圆柱的体积教学设计反思(通用17篇)

格式:DOC 上传日期:2023-11-12 12:17:23
圆柱的体积教学设计反思(通用17篇)
时间:2023-11-12 12:17:23     小编:琴心月

幸福是自己给的,我们应该学会珍惜当下的每一天。写总结时要注意审查和修改,确保语言和内容的准确性和连贯性。大家一起来看看以下这些总结范文,相信会有一些收获。

圆柱的体积教学设计反思篇一

年级组集体备课时会叹气。

在走廊里碰头时会感慨。

叹气、感慨地主要原因就是:近期作业的错误率很高(特别是学困生)。

这使我不免停下“匆匆的步伐”凝望着这些作业叉叉多的孩子。

什么地方出问题了?

一轮本子改下来错误有以下几类。

1、优等生:列出一个长长的算式,直接得出错误的结果(看不出是哪一步出错,反正计算错)。

4、不知灵活变通,一般来讲3.14最好是最后再乘,这样可以降低计算的复杂程度,减轻计算的强度;但部分学困生勇气可嘉,不管那一套,列式中3.14在前面就先算;放在后头就最后算,老实得可爱;当你在讲计算技巧的时候可爱的孩子们还在埋头苦算,结果错误百出。

1、学优生:提出要求:不能一步得出结果,要脱式:关注做作业、打草稿的态度、习惯,养成草稿本清晰、数字清楚,可以避免匆忙之中抄错数字导致整题出错。

2、中等生、学困生:

(1)重视公式的熟练程度:通过演示、推导、同桌互说、单独抽问、上黑板默写等方法帮助夯实基础。

(3)重点强记:3.14*1=…………………3.14*9=常用计算结果,达到熟练程度,提高练习时的计算速度和正确率,也可以用于检验计算过程中的结果正确与否。

(4)抓听讲习惯:要求要严格,教师针对问题进行分析、讲评的时候,应要求所有学生抬头关注,集中精力听讲(往往这样的时候学困生是不睬你的,要适当的喊他起来站个1分多钟,点一点他。),有了这个保证,讲评的效果就有了,出错的几率就就会降低了。再结合以上措施,效果就会更好。

有了措施,就需要有行动——老师的行动、学生的行动都要跟上,希望一段日子后会有好效果。

也欢迎大家说说自己的好的做法,共同提高第二单元的质量。

圆柱的体积教学设计反思篇二

2、提问:“能用一句话说说什么是圆柱的体积吗?”

(学生互相讨论后汇报,教师设疑)。

二、自主探究、

1、比较大小、探究圆柱的体积与哪些要素有关。

(1)先出示了两个大小不等的圆柱体让学生判断哪个体积大?

(2)提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

(3)让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)。

(4)学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。

2、大胆猜想,感知体积公式,确定探究目标。

(1)再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

(2)引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

(3)让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

(4)学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

(5)让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)。

4、确定方法,探究实验,验证体积公式。

(1)首先要求学生利用实验工具,自主商讨确定研究方法。

(2)学生通过讨论交流确定了两种验证方案。

方案一:将圆柱c放入水中,验证圆柱c的体积。

方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。

(3)学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。

(5)学生汇报:实验的结果与猜想的结果基本相同。

(6)教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。

(7)小结:

要想求出一个圆柱的体积,需要知道什么条件?

(8)学生自学第8页例4上面的一段话:用字母表示公式。

学生反馈自学情况:

v=sh。

三、巩固发展。

1、课件出示例4,学生独立完成。

指名说说这样列式的依据是什么。

2、巩固反馈。

3、完成第9页的“试一试”和练一练”中的两道题。

(“练一练”只列式,不计算)。

集体订正,说一说圆柱体的体积还可以怎样算?

5、拓展练习。

(1)一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)。

四、全课小结:

谈谈这节课你有哪些收获。

圆柱的体积教学设计反思篇三

生:就是求这个茶叶盒的容积。

师:如果茶叶盒的厚度不计呢?生:那只要求这个茶叶盒的体积就可以了。

师:怎样求这个圆柱形茶叶盒的体积呢?如果我们会求圆柱的体积这个问题是不是就迎刃而解了?这节课我们就来探索如何计算圆柱的体积。(板书课题)。

二、探索新知。

1、大胆猜测一下:如何计算圆柱的体积?

师:你能说一说你为什么这样想吗?

生:因为长方体和正方体的体积都用底面积乘高来计算。

师:为什么你会想到联系正方体和长方体的体积公式呢?

生:因为它们都是直柱体。

2、师:说得好,那么究竟圆柱的体积是不是用底面积乘高来计算呢?下面我们就来验证我们的猜想。请大家先独立思考验证方法,有了想法后在小组内交流。

3、学生小组活动。

4、全班反馈:你们的猜想得到验证了吗?你们是如何验证的?谁愿意上前面来为大家演示?师(出示圆柱体教具)。

生:将圆柱体先切成若干块,然后再重新拼成长方体。

师:怎样切,怎样拼?

