索的精神,提高了自主探索的能力,发挥了多媒体课件在解决问题教学中的辅助作用。

四、教学中的不足。

1.课前复习时说的过细,学生弄清楚了这样做的道理,但费时较多,占用了后面的教学时间,致使教学过程前松后紧,练习部分处理得较为仓促,学生学会了“和倍”问题的解决方法,“差倍”问题掌握的同学不多。

2.解方程练的较少,中、下学生没有熟练掌握解方程的一般方法,制约了学生进一步的学习,也影响了教学进度。

3.因为多媒体的原因,使学生上课后不能立刻进行学习,耽误了几分钟的学习时间,同时影响了教学的顺利进行。

总之,教学是一项长期的工作,培养学生的各方面能力也要通过长期不懈的努力,只有这样,才能使学生牢固地掌握知识,逐步形成一些技能技巧,最终能够运用所学到的知识解决生活中的问题,才能完成自己的教学任务。

教学设计的问题篇十九

国标本数学四年级下册第50~51页。

1、从学生的生活实际出发创设情境,了解生活中的一些简单搭配现象,通过操作提出不同的搭配方案。

2、学生在探索不同搭配方案的过程中发现一些简单的规律,初步体会有序思想和符号化思想。

3、学生在活动中增强探索数学规律的兴趣,积累积极数学学习情感。

学会有序地思考,掌握求两类事物搭配的方法。

探究两类事物搭配的规律并灵活运用知识解决问题。

一、联系生活情境,导入新课。

2、所以,后人为了纪念他,每年都举办“华罗庚数学金杯赛”,可参赛的对象只有六、七年级的同学。为了激发大家学习数学的热情,三(1)班开展了争创“数学小能手”的比赛,我们来看看都有哪些同学获奖了。(显示五位同学)男女生情况怎样?(3女2男)。

3、设疑:学校五月份将评选校级“数学小能手”,假如在这5位同学中选1名男生和1名女生参赛,你准备怎样选?(学生说一说)。

4、刚刚你们说的每一种选法其实都是一种搭配,除了他们说的这些,还有没有其它搭配的方法呢?今天这节课我们就来探索事物搭配的规律。(板书:搭配的规律)。

设计意图:在设计这节课时,我把教学内容重新组织了一下。我以最近的华杯赛谈起,充分利用多媒体创设情景,以评选“数学小能手”为线索,使学生感受到数学就在身边,学习是一种乐趣,从而增强学生学好数学的信心,从中尝试到成功的喜悦。

二、合作探究,初步感知搭配,体会有序思想。

1、分类:既然要选择1男1女参赛,而图中男女混合在一起,眼花缭乱不易分辩,看来有必要先把他们……(演示分类),这样男女生就一目了然了。

2、合作探究:那下面我们就来动手找一找,看看有几种搭配方法?同桌两人,一人拿学具进行搭配,另外一人把搭配的情况记录在表格中。

3、全班交流:一组汇报,其余同学一边观察,一边思考对他们的搭配有什么见解?(请搭配方法不同的同学上台展示:无序、有序)。

4、比较方法:通过刚才的观察和思考,你更喜欢哪一组同学的搭配方法?他们在搭配时注意到了什么?(有顺序的搭配)怎样的顺序呢?(先选女生,分别与男生搭配;先选男生,分别与女生搭配)。

师:是呀,正是因为他们在搭配时注意到了一定的顺序,所以会把这六种搭配方法毫无遗漏的记录下来。而且这样搭配更有条理。在数学上,这样思考的方法叫有序思考。(板书:有序)那么像这样有序地搭配、有序地思考有什么好处呢?(不重复不遗漏)。

5、小结:看来先固定一类人的方法确实不错。老师也想来尝试一下。把3位女生和2位男生进行搭配,可以先选女生有序搭配(演示);也可以先选男生有序搭配(演示)。

6、你们能像刚才这样,先选定一类人,把男生和女生进行有序地搭配吗?请同学们按新的想法进行有序地搭配。

设计意图:在教学过程中,把学习的主动权交给学生,给学生比较充裕的时间去自由观察、思考、选择,用说一说、想一想、写一写等形式对有几种搭配方法展开讨论和交流,并在相互启发和独立思考的过程中,得出共有六种搭配方法,通过不同搭配方法的比较,感悟有序搭配的好处,体验成功的乐趣,培养与他人的合作意识及主动探究精神。在方法、练习上,放手让学生自由选择自己喜欢的方法,真正体现了学生是学习活动的主人。

三、创新表示,体会符号思想。

1、讨论:教师发现你们刚才在摆学具和记录的过程中,花费的时间比较多,而且在解决实际问题时,并不是都会有学具给你摆,为了节约时间,有没有更好的方法呢?同桌可以商量商量。

