2023年初一数学教案湘教版(模板16篇)

格式:DOC 上传日期:2023-11-12 12:23:13
2023年初一数学教案湘教版(模板16篇)
时间:2023-11-12 12:23:13     小编:书香墨

教案是教师教学的重要工具,它直接关系到教学的质量和效果。教案的编写应结合有效的教学资源,提高教学的多样性和趣味性。以下是一些教研团队共同研发的一系列教案,内容丰富,思路独特。

初一数学教案湘教版篇一

1下列说法中,正确的是()。

a.0是最小的整数b.最大的负整数是﹣1。

【分析】根据负数、正数、整数和有理数的定义选出正确答案.特别注意:没有最大的正数,也没有最大的负数,最大的负整数是﹣1.正确理解有理数的定义.

【解答】解:a、没有最小的整数,错误;。

b、最大的负整数是﹣1,正确;。

故选b.

【点评】本题考查了有理数的分类和定义.有理数:有理数是整数和分数的统称,一切有理数都可以化成分数的形式.整数:像﹣2,﹣1,0,1,2这样的数称为整数.

初一数学教案湘教版篇二

1.三棱锥的展开图是由_________个_________形组成的。

2.圆椎的展开图是由一个_________和一个_________形组成的图形。

3.在如图所示的图形中,是三棱柱的侧面展开图的是_________。

初一数学教案湘教版篇三

1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。

2.掌握点到直线的距离的概念,并会度量点到直线的距离。

3.掌握垂线的性质,并会利用所学知识进行简单的推理。

[教学重点与难点]。

1.教学重点:垂线的定义及性质。

2.教学难点:垂线的画法。

[教学过程设计]。

一.复习提问:

1、叙述邻补角及对顶角的定义。

2、对顶角有怎样的性质。

二.新课:

引言:

前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。

(一)垂线的定义。

当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

如图,直线ab、cd互相垂直,记作,垂足为o。

请同学举出日常生活中,两条直线互相垂直的实例。

注意:

1、如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。

2、掌握如下的推理过程:(如上图)。

反之,

(二)垂线的画法。

探究:

1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?

2、经过直线l上一点a画l的垂线,这样的垂线能画出几条?

3、经过直线l外一点b画l的垂线,这样的垂线能画出几条?

画法:

让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。

注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。

(三)垂线的性质。

经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:

性质1过一点有且只有一条直线与已知直线垂直。

练习:教材第7页。

探究:

如图,连接直线l外一点p与直线l上各点o,

a,b,c,……,其中(我们称po为点p到直线。

l的垂线段)。比较线段po、pa、pb、pc……的长短,这些线段中,哪一条最短?

性质2连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

(四)点到直线的距离。

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

如上图,po的长度叫做点p到直线l的距离。

初一数学教案湘教版篇四

2,通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;。

3,体验数形结合的思想。

教学难点归纳相反数在数轴上表示的点的特征。

知识重点相反数的概念。

教学过程(师生活动)设计理念。

设置情境。

引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类。

4,-2,-5,+2。

允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。

(引导学生观察与原点的距离)。

思考结论:教科书第13页的思考。

再换2个类似的数试一试。

培养学生的观察与归纳能力,渗透数形思想。

深化主题提炼定义给出相反数的定义。

学生思考讨论交流,教师归纳总结。

规律:一般地,数a的相反数可以表示为-a。

思考:数轴上表示相反数的两个点和原点有什么关系?

练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。

深化相反数的概念;“零的相反数是零”是相反数定义的一部分。

强化互为相反数的数在数轴上表示的点的几何意义。

给出规律。

解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?

学生交流。

分别表示+5和-5的相反数是-5和+5。

练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法。

小结与作业。

课堂小结1,相反数的定义。

2,互为相反数的数在数轴上表示的点的特征。

3,怎样求一个数的相反数?怎样表示一个数的相反数?

本课作业1,必做题教科书第18页习题1.2第3题。

2,选做题教师自行安排。

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.

2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.

3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.

初一数学教案湘教版篇五

1.知识与技能.

理解商品销售中所涉及的进价、原价、售价、利润及利润率等概念;能利用一元一次方程解决商品销售中的一些实际问题.

