教案是根据教学目标和学生特点,有针对性地安排教学内容和教学方法。编写教案时,首先要明确教学目标,确保教学活动能够达到预期效果。看过这些教案范文后,你会对教学有更深入的认识和理解。
三角形面积的教案篇一
教学目标:1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算。
2.培养学生观察能力、动手操作能力和类推迁移的能力。
3.培养学生勤于思考,积极探索的学习精神。
教学过程:
一、复习铺垫。
(一)教师提问:我们学过了哪些平面图形的面积?计算这些图形面积的公式是什么?
教师:今天我们一起研究“三角形的面积”(板书课题)。
二、指导探索。
1.用数方格的方法求出第69页三个三角形的面积。(小组内分工合作)。
2.演示课件:拼摆图形。
3.评价一下以上用“数方格”方法求出三角形面积。
1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小。
3.用两个完全一样的直角三角形拼。
(1)教师参与学生拼摆,个别加以指导。
(2)演示课件:拼摆图形。
(3)讨论。
4.用两个完全一样的锐角三角形拼。
(1)组织学生利用手里的学具试拼。(指名演示)。
(2)演示课件:拼摆图形(突出旋转、平移)。
教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?
5.用两个完全一样的钝角三角形来拼。
(1)由学生独立完成。
(2)演示课件:拼摆图形。
6.讨论:
(1)两个完全相同的三角形都可以转化成什么图形?
(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?
(4)如果用s表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?(三)教学例1.
1.由学生独立解答。
2.订正答案(教师板书)。
5.6×4÷2=11.2(平方厘米)。
三、质疑调节。
(一)总结这一节课的收获,并提出自己的问题。
(二)教师提问:
(1)要求三角形面积需要知道哪两个已知条件?
(2)求三角形面积为什么要除以2?
三角形面积的教案篇二
关于第三步:教材上只有一句话:能不能把三角形转化成已经学过的图形再计算面积。这是化未知为已知的思维方式,我们常给初中学生提起这些认知策略,但它的基础却在小学阶段和学生的日常生活经验中。教材把这个重要的数学思想一笔带过,把挖掘其内涵,为学生建立辩证观念的重任留给了老师。但很多老师并不特别重视这句话,只是把它当作一个过渡句,当成进入下面环节的引言。
第四步。转化是一定的。但是,转化成什么?怎么转化?把三角形转化成“能计算的图形”大致有五种情况。教材推荐的是第五种(如图)。教材上的引导方式只有教师的主导性,而忽视了学生的主体位置。
前面提到,学生计算三角形面积的首选方法是数格,那么次选方法是什么?他们的第二方案应该还是在自己的经验中寻找帮助。这些经验当中,与计算面积有关的直接、简单、容易操作的内容就是在前面的几节课刚学过的“切割平行四边形成长方形”的方法。他们对“切割”这个动作记忆犹新。因为:一、这个技巧刚刚学过;二、切割是个动作,但这个动作能把不规则变规则,所以印象深刻;三、这个简单的动作能完成面积计算的任务。所以他们的下一步动作会是模仿上一节课的做法,想办法切割三角形的某一角移动填补另一角,变三角形成长方形或平行四边形。按这个说法,学生在寻找计算三角形面积的方法时,他首先会在他手中所拿的三角形卡片上琢磨,对这个三角形进行加工处理。在不得要领,或是找到了办法,问题解决了,但心有余味,继续探索下去时才会考虑到利用其他内容扩展思考空间,再找一个一样的三角形牵线搭桥,把思路引到问题的外面。