生:沿底面直径切开,然后再拼起来。

生:(学生多人发表意见)…………。

生:沿圆柱的底面直径切开,使切面与底面垂直。这样切分成若干个底面是扇形的立体图形,再将这些切分下来的每一块重新拼在一起,就可以拼成一个近似长方体的立体图形。(学生在说的同时用教具将切、拼的过程演示给全班同学看)。

生:分的份数越多,拼成的形体越接近于长方体。

师:如果我们分成成百上千份,甚至更多,再拼起来,你想象一下它的形状会怎么样?

生:就是长方体。

师:这个圆柱体的体积和拼成的长方体的体积有什么关系?

生:相等。

师:(再用教具演示切、拼的过程,让学生注意观察)你还发现了什么?

生:圆柱的底面积等于拼成的长方体的底面积。

生:圆柱的高等于拼成的长方体的高。

(多媒体演示)将圆柱切拼成一个长方体,突出强调圆柱的底面积与长方体底面积的关系,圆柱的高与长方体高的关系以及圆柱体体积与长方体体积的关系。引导学生口叙圆柱转化成长方体,以及其底面积、高和体积的关系。

师:谁来完整地叙述一下刚才多媒体演示的过程?

生:将圆柱体切拼成一个长方体,这个长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高,长方体的体积等于圆柱的体积。因为长方体的体积等于底面积乘高,所以圆柱的体积也等于底面积乘高。

(学生分组,相互口述以上转化及圆柱体积计算公式得出的过程)。

(学生分组口述以后,再请学生说一说圆柱体积计算公式的推导过程)。

教师板书:v=s底×h=s底h。

5、理解公式,解决开课问题。

手指v=s底×h=s底h,要想求出体积,必须知道哪两个量?

生:底面积和体积。

师:现在你能帮小英算出茶叶的体积了吧。

出示习题。

三、小结与质疑。

解决了上面两个小问题,你想说什么?

生:无论怎样,都要先求出底面积。师:对于圆柱体的体积计算,同学们还有什么问题吗?生:没有。

师:完全正确,那我们现在就来计算圆柱的体积。

四、巩固练习。

让学生先自己独立地做,一人板算,然后订正。

师:同学们的解答非常好,正确率非常高,希望在以下的练习中再接再厉。

(二)、判断,错的请改正过来。

1、一个圆柱体铁罐,底面直径是2米,高3米,求它的体积,列式为:3.14×2×3。

2、圆柱的底面周长扩大2倍,高不变,圆柱的体积扩大4倍。

3、圆柱的底面直径是4dm,正方体的棱长也是4dm,它们的高相等,则圆柱的体积大。

学生独立判断,反馈时手势判断,并说明理由和图和改正。

(三)、灵活应用。

学生独立做题,反馈:你怎么想到底面积如何求?

订正,针对学生板演的错误(如应先换算单位再算,而学生却忽略了)提示学生注意审题等。

生:根据体积公式推导出来的。

学生独立做题,反馈:这道题会用到哪个公式?体积怎么得来的?

生:用的是推导公式,高等于体积除以底面积,体积和圆柱形柱子的体积是一样的。

(四)、思考题。

一个圆柱形谷堆高1.2米,占地15平方米,每立方米稻谷约重600千克,

把这些稻谷装进粮仓里,正好占这个粮仓的3/5,若将粮仓装满,则能够。

存放稻谷约多少千克?

五、全课总结。

师:这节课我们学了什么内容?你有什么收获?

生:这节课我们学习了圆柱的体积,知道了圆柱的体积计算方法,…………。

师:同学们总结得很好。这节课就上到这。

圆柱的体积教学设计反思篇四

在教学圆柱的体积时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。通过这节课的教学,我觉得成功之处有以下几个方面:

圆柱的体积的导入,在回忆了长方体、正方体体积计算方法,并强调长方体、正方体的体积都可以用底面积乘高,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想:“圆柱体是否可以转化成我们学过的图形呢?”激发学生好奇心,独立思考问题,探索问题的愿望。这样联系旧知,导入新知,思维过度自然,易接受新知。

学生在探究新知时,教师要给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。教学“圆柱的体积”时,学生亲身参与操作,先用小刀把一根火腿肠切成一个圆柱体把圆柱的底面分成若干份(例如,分成12等份),然后把圆柱切开,再拼起来,()圆柱体就转化成一个近似的长方体。找一找:这个长方体的长相当于圆柱的什么,宽是圆柱的什么,高是圆柱的什么。圆柱的体积就是长方体的体积,从而推导出圆柱体积的计算公式。

为了直观、形象,让学生观看课件:圆转化成近似长方形的过程,使学生很容易猜想出圆柱体也可以转化成近似的长方体来得出体积公式。在推导圆柱体积公式的过程中,要求学生想象:“如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?”学生虽然能说出“拼成的物体越来越接近长方体。”但是,到底拼成的图形怎样更接近长方体?演示动画后,学生不仅对这个切拼过程一目了然,同时又加深理解了圆柱体转化成近似长方体的转化方法。