2.过程与方法.

经历运用方程解决销售中的盈亏问题,进一步体会方程是刻画现实世界的有效数学模型.

重、难点与关键。

2.难点都是如何把实际问题转化为数学问题,列方程解决实际问题.

3.关键:理解销售中,相关词语的含义,建立等量关系.

教具准备。

投影仪.

教学过程。

一.引入新课.

前面我们结合实际问题,讨论了如何分析数量关系,利用相等关系列方程以及如何解方程,可以看出方程是分析和解决问题的一种很有用的数学工具,本节我们将进一步探究如何用一元一次方程解决实际问题.

二.新授.

初一数学教案湘教版篇六

知识目标:经历解方程的基本思路是把“复杂”转化为“简单”,把“未知”转化为“已知”的过程,进一步理解并掌握如何去分母的解题方法。

能力目标:通过解方程的方法、步骤的灵活多样,培养学生分析问题、解决问题的能力。

1.了解方程的解,解方程的概念;。

2.掌握运用等式的基本性质解简单的一元一次方程;。

3.经历体会解方程中的转化思想.

初一数学教案湘教版篇七

情感态度:通过师生、生生合作学习,促进交流,激发兴趣。

a、准备活动:

1、师生游戏“唱反调”:我们知道在小学学过的0以外的数前面加上负号“-”的数就是负数。现在我说一个正数,你们给它添上“-”号说出来,我如果说一个负数,你们反过来说出对应的正数。+3、+1、-1/2、-18.4、0.75,学生很快说出-3、-1、1/2、18.4、-0.175。

2、上述“唱反调”的两个数3与-3,1与-1,-1/2与1/2……,在数轴上对应的点的位置如何?可建议生择两组在数轴上表示以后作答(在原点两侧到原点的距离相等,真可谓从原点背道而驰“唱反调”)。

提问:数轴上与原点距离是4的点有几个?这些点表示的数是多少?

归纳:设a是一个正数,数轴上与原点距离是a的点有两个,分别在原点左右表示-a和a,我们说这两点关于原点对称。

b、学习概念:

1、像3和-3,1和-1,-1/2和1/2这样,只有负号不同的两个数给它一个什么样的关系名称合适呢?生:互为相反数,师:很好,我们把上述只有负号不同的两个数叫做互为相反数(oppositenumber)。也就是说3的相反数是-3,-3的相反数是3。可见:相反数是成对出现的,不能单独存在。

一般地,a和-a互为相反数。“-a”可读成“a的相反数”。

2、在数轴上看,表示相反数的两个点和原点有什么关系?(关于原点对称)。

3、从上述意义上看,你看如何规定0的相反数更为合理?

商讨得:0的相反数仍是0,即0的相反数等于它本身。

c、应用举例:

1、两人一组,一人任说一个有理数,请同伴说出它的相反数。

2、如果a=-a,那么表示数a的点在数轴上的什么位置?a=?(a=0)。

3、在正数前面添上“-”号,就得到这个数的相反数,同样地,在任意一个数前面添上“-”号,新的数就表示原数的相反数,如:-(+5)=-5,-(-5)=5,-0=0。

4、化简下列各数p124练习,你愿意继续尝试化简下列各式吗?

+(-2/3),-(-2/3),-(+2/3),+(+2/3)。

你能试着总结规律吗?(括号内外同号结果为正,括号内外异号结果为负)。

5、若a=-5,则-a=;若-x=7,则x=。

课题应用举例中的2。

活动引例应用举例中的4(学生练习),5。

概念。

1、教科书p18/3;。

2、如图是正方形纸盒的侧面展示图,请你在正方形内分别填上6个不同的数,使折成正方体后相对的面上的两个数互为相反数(写出满足条件的一种情形即可)。

初一数学教案湘教版篇八

教学目标:

1、了解代数式,单项式,单项式的系数、次数,多项式,多项式的项、次数,整式的概念。

2、能用代数式表示简单问题的数量关系。

3、能解释一些简单代数式的实际背景或几何背景。

教学重点与难点:

1、单项式的系数、次数,多项式的系数、次数。

2、能解释一些简单代数式的实际背景或几何背景。

预习要求:

2、试着完成p85议一议中问题(2)。

教学过程:

上一节课上我们已经知道,还可以表示一些简单问题中的数量关系和变化规律,今天我们将继续学习用字母表示数。

初一数学教案湘教版篇九

一、学习与导学目标:

情感态度:通过师生、生生合作学习,促进交流,激发兴趣。

二、学程与导程活动:

a、准备活动:

1、师生游戏“唱反调”:我们知道在小学学过的0以外的数前面加上负号“-”的数就是负数。现在我说一个正数,你们给它添上“-”号说出来,我如果说一个负数,你们反过来说出对应的正数。+3、+1、-1/2、-18.4、0.75,学生很快说出-3、-1、1/2、18.4、-0.175。

2、上述“唱反调”的两个数3与-3,1与-1,-1/2与1/2……,在数轴上对应的点的位置如何?可建议生择两组在数轴上表示以后作答(在原点两侧到原点的`距离相等,真可谓从原点背道而驰“唱反调”)。

提问:数轴上与原点距离是4的点有几个?这些点表示的数是多少?

归纳:设a是一个正数,数轴上与原点距离是a的点有两个,分别在原点左右表示-a和a,我们说这两点关于原点对称。

b、学习概念:

1、像3和-3,1和-1,-1/2和1/2这样,只有负号不同的两个数给它一个什么样的关系名称合适呢?生:互为相反数,师:很好,我们把上述只有负号不同的两个数叫做互为相反数(oppositenumber)。也就是说3的相反数是-3,-3的相反数是3。可见:相反数是成对出现的,不能单独存在。

一般地,a和-a互为相反数。“-a”可读成“a的相反数”。

2、在数轴上看,表示相反数的两个点和原点有什么关系?(关于原点对称)。

3、从上述意义上看,你看如何规定0的相反数更为合理?

商讨得:0的相反数仍是0,即0的相反数等于它本身。

c、应用举例:

1、两人一组,一人任说一个有理数,请同伴说出它的相反数。

2、如果a=-a,那么表示数a的点在数轴上的什么位置?a=?(a=0)。

3、在正数前面添上“-”号,就得到这个数的相反数,同样地,在任意一个数前面添上“-”号,新的数就表示原数的相反数,如:-(+5)=-5,-(-5)=5,-0=0。

4、化简下列各数p124练习,你愿意继续尝试化简下列各式吗?

+(-2/3),-(-2/3),-(+2/3),+(+2/3)。

你能试着总结规律吗?(括号内外同号结果为正,括号内外异号结果为负)。

5、若a=-5,则-a=;若-x=7,则x=。

三、笔记与板书提纲:

课题应用举例中的2。

活动引例应用举例中的4(学生练习)。

概念。

四、练习与拓展选题:

1、教科书p18/3;。

2、如图是正方形纸盒的侧面展示图,请你在正方形内分别填上6个不同的数,使折成正方体后相对的面上的两个数互为相反数(写出满足条件的一种情形即可)。

初一数学教案湘教版篇十

2.学习如何找出实际问题中的已知数和未知数,并分析它们之间的数量关系,列出方程;。

3.通过具体的例子感受一些常用的相等关系式.

【对话探索设计】。

〖探索1〗。

(1)某校前年购买计算机x台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍,去年购买的计算机的数量是________;今年购买的计算机的数量是________;三年总共购买的数量是_________.

解:设前年购买计算机x台,那么,。

设计(1)是让学生感受列代数式是列方程的基础.

去年购买的计算机的数量是________;。

今年购买的计算机的数量是________;。

根据关系:三年共购买计算机140台(关系式:前年购买量+去年购买量+今年购买量=140台),列得方程:。

____________________________.

合并得________________.

系数化为1得______________.

答:______________________.

归纳:总量等于各部分量的和是一个基本的相等关系.

〖探索2〗。

(1)把一些书分给某班学生阅读,如果每人分3本,则剩余20本,若这个班级有x名学生,则这些书有_______本.

(2)把一些书分给某班学生阅读,如果每人分4本,则还缺20本,若这个班级有x名学生,则这些书有_______本.