教材中还有一点缺失:学生在教师的引导下用两个“全等”三角形进行拼接时,是一个尝试的过程。教材举例说:小华拼出了一个长方形一个平行四边形。小林拼出了两个三角形――一个人拼的全是能利用的,一个人拼的全是不能用的,两个人的对比太大。我们想这不是教材的疏漏,是为了突出教学任务和目标。另外,教材举的例子是两个三角形能拼成一个长方形和一个平行四边形。但实际上能拼成两个平行四边形,加上长方形就是有三个图形是已经学习过的,都能用来推算三角形面积。教材忽略这个没有列出的平行四边形,我们猜可能是因为它的倾斜度过大,在视觉上有一种要“倒”的感觉。如果学生受视觉效果的影响,注意力分散,会影响到他们分析两种图形的底、高和面积的关系。也可能是基于简单化原则,有两个就够了,何必要三个。但是按这个说法,要一个就够了,何必两个。
按照教材设定的思路,我们可以设想:学生手拿三角形,听老师布置完任务。怎么拼,能拼出什么都不太清楚,只能先随便的拼一下试试。如果运气好或者预想能力较强,可能直接拼出平行四边形和长方形。学生在试验时,会发现不等边拼接没有后续效果,因为这些组合图形都不规则,不能把握。然后,学生会把注意力放在那些特殊图形上。一类是那些中心对称的平行四边形,这是学习过的内容;一类是那些左右对称的凸多边形,这是好奇心驱使,随后即会放弃。学生的试验,开始可能是无序状态,随着注意的集中,目标一个一个的出现,学生的意识中必定会对自己刚才的所有拼接进行回顾(很多时候这个回顾是无意识的),找到拼出所有图形的方法得出两个全等三角形能顺次拼出三个形状不同的平行四边形的结论,使自己的思维进入有序状态。
教材把这个过程缩减了,有些教师则更希望把它压缩成一个或几个动作,为后面的讲解和练习挤出时间,不愿把时间精力浪费在这个非目标、非重点、也非难点的中间环节上。认为只要知道了转换的道理,就有了“等底等高,面积2倍”这个重点的突破。在动手操作上延长时间,势必影响教学目标的讲解和强调。
其实这是个误解。公式的推导过程本身也是对公式的熟悉过程,过程熟悉了,结果也就熟悉了。以后也就无须用多的吓人的练习题让学生做,把公式强印到学生的脑子中。举一个化学上的例子:两种物质能发生反应,这是先决条件。但是反应所需要的环境如加热、电击、搅拌或是放在溶液中使其反应更充分,以及催化剂等这些控制反应进行的因素也很重要,甚至是必须的。学生在探寻知识的过程中所取得的经验和教训就是知识发挥作用的控制因素。一般上,我们认为把知识放在问题中,解决问题,知识的作用就发挥出来了。但是,问题从何而来?来自思维。思考什么?思考我们看到的,感觉到的。如果对周围事物的发展、变化、规律、联系、相互作用、矛盾冲突以及相似性、特殊点(这些名词、概念确实存在于我们的意识和思维中)没有任何的反应,就不会产生问题、提出问题。不会发现问题的人,一般也不会主动回答别人的问题。让学生自己动手就是为了训练学生的`动手能力观察能力和感受性。
如果学生在图形的拼接过程中能集中注意力,边拼接边总结,最后达到能快速有节奏的拼出所有图形的程度。那么学生至少有两点除直接为教学目标服务之外的收获。其一是实验精神,这种品质是在面临所有新问题时都必须具备的。这一点不必多说。
第二点是个技巧:要想拼出所有图形,必须以排列组合的方式按照一定的顺序,挨着个的来。如果我们能对这个技巧善加培养,就会形成一种能力或是一种精神品质。在许多新编的实验教材中都安排了很多这样类型的训练内容。这些训练的目的,并不在这些具体的问题本身,而在于让学生扩展自己的思维空间。思维空间的扩展并不是说让学生知道更多的东西,而是说让学生忘记自己已知道的、已掌握的东西――需要的时候,能马上从意识中提取。想达到这种水平,需要做到体系化和结构化。人的思想无限广大,但是如果其中的内容杂乱无章,互无联系,就等于有限的物质占据了无限的空间。就象是如果没有天体星系之间的吸引力和运动造成的动态平衡,就会宇宙大乱。人类就不可能认识这个世界。会毁在这种无序状态之中。但运动能看的见,吸引力却难捉摸。