为了培养学生解题的灵活性,进行分层练习,拓展知识,发散思维。如:已知圆柱底面积和高,怎样求圆柱体积;已知圆柱底面半径和高,怎样求圆柱体积;已知圆柱底面直径和高,怎样求圆柱体积;已知圆柱底面周长和高,怎样求圆柱体积;已知圆柱侧面积和高,怎样求圆柱体积;已知圆柱底面积和体积,怎样求高;已知圆柱体积和高,怎样求底面积等。

圆柱的体积教学设计反思篇五

我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。这样学生亲身参与操作,有了空间感觉的体验,也有了充分的思考空间。这样设计我觉得能突破难点,课堂效果很好。

在课的设计上以学生为主、发挥学生的主体作用,要充分展示学生的思维过程,在学生动手实践、交流讨论和思考的时间上教师应合理把握。

圆柱的体积教学设计反思篇六

在进行圆柱的体积的导入时,课本上是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,那么再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜,《圆柱体积》教学反思。

猜想计算方法固然有好处,但要让学生马上做实验,理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,我认为,不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。

二、新课时,要实现人人参与,主动学习。

根据课标要求:学生进行数学探究时,教师应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。教学“圆柱的体积”时,示范演示推导过程:把圆柱的底面分成若干份(例如,分成16等份,还可以再多一些),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生如果没有亲身参与操作,就缺乏情感空间感觉的体验,而且这部分又是小学阶段立体图形的教学难点,学生得不到充分的思考空间,也不利于教师营造思考的环境,不便于学生思考如何利用已知图形体积和教学思想去解决这一问题。学生缺乏行为、认知的投入和积极的情感投入,所以,课堂效果差就可想而知了。

三、练习时,要形式多样,层层递进。

例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,教师在设计练习时要多动脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。在巩固练习中,只要从这五种类型去考虑,做到面面俱到,逐层深入,由易到难,学生才能真正掌握好计算圆柱体积的方法。练习方式可以是填空、选择、判断、看图计算、应用题等。达到掌握。

圆柱的体积教学设计反思篇七

2、提问:“能用一句话说说什么是圆柱的体积吗?”

(学生互相讨论后汇报,教师设疑)。

1、比较大小、探究圆柱的体积与哪些要素有关。

(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?

(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)。

(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。

2、大胆猜想,感知体积公式,确定探究目标。

(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

(5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)。

4、确定方法,探究实验,验证体积公式。

(1)、首先要求学生利用实验工具,自主商讨确定研究方法。

(2)、学生通过讨论交流确定了两种验证方案。

方案一:将圆柱c放入水中,验证圆柱c的体积。

方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。

(3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。

(5)、学生汇报:实验的结果与猜想的结果基本相同。

(6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。

(7)、小结:

要想求出一个圆柱的体积,需要知道什么条件?

(8)、学生自学第8页例4上面的一段话:用字母表示公式。

学生反馈自学情况:

v=sh。

1、课件出示例4,学生独立完成。

指名说说这样列式的依据是什么。

2、巩固反馈。

3、完成第9页的“试一试”和练一练”中的两道题。

(“练一练”只列式,不计算)。

集体订正,说一说圆柱体的体积还可以怎样算?

5、拓展练习。

(1)、一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)。

谈谈这节课你有哪些收获。

教学内容:人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积。

教学目标:

1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:掌握和运用圆柱体积计算公式。

教学难点:圆柱体积计算公式的推导过程。

圆柱的体积教学设计反思篇八

冀教版《数学》六年级下册第29—31页。

1.经历认识圆柱体积,探索圆柱体积计算公式及简单应用的过程。

2.探索并掌握圆柱体积公式,能计算圆柱的体积。

3.在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学结论的确定性。

教学重点:探索并掌握圆柱体积公式,能计算圆柱的体积。

教学难点:探索并掌握圆柱体积公式。

教具准备:两个不易直观比较体积大小的圆柱桶,探索体积的课件。

执教者:张聪棉。

教学时数:一课时。

一、情境导入。

出示准备好的圆柱筒,同学们这两个物体,哪个大一些,

谁大就是指它的体积大,今天我们就学习--圆柱体的体积。

师:看到课题你能想到哪些有关的数学知识?或想知道什么数学知识?

体积的单位有立方米,立方分米,立方厘米。相邻的单位之间的进率是1000。

二、板书课题,出示学习目标。

(一)圆柱的体积公式是怎样推导出来的,

三、出示自学指导。

(二)观察拼出的近似长方体和圆柱,你发现它们有什么关系?