解:设这个班级有x名学生,。

根据第一关系,这批书共_________________本;。

根据第二关系,这批书共_________________本;。

这批书的总数是个定值,表示它的两个不同的式子应该相等.

熟悉这些关系有助于列方程.

根据这一相等关系列得方程:。

________________________.

想一想,怎样解这个方程?

归纳:表示同一个量的两个不同的式子相等,这也是我们列方程经常用到的相等关系.

〖练习〗。

1.(1)同样大的实验田,喷灌的用水量是漫灌的25%,若漫灌要用水x吨,则改用喷灌只需_________吨.

解:设第二块地(漫灌)用水x吨,。

第一块地(喷灌)用水________吨.

根据关系:两块地共用水300吨,可列方程:。

__________________________________.

解得___________.

答:___________________________.

〖作业〗。

p79.练习,p84.1,6。

〖补充作业〗。

1.按要求列出方程:。

(1)x的1.2倍等于36;(2)y的四分之一比y的2倍大24.

2.某厂去年的产量是前年的2倍还多150吨,若去年的产量是950吨,求前年的产量.

根据去年的产量是950吨列方程:__________________.

解得___________.答_________________________.

初一数学教案湘教版篇十一

人教版义务教育课程实验教科书数学四年级下册p82页。

教学目标。

1、让学生通过动手实践、自主探索、合作交流发现三角形任意两边之和大于第三边。

2、能判断给定长度的三条线段是否围成三角形,能运用三角形任意两边之和大于第三边这一知识解决生活中的简单的实际问题,感受到生活中处处有数学。

3、通过学习发展学生的空间观念,使学生体验成功的喜悦,激发学生学习数学的兴趣。

教具、学具准备。

多媒体课件,不同长度不同颜色的小棒若干根,实验表格。

教学过程。

一、创设情境,导入新课。

师:(出示课件)同学们看,图上这些地方你们都熟悉吗?

(我们的学校、鼓楼商场还有学校后门的建设银行。)。

师:老师从学校大门口到建行去取钱,有几条路可走?猜一猜我会走哪条路呢?为什么?

师:老师在银行取了钱后,现在要去鼓楼商场购物,又有几条路可走?我会走哪条路?

师:老师现在要回学校,我又有几条路可走?我又会选择哪条路呢?

师:同学们你们为什么认为在三角形的线路中走其中一条边的线路比走另外两条边组成的线路近呢?把你的想法在小组里交流一下。

(学生困惑,沉默不语。)。

师:今天我们就用数学的方法来研究一下,看看在三角形中,三边的关系是怎样的?

(板书课题:三角形的三边关系)。

二、设疑激趣,动手探究。

师:(设疑)用小棒代替线段。请看,老师这儿有红、蓝、黄色的小棒若干根,任意拿三种颜色的小棒能围成一个三色的三角形吗?(学生会出现能围成和不能围成两种情况。)。

师:有两种意见,到底谁的猜测是正确的呢?让我们动手操作后再谈自己的发现。

师:我请一位同学上来任意拿出不同颜色的三根小棒,看看能不能围成三角形?

(学生上台演示,其他同学看。)。

师:这位同学围成三角形了吗?(根据学生的情况将数据填在表格中)你们想不想试试?

师:请拿出老师为你们准备的小棒,要求用三种颜色的小棒围三角形。看看哪些长度的小棒能围成三角形,哪些长度的小棒不能围成三角形。

同桌分工合作,一个同学围三角形,然后读出小棒上标出的长度;另一个同学作记录。

(单位:厘米)。

能围成三角形的三根小棒(红、蓝、黄)的长度分别是:

不能围成三角形的三根小棒(红、蓝、黄)的长度分别是:

你的重大发现:

三、汇报交流,发现规律。

让每组同学汇报围成和围不成三角形的数据。

根据学生的情况,进行课件演示能围成和不能围成两种情况。(不能围成又有两种情况:两条边之和等于第三边的情况;两边之和小于第三边的情况)。

师:到底什么样长度的三根小棒可以围成三角形呢?

