2023年初一数学有理数的运算教案(精选17篇)

格式:DOC 上传日期:2023-11-12 01:49:11
2023年初一数学有理数的运算教案(精选17篇)
时间:2023-11-12 01:49:11     小编:LZ文人

教案是教学计划的具体实施方案,它包括教学目标、教学内容、教学方法、教学手段、教学评价等要素。优秀的教案应该具备明确的教学目标,适当的教学内容和方法,以及合理的教学评价方式。以下是一些教学研究团队对教案编写的规范和要求,供大家参考。

初一数学有理数的运算教案篇一

1.一个数,如果不是正数,必定就是负数。()。

2.正整数和负整数统称整数。()。

3.绝对值最小的有理数是0()。

4.-a是负数。()。

5.若两个数的绝对值相等,则这两个数也相等.()。

6.若两个数相等,则这两个数的绝对值也相等.()。

7.一个数的相反数是本身,则这个数一定是0。()。

8.一个数必小于它的绝对值。()。

二、填空。

1、如果盈利350元记作+350元,那么-80元表示__________________。

2、如果+7℃表示零上7℃,则零下5℃表示为;。

3、有理数中,最大的负整数是________,小于3的非负整数有____________________。

4、把下列各数填在相应的集合内,-23,0.5,-,28,0,4,,-5.2.

整数集合{……}正数集合{……}。

负分数集合{……}。

7,,-6,0,3.1415,-,-0.62,-11.

6、数轴上离表示-2的点的距离等于3个单位长度的点表示数是。

7、大于-2而小于3的.整数分别是___________________、

8、用“”连结下列各数:0,-3.4,,-3,0.5_____________________________。

9、-7的绝对值的相反数是________。-0.5的绝对值的相反数是________。

10、-(-2)的相反数是________。

11、-a的相反数是________.-a的相反数是-5,则a=。

12、在数轴上a点表示-,b点表示,则离原点较近的点是___点.

13、在数轴上距离原点为2.5的点所对应的数为_____,它们互为_____.

14、若|-x|=,则x的值是_______.如果|x-3|=0,那么x=________.

初一数学有理数的运算教案篇二

2.会用计算器进行较繁杂的有理数混合运算.

教学重点。

也就是说,在进行含有加、减、乘、除的混合运算时,应按照运算级别从高到低进行,因为乘方是比乘除高一级的运算,所以像这样的有理数的混合运算,有以下运算顺序:

先乘方,再乘除,最后加减.如果有括号,先进行括号内的运算.

你会根据有理数的运算顺序计算上面的算式吗?

初一数学有理数的运算教案篇三

1、熟练有理数的乘法运算并能用乘法运算律简化运算。

2、让学生通过观察、思考、探究、讨论,主动地进行学习。

3、培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程。

教学重点:正确运用运算律,使运算简化。

教学难点:运用运算律,使运算简化。

一、学前准备。

1、下面两组练习,请同学们选择一组计算。并比较它们的结果:

请以小组为单位,相互检查,看计算对了吗?

二、探究新知。

1、下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流。

2、怎么样,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?

3、归纳、总结。

乘法交换律:两个数相乘,交换因数的位置,积相等。

即:ab=ba。

乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

即:(ab)c=a(bc)。

乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

即:a(b+c)=ab+bc。

三、新知应用。

1、例题。

用两种方法计算(+-)12。

2、看谁算得快,算得准。

1)(-7)(-)2)915.

四、课堂小结。

怎么样,这节课有什么收获,还有那些问题没有解决?

乘法交换律:两个数相乘,交换因数的位置,积相等。

即:ab=ba。

乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

即:(ab)c=a(bc)。

乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

即:a(b+c)=ab+bc。

五、作业布置。

初一数学有理数的运算教案篇四

1、掌握有理数的基本概念,学会由数到形的转化,会求一个数的相反数与绝对值、倒数,会比较有理数的大小。

2、掌握科学记数法的概念及相互表示,掌握单位互化。

3、掌握幂的概念及表示。

[知识点归纳]。

知识点1:相反意义的量知识点2:正数和负数的概念,及有理数分类。

知识点3:数轴的概念知识点4:相反数知识点5:绝对值。

知识点6:倒数知识点7:乘方知识点8:多重符号的化简。

知识点9:科学记数法。

[典型例题]。

例2.把下列有理数按要求分类。

初一数学有理数的运算教案篇五

求数的平方根和立方根的运算是数学的基本运算之一,在根式运算、解方程及几何图形解法等问题中经常要用到。学习立方根的意义在于:(1)它有着广泛应用,因为空间形体都是三维的,关于有关体积的计算经常涉及开立方。(2)立方根是奇次方根的特例,就像平方根是偶次方的特例一样,立方根对进一步研究奇次方根的性质具有典型意义。