四、学生自学。

学生看书自学,教师巡视。

五、学生试做。

学生试做。

1.底面积是25平方厘米,高4分米。

2.底面半径2分米,高10分米。

3.底面直径和高都是20米。

判断对错。

1.一个圆柱形水桶,它的容积也就等于它的表面积。()。

2.一个长方体与一个圆柱,底面积相等,高相等,那么体积也相等。()。

3.底面积不相等的两个圆柱的体积一定不相等。()。

5.计算一根圆柱形钢材有多少立方分米,是钢材的表面积。()。

填空:

1.把圆柱的底面平均分成许多相等的扇形,然后把圆柱切开,可以拼成一个近似的(。

)。它的底面积等于圆柱的(),它的高就是圆柱的()。

2.圆柱体积的计算公式是(),用字母表示是()。

3.一个圆柱底面积是25cm2,高是4cm,体积是()cm3。

4.一个圆柱底面半径是2cm,高是10cm,体积是()cm3。

六、议一议。

(1)把圆柱体平均分成若干份,可以拼成一个()图形?这两个图形的()相等。

师:做完的同学看黑板上同学的做法,是否正确,如果有不同答案,可以上前面来改正。

评议黑板上的数学题。

小结:这节课你学会了哪些知识?

七、小测试。

今天同学们的收获一定不少,现在我们做个当堂测验,只写答案不抄题,看谁又快又对(见测验题)。

一、填空(每题10分)。

1.把圆柱的底面分成许多相等的扇形,然后把圆柱切开,可以拼成一个近似的()。这个长方体的底面积等于圆柱的(),高等于圆柱的()。因为长方体的体积等于()乘(),所以圆柱的体积等于()乘()。

2.一个圆柱的底面积是80平方厘米,高是5厘米,体积是()平方厘米。

3.一个圆柱的体积是21平方厘米,底面积是7平方厘米,高是()厘米。

4.一个圆柱的底面积是25平方厘米,高是0.4分米,体积是()平方厘米。

二、判断(每题5分)。

1.把一个圆柱截成两个小圆柱,它的表面积和体积都增加了。()。

2.如果两个圆柱的体积相等,那么他们的高也相等。()。

3.一个圆柱的底面半径扩大2倍,高不变,它的体积扩大2倍。()。

1.底面积10平方厘米,高15厘米。

2.底面直径和高都是20厘米。

3.底面周长62.8厘米,高10厘米。

四、一根长50分米的长方体钢材,底面是一个边长10分米的正方形。如果把它锻造成底面面积是1000平方分米的圆柱形钢材,这根圆柱钢材的高是多少分米?(15分)。

本节的教学重难点是:

1.探索并掌握圆柱体积公式,能计算圆柱的体积。

2.在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学结论的确定性。

教学方法:我利用课件演示和实物演示来解决。让学生学会转化的数学思想。

成功之处:1.利用迁移规律引入新课,为学生创设良好的学习情境;。

2.遵循学生的认知规律,引导学生观察、思考、说理,调动多种感观参与学习;。

3.正确处理"两主"关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好。达到预期效果.

不足之处:1.个别学生还是对公式不会灵活应用。

2.练习题有些多,应选择一些有代表性的题,这样小测验就能有充足的时间了。

3.关注学生的有些少,尤其是应关注做错的学生,应知道为什么错,及时在课堂评价出结果会更好。

4.老师讲得多,应放手让学生自己观察自己处理自己总结,会更好。

圆柱的体积教学设计反思篇九

教学过程:。

一、情境激趣 导入新课。

2、提问:“能用一句话说说什么是圆柱的体积吗?”(板书课题)。

二、自主探究,学习新知。

(一)设疑。

1、从刚才的实验中你有办法得到这个圆柱学具的体积吗?

2、再出示一个用橡皮泥捏成的圆柱体模型,你又能用什么好办法求出它的体积?

3、如果要求大厅内圆柱的体积,或压路机前轮的体积,还能用刚才的方法吗?(生摇头)。

(二)猜想。

1、猜想一下圆柱的体积大小可能与什么有关?理由是什么?

2、大家再来大胆猜测一个,圆柱的体积公式可能是什么?说说你的理由?

(三)验证。

1、为了证实刚才的猜想,我们可以通过实验来验证。怎样进行这个实验呢?结合我们以往学习几何图形的经验,说说自己的想法。(用转化的方法,根据学生叙述课件演示圆的面积公式推导过程)。

2、圆柱能转化成我们学过的什么图形呢?它又是怎么转化成这种图形的?(小组讨论后汇报交流)。

3、指名两位学生上台用圆柱体积教具进行操作,把圆柱体转化为近似的长方体。

4、根据学生操作,师再次课件演示圆柱转化成长方体的过程。并引导学生分析当分的份数越多时,拼成的图形越接近长方体。

5、通过上面的观察小组讨论:

(1)圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?

(2)长方体的底面积与原来圆柱体的哪部分有关系?有什么关系?

(3)长方体的高与原来圆柱体的哪部分有关系?有什么关系?

(生汇报交流,师根据学生讲述适时板书。)。

小结:把圆柱体转化成长方体后,形状变了,体积不变,长方体的底面积等于圆柱的底面积,高等于圆柱的高,因为长方体的体积等于底面积×高,所以圆柱体积也等于底面积×高,用字母表示是v=sh。

6、同桌相互说说圆柱体积的推导过程。

7、完成“做一做”:一根圆形木料,底面积为75cm2,长是90cm。它的体积是多少?(生练习展示并评价)。

8、求圆柱体积要具备什么条件?