2、尝试:请大家用自己想到的、更加方便的方法在作业本上有序地表示出这些搭配方法吧。(学生表示,展台展示,学生说说每种符号各表示什么)。

3、比较:这么多的方法,你更喜欢哪一种呢?为什么?(简洁方便)看来,用简单的图形、字母或数字来表示实物的方法更简单明了呀。

4、归纳:老师是用简单图形表示的。用三角形表示女生,用长方形表示男生。把3位女生和2位男生搭配,可以先选女生有序搭配,也可以先选男生有序搭配。

设计意图:教师紧紧利用学生的动手制作成果,创设再次动手操作情境,体验符号在记录中的作用。由于是自己劳动所得,学生兴趣盎然,一个个优秀的设计方案让你耳目一新、赞不绝口。整个过程,充分体现了学生的主体作用,使学生真正成为学习活动的发现者、研究者、探索者。品尝到了成功的喜悦,激发学习的动力源泉。最后我想用三句话来表达心中的`感悟:那就是,当学生有兴趣时,他们学得最好;当学生自由参与探索与创新时,他们学得最好;当学生有更高的自我期待时,他们学得最好。

四、尝试运用规律,解决生活中的问题。

(3)小结:有时,当搭配的结果很多时,要注意选择最合适的搭配方案。

设计意图:借助真实的生活情境,请学生帮助设计行走路线,有效地激发了学生参与的热情。让学生通过表述具体路线有困难,自然而然想到用符号帮忙。既巩固了有序思考的方法,又渗透符号在数学中的作用,会运用数学方法解决问题。

2、通过变化,体会总结搭配规律。

(2)师:如果有10种搭配方法,你认为笔和书签可以各买多少?(学生交流)。

小结:通过刚才的这些变化,你发现搭配的方法数与什么有关?(与笔和书签的数量有关)那笔和书签的数量之间有怎样的关系呢?(笔的数量与书签数量的乘积就是搭配的方法数)。

(3)揭示课题:一种事物的数量与另一种事物的数量相乘所得的积就是两种事物搭配的方法数,这就是我们今天要研究的搭配中的规律。

设计意图:从实物图形到数学建模来解决问题,通过变式对比练习,强化学生对搭配规律的理解。从中找到事物中蕴含的数量关系,并运用数学方法来解决。

五、全课小结。

通过学习,你有什么收获与体会呢?(想问题要有序思考、乘积即搭配方法)。

六、联系生活运用。

1、思考一下在我们实际生活中,你有没有遇到过有关搭配的问题?

2、生活中搭配的现象可真多,饮食的搭配可以让我们吃的更好、更有营养;服饰的搭配可以让我们显得更美、更有精神。那下面我们就一起来体验一下服饰的搭配,做一次小小服装设计师。(演示书本51页第2题)。

设计意图:服饰的搭配是生活中常见问题,通过对上装与裙子、上装与裤子的搭配方法的探究,让学生感觉数学就在身边,再运用规律来解决问题,真切体会到“数学源于生活,用于生活”。激发学生学习数学的热情。

七、拓展延伸。

1、谈话:搭配的规律,我国古人很早就开始运用了,《田忌赛马》的故事不陌生吧?一开始他们是怎么比的呢?(齐威王和田忌用上等马—上等马,中等马—中等马,下等马—下等马)。

2、我们今天也学习了搭配的规律,如果任选齐威王的一匹马和田忌的马搭配比赛,共有多少种不同的搭配方法呢?哪9种?(学生交流——口述回答——演示)。

3、田忌连输了三场,觉得很郁闷,垂头丧气地准备离开赛马场,可是后来在一位高人的指导下,又进行了一次比赛,却赢了齐威王,你知道他运用了什么方法吗?把你想到的方法用连线快速地记录下来。(学生动手操作记录)。

4、(学生汇报方法,多媒体演示)。揭晓:这位高人便是我国古代著名的军事家—孙膑。

5、我们发现,齐威王在第二次比赛是太自信、太大意了,他在第一场赛马后没发现问题,假如他看出了田忌的想法,那么在第二次比赛中途还有没有取胜的方法?(讨论方法,学生口述)。

设计意图:巧妙的利用《田忌赛马》的故事,分层进行练习。既激发了学生学习数学的兴趣,引起学生参与思考,参与研究的热情,又为搭配规律的运用做了深入细致的铺垫。同时渗透了数学思维方法的训练和思想教育。

教学设计的问题篇二十

教学内容:

教学来源:

人教版小学数学教材第九册第七单元《植树问题》。

五年级学生。

备课人:

张金玲。

基于标准:

数学广角的教学目标可概括为以下几点:

1、感悟重要的数学思想方法;。

2、运用数学的思维方式进行思考,增强分析和解决问题的能力;。

3、在参与观察、猜测、试验、推理等数学活动中发展合情推理,感悟演绎推理思想,学会独立思考。

教材分析:

《植树问题》是人教版义务教育课程标准实验教科书五数上册第七单元“数学广角”中的内容。“数学广角”是人教版中的一个亮点,它系统而有步骤地向学生渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。这一单元内容就是植树问题,教材将植树问题分为几个层次,有两端栽、两端不栽、一端栽一端不栽以及环形情况、方阵问题等。本节课例1是两端都栽树的情况。

学情分析:

学生已经学习了除法的含义、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

学习目标:

1.利用学生熟悉的生活素材、通过画线段图、填表格、讨论交流等活动,能化繁为简并说出两端都栽的情况下间隔数与棵数之间的关系。

2.能发现并理解植树问题(两端要栽)的一般解题规律,并能利用规律解决相关的实际问题。

评价任务:

任务一:通过猜谜活动,以及画线段图、做表格等活动,完成目标一。

任务二:通过课堂例题的理解分析,找到两端都栽的植树问题的一般解题规律,达成目标二前半部分。另外利用习题的解决,达成目标二的后半部分。

【学习重点】:发现棵数与间隔数的关系。

【学习难点】:理解两端都栽的植树问题的一般解题规律并能运用规律解决问题。

【教学准备】:课件、小组学习单。

【教学过程】:

一、导入新课。

1、猜谜语,直观认识间隔。

新课前老师给大家带来一个谜语,请看,“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。打一人体的组成部分。”它是什么呢?谁知道?(手)。

同意的举手?你们真会联想,它就是我们的手。我们的手作用可真大,能写会算还会画,而且我们的手上还有许多的数学奥秘,仔细看自己的手,你能看到数字吗?(5)。

哦,怎么看出5了?(表示手指的个数)谁还看到了数字5?真不错,除了用数字可以表示手指的个数,咱们的手上还有没有数字?(还能看到手指之间的间隔,两个手指之间的缝隙,教师说明,缝隙就称为间隔。)。

手指之间还有一个个的间隔。同学们,咱们手上五个手指之间到底有几个间隔呢?(4个)。

我们一起来数一数。还真有4个间隔。那四个手指之间有几个间隔?三个手指之间呢?两个手指之间呢?(生依次回答。)。

你发现什么了吗?(生说)。

的确,手指数和间隔数之间是有着一定的规律的,它们之间的这种规律最适合解决今天我们要研究的这类问题,这类问题的名字叫做植树问题。板书:植树问题。

二、探究规律实现目标。

1、例题探究。

说起植树问题我们就先从植树谈起吧。请看例题。

a、从题中你能知道哪些信息?谁来说一说?生说,师画。

师小结:

一边是小路的一侧,指左边或者右边,全长1000米是指小路的总长。每隔五米栽一棵是每两棵树之间的距离,简称间距。两端要栽指起点与终点处都要栽。

b、算一算,一共要栽多少棵树?反馈答案:

方法1:1000÷5=200(棵)。

方法2:1000÷5=200200+2=22(棵)。

方法3:1000÷5=200200+1=21(棵)。

疑问:现在出现了三种答案,到底哪种答案是正确的呢?下面我们一起来验证一下,你想用什么方法验证?(生说:画线段图的方法)。

三、自主探究,发现规律。

1、化繁为简探规律。

是个好办法!我们可以选择画线段图来验证。每隔5米栽一棵就画一段,再过5米再画一段,这样我们需要画多少段呢?好画吗?为什么呀?(数据太大了)。那怎么办呢?(选择简单的数据进行研究,得出规律再解决这道题)。

是呀,在遇到比较复杂的问题时,我们可以先用比较简单的例子来研究。你准备选用哪个数来研究?(生说)下面请大家自己选择简单的数据在练习本上试着进行验证,并把你试的结果汇报给组长填在表格中,之后观察表格中的数据,你发现了什么?把你的发现在小组内说一说。

教学设计的问题篇二十一

1、教学内容:人教版义务教育教科书六年级下册第68页例1及做一做。

2、教材地位及作用。

本单元用直观的方法,介绍了“鸽巢问题”的两种形式,并安排了很多具体问题和变式,帮助学生加深理解,学会利用“鸽巢问题”解决简单的实际问题。实际上,通过“说理”的方式来理解“鸽巢问题”的过程就是一种数学证明的雏形,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。

(二),才能灵活运用这一原理解决各种实际问题。

要创造条件和机会,让学生发表见解,发挥学生学习的主体性。

2、思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。因此教师要耐心细致的引导,重在让学生经历知识发生、发展的过程,而不是生搬硬套,只求结论,要让学生不但知其然,更要知其所以然。