教学目标:1、能说出开立方、立方根的定义,记住正数、零、负数的立方根的不同结论;能用符号表示a的立方根,并指出被开方数、根指数,会正确读出符号,知道开立方与立方互为逆运算。2、能依据立方根的定义求完全立方数的立方根。教学重点是:立方根相关概念的理解和求法。在教学中突出立方根与平方根的对比,弄清两者的区别与联系,这样做既有利于巩固平方根的概念,又便于加深对立方根的理解。

在教学过程中,我注重体现教师的导向作用和学生的主体地位。本节是新课内容的学习。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境。

在课堂的引入上采用了一个求立方根的实际应用问题,已知体积,求正方体的棱长。由实际应用问题是学生易于接受。再对已学过的相似运算---平方根进行复习,为接下来与立方根进行比较打下基础。为培养学生自主学习的能力,我为他们布置了问题,让他们带着问题看书。自己找出立方根的基本概念。关于立方根的个数的讨论,是本节的一个难点。考虑到这个结论与平方根的相应结论不同,采用了先启发学生思考的办法,用“想一想”提出有关正数、0、负数立方根个数的思考题,接着安排一个例题,求一些具体数的立方根,在学生经过思考并有了一些感性认识之后,自己总结出结论。其后,引导学生自己总结平方根与立方根的区别,强调:用根号式子表示立方根时,根指数不能省略;以及立方根的性。考虑到如果教学计划提前完成,我在练习卷之外,还准备了一些易混淆的命题让学生判断、区分,巩固所学内容。

本节内容设计了两课时完成,在第二课时进一步深入学习立方根在解方程,以及与平方根部分的综合应用。

初一数学有理数的运算教案篇六

一、选择题(共10题)。

1.下列关于有理数的加法说法错误的是()。

a.同号两数相加,取相同的符号,并把绝对值相加。

b.异号两数相加,绝对值相等时和为0。

c.互为相反数的两数相加得0。

d.绝对值不等时,取绝对值较小的数的符号作为和的符号。

答案:d。

分析:考查有理数的的加法法则。

初一数学有理数的运算教案篇七

要想尽最大可能的发挥出课堂45分钟的效益,需要从许多方面去准备,去思考,比如对教学重点和难点的突破,对课堂的组织对突发事件的应对以及对学生实际情况的了解等等。要想上好一节课需要付出很多的精力。复习课并不是单纯的让学生去重复练习,更重要的是使学生在巩固基础的前提下,分析问题解决问题的能力得到提高。

初一数学有理数的运算教案篇八

像3,2,1。2这样大于0的数叫做正数,根据需要,也可以在正数前面加上“+”(正)号;像—3,—2,—2。5这样在正数前面加上“—”(负)号的数叫做负数;0既不是正数,也不是负数。

1、有理数的加法法则(有理数加法运算律):

(1)同号两数相加,取相同的符号,并把绝对值相加;

(3)一个数同0相加,仍得这个数。

2、方法与技巧:进行有理数的加法运算时,要先观察相加两数的符号,再确定和的符号,最后计算和的绝对值。

可以用一条直线上的点表示数,这条直线叫做数轴(numberaxis)。

原点(origin)、正方向(positivedirection)和单位长度(unitlength)称为数轴三要素,它们缺一不可。

数轴上的点与实数一一对应。

数轴上从左往右的点表示的数是从小往大的顺序,那么利用数轴可以比较数的大小。在数轴上表示的两个数右边的总比左边的大;正数都大于零;负数都小于零;正数大于一切负数。另外由于数轴是一条直线,是可以向两端无限延伸的,因此没有最小的负数,也没有最大的正数。

绝对值。

绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。

绝对值的几何定义:在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值。

绝对值求法:一个正数a的绝对值是它本身a;一个负数a的绝对值是它的相反数—a;零的绝对值是零。

绝对值表示法:a的绝对值用“|a|”表示。读作“a的绝对值。

初一数学有理数的运算教案篇九

1、明白生活中存在着无数表示相反意义的量,能举例说明;。

2、能体会引进负数的必要性和意义,建立正数和负数的数感。

通过列举现实世界中的“相反意义的量”的例子来引进正数和负数,要求学生理解正数和负数的意义,为以后通过实例引进有理数的大小比较、加法和乘法法则打基础。

对负数的意义的理解。

一、知识导向:

本节课是一个从小学过渡的知识点,主要是要抓紧在数范围上扩充,对引进“负数”这一概念的必要性及意义的理解。

二、新课拆析:

1、回顾小学中有关数的范围及数的分类,指出小学中的“数”是为了满足生产和生活的需要而产生发展起来的。

如:0,1,2,3。

2、能让学生举例出更多的有关生活中表示相反意义的量,能发现事物之间存在的'对立面。

如:汽车向东行驶3千米和向西行驶2千米。

温度是零上10°c和零下5°c;。

收入500元和支出237元;。

水位升高1.2米和下降0.7米;。

3、上面所列举的表示相反意义量,我们也许就会发现:如果只用原来所学过的数很难区分具有相反意义的量。

一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“—”号来表示。

概括:我们把这一种新数,叫做负数,如:-3,-45…。

过去学过的那些数(零除外)叫做正数,如:1,2.2…。

零既不是正数,也不是负数 。

三、阶梯训练: 。

p18练习:1,2,3,4。

四、知识小结:

从本节课所学的内容中,应能从数的角度来区分小学与初中的异同点,通过运用发现相反意义量,能理解引进“负数”的必要性及其意义。

五、作业巩固:

1、每个同学分别举出5个生活中表示相反意义量的的例子;并用正、负数来表示;。

2、分别举出几个正数与负数(最少6个)。

3、p20习题2.1:1题。

初一数学有理数的运算教案篇十

理解有理数的概念,掌握有理数的两种分类方法,能把给出的有理数按要求分类。

经历本节的学习,培养学生分类讨论的观点和正确进行分类的能力。

通过本课的学习,体验成功的喜悦,保持学好数学的信心。

掌握有理数的两种分类方法。

会把所给的各数填入它所属于的集合里。

问题引导法。

自主探究法。

在小学我们学习了整数、分数,上一节课我们又学习了正数、负数,谁能很快的做出下面的题目。

(2)将上面的数填入下面两个集合:整数集合{},分数集合{},填完了吗?

把整数和分数起个名字叫有理数。(点题并板书课题)。

学生自学课本,对照课本找自学提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。

附:自学提纲:

1.___________、____、_______统称为整数。

2._______和_________统称为分数。

3.__________统称为有理数。

4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整数:、分数:______;正整数:______、负整数:______、正分数:______、负分数:______.

1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;。

3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。

逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。

2.判断下列说法是否正确,并说明理由。

(1)有理数包括有整数和分数.

(2)0.3不是有理数.

3.所有的正整数组成正整集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):

正数集合:{…}负数集合:{…}。

正整数集合:{…}负分数集合:{…}。

4.下列说法正确的是()。

a.0是最小的正整数。

b.0是最小的有理数。

c.0既不是整数也不是分数。

d.0既不是正数也不是负数。

5、下列说法正确的有()。

(1)整数就是正整数和负整数。

(2)零是整数,但不是自然数。

(3)分数包括正分数和负分数。

(4)正数和负数统称为有理数。

通过本节课的学习,你有什么收获?

必做题:课本14页:1、9题。

初一数学有理数的运算教案篇十一

2.使学生能够熟练地按有理数运算顺序进行混合运算;

3.注意培养学生的运算能力.。

教学重点和难点。

重点:有理数的混合运算.。

难点:准确地掌握有理数的运算顺序和运算中的符号问题.。

课堂教学过程设计。

一、从学生原有认知结构提出问题。

1.计算(五分钟练习):

(17)(-2)4;(18)(-4)2;(19)-32;(20)-23;

(24)3.4×104÷(-5).。

加法交换律:a+b=b+a;

加法结合律:(a+b)+c=a+(b+c);

乘法交换律:ab=ba;

乘法结合律:(ab)c=a(bc);

乘法分配律:a(b+c)=ab+ac.

二、讲授新课。

1.在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行.。

审题:(1)运算顺序如何?

(2)符号如何?

初一数学有理数的运算教案篇十二

教学目标:。

情感态度与价值观:通过有理数的混合运算解决实际问题,培养学生浓厚的学习兴趣,体会有理数混合运算的意义和作用,感受数学在生活中的价值。

教学难点:用运算律进行简便计算。

教材分析:。

本节内容是本章重点之一,《标准》中强调:重视对数的意义的理解,培养学生的数感和符号感;淡化过分“形式化”和记忆的要求,重视在具体情境中去体验、理解有关知识;注重过程,提倡在学习过程中学生的自主活动,培养发现规律、探求模式的能力;注重应用,加强对学生数学应用意识和解决实际问题能力的培养,因此本节内容把有理数的加减混合运算融入实际问题中,既提高了学生学习数学的积极性,又突出了《标准》对本节内容的特别要求。本节内容也为后继学习数学知识作必要的基本运算技能,虽注重应用,加强对学生数学应用意识和解决实际问题能力的培养;但基本的运算技能也是学习数学必不可少的。因此本节内容对学生学习数学有着非常重要的作用。

教具:多媒体课件。

教学方法:启发式教学。

课时安排:一课时。

复习引入(课件出示)。

1.叙述有理数加法法则2.叙述有理数减法法则。3.叙述加法的运算律。

4.符号“+”和“-”各表达哪些意义?