9、思考:如果只知道圆柱的底面半径和高,你有办法求出圆柱的体积吗?如果是底面直径和高,或是底面周长和高呢?(学生讨论交流)。

小结:可以根据已知条件先求出圆柱的底面积,再求圆柱的体积。

10、出示课前的圆柱,说一说现在你可以用什么办法求出这个圆柱的体积?(测不同数据计算)。

11、练一练:列式计算求下列各圆柱体的体积。

(1)底面半径2cm,高5cm。

(2)底面直径6dm,高1m。

(3)底面周长6.28m,高4m。

三、练习巩固 拓展提升。

1、判断正误:

(1)等底等高的圆柱体和长方体体积相等。………………( )。

(2)一个圆柱的底面积是10cm2,高是5m,它的体积是10×5=50cm3。.....( )。

(3)圆柱的底面积越大,它的体积就越大。............(  )。

(4)一个圆柱的体积是80cm3,底面积是20cm2,它的高是4cm。......(  )。

四、全课总结 自我评价。

通过这节课的学习你有什么感受和收获?

教学目标:

1.结合实际让学生探索并掌握圆柱体积的计算方法,能正确运用公式解决简单的实际问题。

2.让学生经历观察、猜想、验证等数学活动过程,培养学生空间想象能力和探究推理能力,渗透“转化”、“极限”等数学思想,体验数学研究的方法。

3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,获得成功的喜悦。

教学重点:理解并掌握圆柱体积计算公式,并能应用公式计算圆柱的体积。

教学准点:掌握圆柱体积公式的推导过程。

教学准备:圆柱的体积演示教具、多媒体课件、圆柱实物2个(一个为橡皮泥)、水槽、水。

圆柱的体积教学设计反思篇十

1、知识与技能:理解教材中形体转化的过程,掌握圆柱体积的计算公式,会用公式计算圆柱的体积,解决有关简单的实际问题。拓展教材内容,初步了解直柱体的相关知识。

2、过程与方法:利用教材空间,为学生搭建思维平台。让学生经历观察、想象、思考、交流等教学活动过程,理解圆柱体积计算公式的推导过程,提高学生思维能力,同时体验转化和极限的思想。

3、情感与态度:挖掘教材内涵,把图形的变换过程,转变为学生思维能力的培养、提高的过程,并进一步发展其空间观念,领悟学习数学的方法,激发学生学习兴趣,渗透事物是普遍联系的唯物辩证思想。

理解圆柱体积计算公式的推导过程,运用圆柱体积计算公式准确解决实际问题。

正确理解圆柱体积计算公式的推导过程。

一、情境导入:

老师手拿一个圆柱形橡皮泥(大小适宜)。

1、师:通过前面的学习,关于圆柱你已经知道什么?还想了解它的哪些知识?

生1:(已学知识)。

生2:圆柱是一种立体图形,那么它的体积怎么计算?

2、师:联系已经掌握的有关立体图形的知识,你能想办法求出这个圆柱体的体积吗?

生2:将这个圆柱放入一个盛有水的长方体容器中,量出上升了的水的长、宽、高,就可以求出它的体积。

生3:圆柱体在水中必须完全浸没,而且水还不能溢出。

【学情分析:学生在五年级学习长方体、正方体有关知识的基础上,很容易想到运用“排水法”来解决问题,所以这一环节也充分给予学生展示自我的机会,培养思维中的自信心。】教师在学生中找出小助手,帮助测量有关数据,全体同学计算水的体积,并作记载。

师:运用转化思想,联系已学知识,解决新生问题,同学们真了不起!

4、师:如果要求压路机前轮的体积或是求楼房中柱子的体积,还能不能用这种方法计算吗?(不能)那么求圆柱的体积时是否也有一个简单、易算的体积计算公式呢?今天我们就一起来研究圆柱体积的计算方法。

二、新旧过度:

教师引导学生观察圆柱形实物。

1、

师:发挥你的想象,哪些平面图形可以演变为圆柱体?生1:以长方形的一条长为轴,把长方形旋转一周,就形成一个圆柱体。

(教师演示:大小不同的长方形旋转形成圆柱体。)。

生2:把一个圆形上下平移,移动过的轨迹就是圆柱体。(课件演示:大小不同的圆形上下垂直平移不同高度形成圆柱体。)。

师:通过刚才的演示过程你觉得圆柱的体积大小与什么有关?(圆柱的底面积和高)。

学生口述,同时课件演示圆形转化为近似长方形的过程。

三、自主探究。

1、学生手拿圆柱实物,仔细观察,独立思考。

2、组织学生小组讨论,把个人的想法在小组中交流,形成统一意见。

强调:在讨论过程中,教师参与其中,倾听学生想法,调整汇报次序,同时提醒学生观察手中圆柱实物。

3、汇报交流,统一意见。

生1:把一个圆剪拼成一个近似的长方形,然后把圆形和近似长方形同时向上平移相同的高度,这时他们的轨迹一个是圆柱体,一个是近似长方体,而且它们的体积相等。

(师:一个圆柱和一个长方体只要底面积和高分别相等,它们的体积就相等吗?一会儿我们来解决这个问题。)。

生2:把圆柱的底面分成许多相等的扇形,再沿这些分割线把圆柱纵切开来,从而剪拼成一个近似的长方体。

(师:为什么是近似的长方体?———渗透数学极限思想)。

4、课件演示:

师:仔细观察下面这组课件,和你想象的是否一样?