结论一:两边之和大于第三边。

师:同学们都同意这个结论吗?有不同意见吗?

师:看来同学们发现的这个结论不够全面。还能怎么修改一下呢?

进一步得出结论二:三角形任意两边之和大于第三边。

师:这个结论全面吗?是否适合任何一个三角形呢?请同学们任意画一个或摆一个三角形,量出三边的长度,验证一下。

师:同学们真了不起,通过大家的共同努力,发现了一个有关三角形的三边关系的重要结论,那就是:三角形中任意两边之和大于第三边。

四、学以致用,解决问题。

1、解释老师所行路线的原因。

2、判断。

五、全课小结。

初一数学教案湘教版篇十二

初一年级的学生,从思想还是行为上都已经开始走向成熟且有所叛逆的阶段,抓好这个年龄的工作,就必须要有很好的耐心和很正确的班主任工作计划。新的学期,我还将担任初一(5)班班主任,全班41人。我的班主任工作力求从小事入手,从细小处要成绩,从细微处教做人,我的初一班主任工作计划有以下几项:

一、在班级管理中,充分发挥班级干部的作用,用制度说话,为创造良好的学习环境而努力。

1、实行奖罚制度,加强纪律约束。

对迟到、上课纪律不好的学生,因其不能保证正常的上课秩序,实行义务打扫教室卫生,同时对月全勤,学期全勤同学予以奖励。

2、保证提供一个安静舒适的学习环境。

由班长到值周班干到普通学生,及时反馈班级纪律情况,保证自习课的正常进行。

3、保证提供一个清洁整齐的生活环境。

由值周班干,带领本组值日生,责任到人进行每天的值日工作,对不负责的值日生,罚重新值日。

二、学习生活中,保持昂扬向上的心态。

1、密切关注学生思想动向。

人有智力高潮低潮时,情绪也同样,所以要密切关注学生思想,对出现消极悲观的思想学生及时做工作,始终保持乐观进取的心态,对班级整体出现思想波动现象,要及时进行心理疏导,做好心理调整工作。

2、确立目标。

了解学生的阶段学习情况,同时让学生确立下次的目标,通过实现目标,完成目标情况与未完成情况比较,找差距、找原因,以取得进步。

三、注重养成教育,尽力帮助解决学生实际困难。

1、做到生活有节奏,有规律。

督促学生做好计划,合理安排学习时间,处理好闲暇时间,并且形成生活规律,跟上节奏,不要过快,也不要过慢,在一张一弛中调整状态,以最佳的身心投入学习生活。

2、加强家庭与学校的沟通,了解学生生活实际。

了解学生生活实际,学习环境好坏,有无生活困难,适时帮他们解除后顾之忧,全心投入学习生活当中。

初一数学教案湘教版篇十三

通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会 具体-抽象-具体的数学学习过程。

有序数对的概念及平面内确定点的方法

[引例1]小明买了一张8排6号的电影票,怎样才能既快又准地找到座位呢?

[引例2]规定竖为列,横为排,如果我的朋友在第3列,你能知道他(她)是谁吗?

如果说我的朋友在第3列,第2排,那么你知道他(她)是谁吗?

归纳8排6座、第3列,第2排共同点:用两个数表示位置。

约定:影院座位,排数在前,座数在后;教室座位列数在前,排数在后。则上述位置可简记为(8,6),(3,2)。

介绍:像(8,6)、(3,2)这种用括号括起来的一对数我们把它叫做数对。

可以发现,有顺序的两个数a与b组成的数对,如果约定了前面的数表示列数,后面的数表示排数,那么a与b组成的数对就表示一个确定的位置。

引入课题有序数对

由上述问题直接引出概念

有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。

请思考:我们为什么要学习有序数对,有序数对都有哪些用途?

[探究1]请学生结合实际的教室座位 若位置记法为(列数,排数)

(1)请问(5,4)和(4,5)表示的是哪个同学的座位?

(2)游戏:教师说出一组数对相应的学生立即站起来。

(3)思考:(3,4)和(4,3)指的是不是同一位置?