5.-9+(+6);(-11)-7。

(1)读出这两个算式。

(2)“+、-”读作什么?是哪种符号?“+、-”又读作什么?是什么符号?

探索新知讲授新课讲评(-9)+(+6)-(-11)-7。

省略括号和的形式。

教师针对学生所做的方法区别优劣。

对此类题目经常采用先把减法转化为加法,这时就成了-9,+6,+11,-7的.和,加号通常可以省略,括号也可以省略,即:

原式=(-9)+(+6)+(+11)+(-7)。

=-9+6+11-7。

虽然加号、括号省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以这个算式可以读成……(教师纠正)。

学生自己在练习本上计算。

先自己练习尝试用两种读法读,口答。(负9正6正11负7的和或负9加6加11减7)。

让学生尝试,给了学生一个展示自己的机会,学生自己就会寻找到简单的、一般性的方法。

教师根据学生所做的方法,及时指出最具代表性的方法来给学生指明方向,在把算式写成省略括号代数和的形式后,通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观察能力及口头表达能力。

巩固练习1.把下列算式写成省略括号和的形式,并把结果用两种读法读出来。

(1)(+9)-(+10)+(-2)-(-8)+3;。

(2)-+(-)-(-)-(+)。

2.判断式子-7+1-5-9的正确读法是()。

a.负7、正1、负5、负9;。

b.减7、加1、减5、减9;。

c.负7、加1、负5、减9;。

d.负7、加1、减5、减9;。

(二)用加法运算律计算出结果。

-9+6+11-7。

(三)巩固练习。

1.-4+7-4=-___-___+___。

2.+6+9-15+3=___+___+___-___。

3.-9-3+2-4=___9___3___4___2。

4.--+=_________。

1题两个学生板演,两个学生用两种读法读出结果,其他学生自行演练,然后同桌读出互相纠正。

2题抢答。

按教师要求口答并读出结果。

讨论后回答这两题旨意在巩固怎样把加减混合运算题目都转化成加法运算写成代数和的形式,这里特别注意了代数和形式的两种读法。

学生运用加法交换律时,很可能产生“-9+7+11-6”这样的错误,教师先让学生自己去做,然后纠正,又做一组巩固练习,使学生牢固掌握运用加法运算律把同号数放在一起时,一定要连同前面的符号一起交换这一知识点。

初一数学有理数的运算教案篇十三

5、本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。

本节的教学重点是能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。

本节的难点是对有理数的乘法法则的理解。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。

a·b=b·a;

(a·b)·c=a·(b·c);

(a+b)·c=a·c+b·c。

1、有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。

2、两数相乘时,确定符号的依据是“同号得正,异号得负”,绝对值相乘也就是小学学过的算术乘法。

3、基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。

4、几个数相乘,如果有一个因数为0,那么积就等于0。反之,如果积为0,那么,至少有一个因数为0。

5、小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。

6、如果因数是带分数,一般要将它化为假分数,以便于约分。

初一数学有理数的运算教案篇十四

第一版块:(前奏版)。

第一环节:课前热身(复习提问):

回顾一下我们在小学学过哪些数呢?这些数能满足我们生活的需要吗?

还会有新的数吗?

第二板块:(启动版)。

第二环节:引入新课:(导学提问)。

1.观察第二章章前图,讨论并回答下列问题:

(1)世界最高峰———珠穆朗玛峰海拔高8848米表示什么?

(2)吐鲁番盆地在地形图上标着—155米表示什么?

(3)从全国主要城市天气预报表中,可以看到哪些新数?这里“—”号表示什么呢?

(4)在测量温度时用到了温度计,那么温度计又是以什么为基准呢?

第三环节:展示目标。

一.学习目标:

(1)会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量.

重点:正数、负数的概念:

第三版块:(核心版)。

第四环节:自主学习合作探究。

1.见书p37如何求出每个队的最后得分,与同伴进行交流。

2.完成p38表格。

3.见p39议一议。

4.正数、负数的概念:

像______________叫做正数,____________.