演示两次,第一次把圆柱平均分成16份,再剪拼成一个近似的长方形;第二次把圆柱平均分成32份,再剪拼成一个近似的长方形。

生:长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱的底面积,而且它们的高相等。

因为:长方体的体积=底面积×高。

四、实践应用:

强调单位:90×20=1800(立方分米)。

2、再次拿出圆柱体橡皮泥,问:如果要用圆柱体积计算公式计算它的体积,你需要测量哪些数据?(底面直径、高)。

生1:可能测量有误差,并且还要保留。

生2:测量水的长、宽时,容器的厚度忽略不计,也能产生误差。教师说明:每一个科学结论都必须经过反复的实验、计算,才能得到正确的结论,我们在学习上就要有这种不怕吃苦、勇于探索的精神。

(教师直接给出玻璃杯的底面直径和高)。

六、全课小结:

师:通过本节课的学习,你有什么收获?

启发。

一、充实教材,为提高学生思维能力搭建平台。

课堂教学中让学生在教师的启发指导下,独立思考、积极主动的去探究知识是怎样形成的,才能真正使学生成为学习的主体。在教材中已经提供了图形转化的过程,那么在没有学具让学生进行动手操作、亲自感悟的情况下,怎样让学生的思维真正参与到知识的形成过程呢?作为教师,必须充实教材。课堂中让学生动手测量计算所必需的数据,自己感悟学习圆柱体积计算公式的必要性,合作探究圆柱体的转化方法和过程。所有这些环节的设计,都在潜移默化中引导学生主动思考,主动参与,在思考与参与中提高了学生的思维能力。

二、借助教材,为提高学生思维能力寻找支点。

数学知识具有一定的结构,知识间存在密切的联系,教学时要找出知识间的内在联系,帮助学生建立一个较完整的知识系统。教材中设计了引问“圆可以转化成长方形计算面积,圆柱可以转化成长方形计算体积吗?”但我认为“面体过渡”在几何领域中本身就是一个难点,而“面面互化”迁移到“体体互化”,就难上加难,所以设计中用较长时间沟通新旧知识间的联系:排水法的应用,平面图形演变为立体图形的过程,圆面积的推导过程。在复习当中,学生的综合运用能力得到提高,更重要的是为下一步学生的思维活动确立支点,进而提高学生的思维能力。

思考。

一、演示、观察能否代替操作?

教材中提供了教具演示,但在本节教学前,始终没有找到学生使用的操作学具,而自己也尝试用土豆、橡皮泥等制作学具,都因为难度太大(粘接处)而告失败,在无奈之余,设计了“独立思考———小组探究———课件演示———教具操作”四个环节来突破本节难点。就学生理解、接受方面来说效果不错。但没有让学生亲自操作,总感觉影响学生思维发展。类似教学如:圆锥高的认识。

二、研究中的失误会不会造成学生认知的“失误”?

课堂中为求真实,进行了两次实际测量(第一次测长方体中水的长宽高;第二次测圆柱形橡皮泥的底面直径和高)。两次计算结果的对比,使学生思维与课堂结构都体现完整性。但由于种种误差,计算结果很可能不会相等,这就可能会让学生对结论产生怀疑(尽管教师已经说明),那么是否有必要让学生经历一个“失误”的过程呢?类似教学如:圆周率的计算。

圆柱的体积教学设计反思篇十一

学情分析:

根据六年级的教学情况来看,班中绝大部分同学都能跟上现有的进度,通过本节课教学要使灵活运用圆柱体积的计算方法解决生活中一些简单的问题,通过想象、操作等活动,理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

教学目标:

1.通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。

2.通过圆柱体体积公式的推导,培养学生的分析推理能力。

3.理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

教学重点:

教学难点:

教学用具:

教学过程:

一、复习引新。

1.求下面各圆的面积(回答)。

(1)r=1厘米;(2)d=4分米;(3)c=6.28米。

要求说出解题思路。

2.提问:什么叫体积?常用的体积单位有哪些?

3.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)。

二、探索新知。

1、根据学过的体积概念,说说什么是圆柱的体积。(板书课题)。

2、公式推导。(有条件的可分小组进行)。

(1)请同学指出圆柱体的底面积和高。

(2)回顾圆面积公式的推导。(切拼转化)。

3、回顾了圆的面积公式推导,你有什么启发?