[讨论]利用有序数对,能够准确地表示一个位置,生活中利用有序数对表示位置的情况很常见,如人们常用经纬度来表示地球上的地点等。(展示课件)

小明是朝阳实验学校刚入学的初一新生,他为了尽快熟悉学校,请高年级同学为他画了学校的平面示意图。如果用(2,4)表示图上校门的位置,那么花坛图书馆、体育馆、教学楼的位置分别可以表示成什么?(课件展示地图)

解:花坛(4,6),图书馆(5,0),体育馆(9,6),教学楼(10,3)

知识点:有序数对

有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。

注意点:(a,b)与(b,a)表示的是两个不同的位置。

主要方法:利用有序数对可以确定平面内点的位置,如根据数对画图形。反之,也可点的位置转化为有序数对,如经纬网的使用。有序数对与点的位置实现了简单的数形结合。

小王初到某个公司,你有什么办法让他比较容易地找到图上的几处场所。

自由设计 二选一

1、 在方格纸上设计一个用有序数对描述的图形。

2、设计一个游戏,如解密游戏、迷宫游戏等。

七年级学生的好奇心较重,学习主动性不够,主要是靠自己的兴趣而学习。因此,我从学生的特点出发,明确了以学生为中心,利用适合学生年龄特点的方式来引导教学的各个环节;本节课采用多媒体辅助教学,一方面能生动清楚的反映图形,增加课堂的容量,同时有利于突出重点, 增强教学条理性,形象性,更好的提高课堂效率.

初一数学教案湘教版篇十四

3.使学生初步理解数形结合的思想方法.

重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.

难点:正确理解有理数与数轴上点的对应关系.

1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

2.用“射线”能不能表示有理数?为什么?

3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

待学生回答后,教师指出,这就是我们本节课所要学习的内容――数轴.

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

提问:我们能不能用这条直线表示任何有理数?(可列举几个数)

在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.

通过上述提问,向学生指出:数轴的三要素――原点、正方向和单位长度,缺一不可.

例1画一个数轴,并在数轴上画出表示下列各数的点:

例2指出数轴上a,b,c,d,e各点分别表示什么数.

课堂练习

示出来.

2.说出下面数轴上a,b,c,d,o,m各点表示什么数?

1.在下面数轴上:

(1)分别指出表示-2,3,-4,0,1各数的点.

(2)a,h,d,e,o各点分别表示什么数?

2.在下面数轴上,a,b,c,d各点分别表示什么数?

3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:

(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

初一数学教案湘教版篇十五

借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。

重点、难点。

1.重点:列一元一次方程解决有关行程问题。

2.难点:间接设未知数。

1.列一元一次方程解应用题的一般步骤和方法是什么?

2.行程问题中的基本数量关系是什么?

路程=速度×时间速度=路程/时间。

画“线段图”分析,若直接设元,设小张家到火车站的路程为x千米。

1.坐公共汽车行了多少路程?乘的士行了多少路程?

2.乘公共汽车用了多少时间,乘出租车用了多少时间?

3.如果都乘公共汽车到火车站要多少时间?

4,等量关系是什么?

如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。

可设公共汽车从小张家到火车站要x小时。

设未知数的方法不同,所列方程的.复杂程度一般也不同,因此在设未知数时要有所选择。

教科书第17页练习1、2。

有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。

教科书习题6.3.2,第1至5题。

初一数学教案湘教版篇十六

教学目标:了解总体、个体、样本及样本容的概念以及抽样调查的意义,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析。

教学重点:对概念的理解及对数据收集整理。

教学难点:总体概念的理解和随机抽样的合理性。

教学过程:

一、情景创设,引入新课。

二、新课。

1.抽样调查的意义。

在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查。

抽样调查:抽取一部分对象进行调查的方法,叫抽样调查。

2.总体、个体、样本、样本容量的意义。

总体:所要考察对象的全体。

个体:总体的每一个考察对象叫个体。

样本:抽取的部分个体叫做一个样本。

样本容量:样本中个体的数目。

3.抽样的注意事项。

下面是某同学抽取样本数量为100的调查节目统计表:

表中的数据信息也可以用条形统计图或扇形统计图来描述。

【本文地址:http://www.xuefen.com.cn/zuowen/11201741.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档