像______________叫做负数。

零______________。

5.例题:见书p40例1。

6.做一做:见书p40将所学数进行分类,并与同伴进行交流。

______________________统称为有理数。

8.有理数分类:

第五环节:展示汇报小组展示。

第四板块(强化版)。

第六环节:

1分钟记忆:用自己的话说一说有理数的概念。

第七环节:反馈检测。

自我检测:。

1.如果规定向东为正,那么向西走5m记作____.

3.某食品包装袋上标有“净含量385g+5g”,这包食品的合格净含量范围是___g至___g。

4.下列说法中正确的是()。

(a)正数和负数统称有理数(b)0是整数,但不是正数。

(c)一个数不是正数就是负数(d)整数又叫自然数。

初一数学有理数的运算教案篇十五

2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

3、 体验分类是数学上的常用处理问题的方法。

正确理解分类的标准和按照一定的标准进行分类

正确理解有理数的概念

设计理念

探索新知

在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

问题1:观察黑板上的9个数,并给它们进行分类.

学生思考讨论和交流分类的情况.

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

例如:

对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.??…(由于小数可化为分数,以后把小数和分数都称为分数)

通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数.

按照书本的说法,得出“整数”“分数”和“有理数”的概念.

看书了解有理数名称的由来.

“统称”是指“合起来总的名称”的意思.

试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)

分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

练一练

1、任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

2、教科书第10页练习.

此练习中出现了集合的概念,可向学生作如下的说明.

数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

也可以教师说出一些数,让学生进行判断。

集合的概念不必深入展开。

创新探究

问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数 这个分类可视学生的程度确定是否有必要教学。

小结与作业

课堂小结 到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的`标准进行分类,标准不同,分类的结果也不同。

本课作业

1、 必做题:教科书第18页习题1.2第1题

2、 教师自行准备

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1、本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

2、本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

3、两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

初一数学有理数的运算教案篇十六

2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义;。

3、体验分类是数学上的常用处理问题的方法。

正确理解分类的标准和按照一定的标准进行分类。

正确理解有理数的概念。

设计理念。

探索新知。

在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

问题1:观察黑板上的9个数,并给它们进行分类.

学生思考讨论和交流分类的情况.

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

例如:

对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.??…(由于小数可化为分数,以后把小数和分数都称为分数)。

通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数.

按照书本的说法,得出“整数”“分数”和“有理数”的概念.

看书了解有理数名称的由来.

“统称”是指“合起来总的名称”的意思.

试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)。

分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与。

学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会。

练一练。

1、任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

2、教科书第10页练习.

此练习中出现了集合的概念,可向学生作如下的说明.

数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

也可以教师说出一些数,让学生进行判断。

集合的概念不必深入展开。

创新探究。

问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数这个分类可视学生的程度确定是否有必要教学。

小结与作业。

课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

本课作业。

1、必做题:教科书第18页习题1.2第1题。

2、教师自行准备。

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

1、本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

2、本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

3、两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

初一数学有理数的运算教案篇十七

3、经历利用已有知识解决新问题的探索过程。

教学难点:理解商的符号及其绝对值与被除数和除数的关系。

(一)、学前准备。

1、师生活动。

1)、小明从家里到学校,每分钟走50米,共走了20分钟。

问小明家离学校有1000米,列出的算式为50×20=1000.

2)放学时,小明仍然以每分钟50米的速度回家,应该走20分钟。

列出的算式为1000=20。

从上面这个例子你可以发现,有理数除法与乘法之间的关系互为逆运算。

(二)、合作交流、探究新知。

1、小组合作完成。

再相互交流、并与小学里学习的乘除方法进行类比与对比,归纳有理数的除法法则:

1)、除以一个不等于0的数,等于乘这个数的倒数。

2)、两数相除,同号得正,异号得负,并把绝对值相加减,0除以任何一个不等于0的数,都得0.

2、运用法则计算:

(1)(-15)(-3);(2)(-12)(一);(3)(-8)(一)。

3、师生共同完成p34例5.

(三)练习:p35。

通过这节课的学习,你的收获是:

1)、除以一个不等于0的数,等于乘这个数的倒数。

2)、两数相除,同号得正,异号得负,并把绝对值相加减,0除以任何一个不等于0的数,都得0.

五。作业布置。

1、计算。

(1)(+48)(+6);(2);

(3)4(-2);(4)0(-1000)。

2、计算。

(1)(-1155)[(-11)(+3)(-5)];(2)375。

1、p39第1、2、3、4题。

【本文地址:http://www.xuefen.com.cn/zuowen/10986718.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档