在我们所有的认识活动中,都有一个从混沌到有序,从不明所以的细节认识到把握事物的结构,确定各部分间的联系和作用方式的整体感知的过程。如果学生拥有了这个过程的心理体验,就会促使他们在个性发展上形成一种良好的精神品质。就会心理坚定,动作迅速,思维敏捷。但我们却常常在课堂上打断学生的这个思维过程,系之以我们认为最佳的知识体系。却不知单纯以逻辑作联结的知识在学生看来只是内容上的堆砌,会对学生造成巨大的精神压力。只有以心理体验做基础才能真正将知识内化,达到“有”既是“无”的空明之境。自己的努力常被别人打断的人,有一种受制于人的感觉。经常这样,学生会变的没有自信,心浮气燥,尝试过程中会产生否定心理:否定错误,固执己见;否定问题:这个问题不可能有解;甚至否定自己:我做不出来了,再努力也是白费工夫。
推导三角形的面积公式,大致有五种方式。根据各种推导方式的不同特点,我们可以帮助学生设定两种学习思路。
第一种:前三种推导方式,适合用“先确定探求目标,然后从已知经验中借鉴和搜寻解决方法”的学习方式:学生手拿一个具体的三角形卡片,经过怎么办,怎么变,怎么算等思维过程,然后通过验证,将怎么变舍去,把怎么算压缩概括为一个计算程序,这就是公式。第二种:用后两种推导方式,可以这样引导学生“长方形和平行四边形的面积公式除了能计算平行四边形和长方形的面积,还可以计算其他图形的面积。大家可以尝试一下……”。学生手拿长方形和平行四边形,经过折叠、剪切逐步转化为三角形和梯形,再总结成公式。这两种引导方式是不应该混杂在一起呈现给学生的。
无论是那一种方法,只要真正是学生的动手操作和思维的成果――教师的责任和义务是导引而非强行推进――对学生来说都有非常重大的意义。除知识的累积外,尚有许多教师可以讲清却无法给予的心理体验和能力。比如:
前面提到的试验精神和以排列组合的方式对事件的发展进行调控,增强思维的有序性。
建立数学模型,把实践问题数学化。这是许多人不了解数学为何物的关键之处。
估算和预想。学生拿着三角形和剪刀,不会直接下手,会先进行比对和预想:从这里下刀,向这个角度截下的角能补到哪?能把顶角补齐吗?估计相差不大,试一下……有许多解决问题和创造活动的前期准备都是在头脑中预演的。预演的过程虽不十分准确,但节奏快,内容多,可以跳过许多不必要的中间程序。
动手能力。这是大家都非常重视的一个词。证据之一:小孩子在玩沙时,大人有耐心看着他们完成自己的作品,直至失去兴趣。在课堂上我们为学生准备了许多学具。这些学具,是根据我们想要学生完成的操作动作精心设计的。能最大限度的体现老师的要求。学生在用学具对老师进行模仿,或参照课本完成老师的细致要求时。时常被我们的“好了!大家停一下。坐好了!”或“现在我们来看……”一类的声音打断。学生们一听到这些话,就会习惯性的把手拿开放到背后。许多老师要求学生坐直,抬头挺胸,手放背后。而且时不时来一句“看谁坐的直!”。学生坐好以后,对自己的劳动成果不再看一眼,眼睛直盯着黑板和老师。就好象桌子上什么东西都没有,刚才自己什么也没做过一样。毕竟,动手能力没有注意听讲重要。
证据之二:有时候我们会很自豪的说:如果学生不会,我就手把手地教。实际上,手把手的作用并不大:老师拿着学生的手,学生的注意和力量被分散了。老师的力量加在学生手上,学生会自然的产生反作用力。但他明白他应该顺应老师所以他要控制自己的反作用力。学生的一部分精力就用在了二者的协调上。学生不可能在手把手的过程中真正体会到老师是如何用力的。感觉只能是自己产生,别人能给的只是外部刺激。手把手的好处可能是能对那些自信心不足的学生以安慰和鼓舞,以及提醒学生模仿参照老师,想象体会老师的感觉。