根据《数学课程标准》和教材内容以及学生的学情,我确定本节课学习目标如下:

知识性目标:初步了解“鸽巢问题”的特点,理解“鸽巢问题”的含义,会用此原理解决简单的实际问题。

能力性目标:经历探究“鸽巢问题”的学习过程,通过实践操作,发现、归纳、总结原理,渗透数形结合的思想。

情感性目标:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,感受到数学的魅力。

教学重点:引导学生把具体问题转化成“鸽巢问题”。

教学难点:找出“鸽巢问题”解决的窍门进行反复推理。

教法上本节课主要采用了设疑激趣法、讲授法、实践操作法。根据六年级学生的理解能力和思维特征,为使课堂生动、高效,课堂始终以设疑及观察思考讨论贯穿于整个教学环节中,采用师生互动的教学模式进行启发式教学。

学法上主要采用了自主合作、探究交流的学习方式。体现数学知识的形成过程,让学生在自己的经验中通过观察,实验,猜测,交流等数学活动形成良好的数学思维习惯,提高解决问题的能力,感受数学学习的乐趣。

在教学设计上,我本着“以学定教”的设计理念,把教学过程分四环节进行:设疑导入,激发兴趣——自主操作,探究新知——归纳小结,形成规律——回归生活,灵活应用。

在导入部分,通过抽扑克牌“魔术”,激发学生的兴趣,引入新知。

根据学生学习的困难和认知规律,我在探究部分设计了三个层次的数学活动。

(一)实物操作,初步感知。

学生通过例1要求通过“把4枝铅笔放入3个笔筒”的实际操作,解决3个问题:

1、怎样放?

重点是让学生明确如果只是放入每个笔筒中的枝数的排序不一样,应视为一种分法,并引导其有序思考,为后面枚举法的运用扫清障碍。

2、共有几种放法?

这里主要是孕伏对“不管怎样放”的理解。

3、认识“总有一个”的意义。

通过观察笔筒中铅笔枝数,找出4种放法中铅笔枝数最多的笔筒中枝数分别有哪几种情况,理解“总有一个”的含义,得到一个初步的印象:不管怎么放,总有一个笔筒放的枝数是最多的,分别是2枝,3枝和4枝。

(二)脱离具体操作,由形抽象到数。

通过“思考:把5枝铅笔放入4个笔筒,又会出现怎样的情况?”由学生直接完成表格,达成三个目的:

1、理解“至少”的含义,准确表述现象。

(1)通过观察表格中枝数最多的笔筒里的数据,让学生在“最多”中找“最少”。

(2)学会用“至少”来表达,概括出“5枝放4盒”、“4枝放3盒”时,总有一个笔筒里至少放入2枝铅笔的结论。

2、理解“平均分”的思路,知道为什么要“平均分”。抓住最能体现结论的一种情况,引导学生理解怎样很快知道总有一个笔筒里至少是几枝的方法——就是按照笔筒数平均分,只有这样才能让最多的笔筒里枝数尽可能少。

3、抽象概括,小结现象。

通过“4枝放入3个笔筒”、”5枝放入4个笔筒”等不同的实例让学生较充分地感受、体验、发现相同的现象,让学生抽象概括出“当物体数比抽屉数多1时,不管怎么放,总有一个抽屉至少放入2个物体”,初步认识鸽巢原理。

(三)学生自选问题探究。

首先设下疑问:“如果物体数不止比抽屉数多1,不管怎样放,总有一个铅笔盒中至少要放入几枝铅笔?”这一层次请学生理解当余数不是1时,要经历两次平均分,第一次是按抽屉的平均分,第二次是按余下的枝数平均分,只有这样才能达到让“最多的盒子里枝数尽可能少”的目的。

在学生经历了真实的探究过程后,我将本节课研究过的所有实例通过课件进行总体呈现。让学生通过比较,总结出抽屉原理中最简单的情况:物体数不到抽屉数的2倍时,不管怎样放,总有一个抽屉中至少要放入2个物体。

研究的问题来源于生活,还要还原到生活中去。

在教学的最后,请学生用这节课学的鸽巢原理解释课始老师的魔术问题,进行首尾的呼应;再让学生应用“鸽巢原理”解决的生活中简单有趣的实际问题,激发学生的兴趣,进一步培养学生的“模型”思想,让学生能正确地找出问题中什么是待分的“物体”,什么是“抽屉”,让学生体会抽屉的形式是多种多样的。同时也让学生感受到数学知识在生活中的应用,感受到数学的魅力。

【本文地址:http://www.xuefen.com.cn/zuowen/11326006.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档