生答:把圆柱转化成长方体计算体积。

4、动手操作。

请2位同学上台用教具来演示,边演示边讲解。

把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。

多请几组同学上台讲解,完善语言。

提问:为什么用“近似”这个词?

5、教师演示。

把圆柱拼成了一个近似的长方体。

6、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?

生答:拼成的物体越来越接近长方体。

追问:为什么?

生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

7、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。

师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?

出示讨论题。

(1)、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?

(2)、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?

(3)、拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?

板书:

长方体体积底面积高。

8、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?

生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。

9、用字母如何表示。

v=sh。

10、小结。

圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?

11、教学算一算。

审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)。

12、教学“试一试”

小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道c呢?知道r、d、c,都要先求出底面积再求体积。

三、巩固练习。

课后“练一练”里的练习题。

四、课堂小结。

这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱转化长方体)得出了圆柱体的体积计算公式v=sh。

圆柱的体积教学设计反思篇十二

本节课是在学习了圆柱的体积公式后进行的解决问题。这要求学生对圆柱的体积公式掌握的比较扎实,并要求理论与实际生活相结合。让学生通过经历发现和提出问题、分析和解决问题的完整过程,掌握问题解决的策略。使学生在解决问题的过程中体会转化、推理和变中有不变的数学思想。

在教学中教学我采用操作和演示、讲解和尝试练习相结合的方法,是新课与练习有机地融为一体,做到讲与练相结合。整节课我采用启发式教学。从导入新授到独立解答问题,环节清晰,教学目的明确。通过提问引导学生自主研究问题找到重难点,突破重难点。通过2个瓶子的倒置,把不规则的物体转化成规则物体,再来求它们的体积。在进行转化时,让学生明白倒置前空气的体积在倒置后属于哪一部分。倒置前水的体积在倒置后属于哪一部分。不管在倒置前还是倒置后,什么不变,什么变了?要求瓶子的体积实际是求什么?在课堂中学生积极参与,积极思考,小组合作学习。在学习中学习探究氛围高,体现高年级学科特点,并且灵活运用生命化课堂的四自模式、新技术,运用熟练,课堂中使用恰当有效。但在教学时提出的问题应该更简洁明了。在课堂上如何更好地关注中等偏下的学生,我时常为此感到纠结。

刚刚尝试建构高效的课堂教学范式,难免有困惑和疑问,今后我还要一如继往地与集体备课成员沟通、交流,共同探讨教改新路,让课堂教学更高效、更优质。

圆柱的体积教学设计反思篇十三

2、提问:“能用一句话说说什么是圆柱的体积吗?”

(学生互相讨论后汇报,教师设疑)。

1、比较大小、探究圆柱的体积与哪些要素有关。

(1)先出示了两个大小不等的圆柱体让学生判断哪个体积大?

(2)提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

(3)让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)。

(4)学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。

2、大胆猜想,感知体积公式,确定探究目标。

(1)再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

(2)引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

(3)让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

(4)学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

(5)让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)。

4、确定方法,探究实验,验证体积公式。

(1)首先要求学生利用实验工具,自主商讨确定研究方法。

(2)学生通过讨论交流确定了两种验证方案。

方案一:将圆柱c放入水中,验证圆柱c的体积。

方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的.体积。

(3)学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。

(5)学生汇报:实验的结果与猜想的结果基本相同。

(6)教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。

(7)小结:

要想求出一个圆柱的体积,需要知道什么条件?

(8)学生自学第8页例4上面的一段话:用字母表示公式。

学生反馈自学情况:

v=sh。

1、课件出示例4,学生独立完成。

指名说说这样列式的依据是什么。

2、巩固反馈。

3、完成第9页的“试一试”和练一练”中的两道题。

(“练一练”只列式,不计算)。

集体订正,说一说圆柱体的体积还可以怎样算?

5、拓展练习。

(1)一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)。

谈谈这节课你有哪些收获。

圆柱的体积教学设计反思篇十四

1、运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,并理解其推导过程。

2、会用圆柱的体积计算公式计算圆柱形物体的体积或容积。

3、引导学生逐步学会转化的数学思想和数学方法,培养学生解决实际问题的能力。

4、借助远程教育的课件资源演示,培养学生抽象、概括的思维能力。

圆柱体体积计算公式的推导过程。

《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”即要求我们在教学中,要让学生通过自主的知识建构活动,学生的潜能得以开发,情感、态度、价值观得以培养,从而提高学生的数学素养。因此根据本节课内容的特点,这节课的教学将通过对圆柱体积知识的探究,重点培养学生探究数学知识的能力和方法。为了把“一切为了学生的发展”这一新的教学理念融入到了课堂教学之中。在课堂教学中将以学生的活动为主,让学生通过亲身体验、实际操作来找出数学知识之间的内在联系。在学生学习过程中,充分运用了远程教育资源中动画、声音、视频文件,并进行了有效地整合。本节课将使用以下策略:

1、利用迁移规律引入新课,借助远程资源为学生创设良好的学习情境。

2、以合作探究为主要的学习方式,充分发挥学生的自主性,体现学生的主体地位。

3、练习多样化,层次化。

4、引导学生把知识转化成相应的技能,从而提高灵活运用的能力,培养学生的综合素质。

一、回忆旧知,实现迁移。

1、学习圆的面积时,我们是怎样推导出圆的面积计算公式的?利用多媒体课件动态演示把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积计算公式的过程。

a.半径5厘米。

b.直径6分米。

二、指名说说自己想法。

教师引入:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。(板书课题:圆柱的体积)。

2、生讨论,交流。

三、验证。

教师演示:。

(2)将圆柱的`底面、长方体的底面闪烁后移出来。提问:你学过将圆变成长方形吗?

(3)再次出示圆柱形物体,动画演示圆柱拼成近似长方体。让学生取出圆柱体学具拼成近似长方体。

四、探索圆柱与所拼成的近似长方体之间的关系。

1、学生动手进行实验。请每个小组拿出学具,并研究转化后的长方体和原来圆柱体积、底面积、高之间的关系。

2、学生利用学具独立操作(教师巡视、指导操作有困难的学生),思考并讨论。

3、通过刚才的实验你发现了什么?

4、学生汇报交流。

五、分析关系,总结公式引导学生发现并说出:

圆柱体转化成长方体后,虽然形状变了,但是长方体的体积和原来圆柱的体积相等,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。总结公式。

长方体的体积=底面积×高。

v=sh。

六、拓展训练。

七、课堂总结。

长方体的体积=底面积×高。

v=sh。

[教学反思]。

1、这节课是通过观察、猜想、操作验证、巩固、应用这几个环节来完成的。学生在最佳的情景中通过实践、探索、发现,得到了“活”的知识,学到有价值的数学。

2、操作验证是本节课的关键,为体现活动教学中学生“主动探索”的特点,我从问题入手,组织学生围绕观察猜想后展开验证性的操作活动。学生以活动小组为单位,思维活跃,积极探索,学习能力、抽象概括能力和逻辑思维能力得到了提高。

3、充分利用媒体资源,化解难点,提高课堂效果;注重习题多样化、层次化,拓展学生思维。

圆柱的体积教学设计反思篇十五

圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。我认为,不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。

学生进行数学探究时,教师应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。教学“圆柱的体积”时,由于学校教学条件差,没有更多的学具提供给学生,只是由教师示范演示推导过程:把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生没有亲身参与操作,就缺乏情感空间感觉的体验,而且这部分又是小学阶段立体图形的教学难点,学生得不到充分的思考空间,也不利于教师营造思考的环境,不便于学生思考如何利用已知图形体积和教学思想去解决这一问题。学生缺乏行为、认知的投入和积极的情感投入,所以,课堂效果差就可想而知了。

例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,教师在设计练习时要多动脑,花心思。

圆柱的体积教学设计反思篇十六

本节课是学生在学习了长方体和立方体的基础上进行教学的,它是一种比较常见的立体图形,学生对圆柱都有初步的感性认识。本节重点是圆柱的特征和圆柱侧面积的计算。上课伊始,我先组织学生复习圆柱的特征、长方体和正方体体积以及圆的面积计算公式推导过程,由此引出圆柱的体积一课题。为了让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。

反思不足:1、练习有些少。在学生练习这个环节中,最能反映学生掌握情况。应该再从不同的角度设计多种练习题目来考察学生的知识掌握情况。2、本节课节奏较快,没有去检测一下学生每个环节掌握了没有。3、数学要应用于生活,应该多出些有关生活实际的练习题。

圆柱的体积教学设计反思篇十七

1、理解圆柱体积公式的推导过程。

2、能够初步地学会运用体积公式解决简单的实际问题。

3、进一步提高学生解决问题的能力。

1、理解圆柱体积公式的推导过程。

2、能够初步地学会运用体积公式解决简单的实际问题。

3、理解圆柱体积公式的推导过程。

圆柱切割组合模具、小黑板。

一、创设情境,生成问题。

1、什么是体积?(物体所占空间的大小叫做物体的体积。)。

2、长方体的体积该怎样计算?归纳到底面积乘高上来。

3、圆的面积怎样计算?

二、探索交流,解决问题。

(启发学生思考。)。

2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。

3、思考:

(1)圆柱切开后可以拼成一个什么形体?(长方体)。

(2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。

(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)。

小组讨论:怎样计算圆柱的体积?

学生汇报讨论结果。

长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。

师:圆柱的体积怎样计算?用字母公式,怎样表示?

板书:v=sh。

5、算一算:已知一根柱子的底面半径为米,高为5米。你能算出它的体积吗?

三、巩固应用练习。

四:课堂小结:

通过这节课你学会了哪些知识,有什么收获?

五:课后作业:

教材第9页,练一练第1、3、4、题。

【本文地址:http://www.xuefen.com.cn/zuowen/11200887.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档