试验过程中规律和直感经验的应用和把握。在截切三角形时第一次会用较多的时间,失败的可能性很大。第二次找截切点和角度的速度会加快。也可能,第二次还没有进行完,学生就得出结论:这一次是失败的,准确位置应该在那儿。速度加快和直接下刀,表明学生已经感知这个截切点的特殊性,应该就在三角形的半腰处。右边是这样,左边也应该……。
前三种用割补法变三角形为平行四边形,利用的是以前的经验,模仿的形式。想到后两种填充法和拼接法,应该算是通过观察问题存在的周边环境而找到的方法,创造的成份比较多。这是把事件或问题放在背景和环境中考虑,是一种整体认知的意识和能力。既如荀子在《劝学》中说的“善假于物也”,此“物”既存于人的经验意识和周边环境中。
如果发挥学生的主体意识,学生找到后两种推导方法的心理机制比较复杂,我们还难以把握。学生可能是误打误撞找到的,也可能是因为学生有生活方面的此类经验,迁移能力较强。不管学生是怎样找到的,也不论是学生的功劳还是教师的指导,这几种方法所携带的辨证观念是我们应该特别关注的。即便是因为学生的年龄特点不能给予形式内容上的加强,起码可以给学生以精神自由和意志自由,做到不防碍它的发展。
精神意志的自由虽不能直接激发思维和创造,却可以产生真正的积极性和主动性。学生不把自己当学生,当成探索生活和世界的强者,教师不把自己当教师,当作合作者(尤其是备课的时候),由此思想自由而产生的创造,要比我们用装腔作势、花样翻新来吸引学生注意力,以集体、荣誉、表扬、攀比、别人的眼光来束缚学生的思想,以教鞭、纪律来规范学生的言行,高潮迭起、节奏紧凑、有声有色,学生却象是提线木偶的课堂来得彻底、来得有效率。
阿基米德说:给我一个支点,我能把地球翘起来。找到支点和作用方式学生的力量是巨大的。学习知识、掌握技巧、提高能力的作用点不在于紧盯目标和任务,下死工夫塞到头脑里。就好象翘起地球的支点不会在地球上,必须到太空中寻找一样,提高学习效率的支点应该存在于学生们比太空还充实还广漠的精神世界里。它的充实之处在于,学生能随时找到前进道路上的踏脚基石。广漠之处在于,学生愿意并能吸收容纳更多更新的体验。学生课堂学习的基础是他们的精神世界,他们的精神世界植根于生活。所以说提高学习效率的根本方法从丰富多彩的生活中凝练思想。
三角形面积的教案篇三
1、在实际情境中,认识计算梯形面积的必要性。
2、在自主探索活动中,经历推导梯形面积公式的过程。
3、能运用梯形面积的计算公式,解决相应的实际问题。
教学重点:理解并掌握梯形面积的计算公式。
教学难点:理解梯形面积计算公式的推导过程。教具准备:各种梯形各两份,剪刀,课件。
一、揭示课题,明确主题。
1、生活中我们能找到许多平面图形,这个教室里有吗?
2、请大家看看这组图片,看看你发现了谁?找到了就立刻喊出它名字!出现次数最多的是……?(梯形)板书2。梯形,四年级的时候我们已经认识它了,谁来介绍一下它。
3、今天,我们来更深入地了解这位朋友,研究梯形的面积。(板书)。
二、回忆旧知,建立联系。
1、面积,我们现在已经会计算哪些图形的面积了?他们计算方法你们还记得吗?(课件)。
2、回忆一下,平行四边形和三角形的面积计算方法我们是怎样推导出来的?还记得吗?
3、同学们,我们在研究它们面积的计算时候,都用到了一种非常重要的数学思想——转化。(板书)把要研究的图形转化成已经学过的图形来发现他们之间的联系,进而推导出面积计算的公式。这种思想,这节课我们也要用到。
三、转化梯形,推导公式。
(一)应用的需要引出猜想。
1、同学们喜欢什么体育运动?喜欢篮球吗?(课件出示篮球场地)你们知道这一处是什么区域吗?这是3秒钟限制区,是限制对方队员在这个区域内停留不能超过3秒钟。
3、同学们都很有想法,那到底是不是像同学们想的那样呢?让我们来动手验证一下。在动手操作之前,老师提出三点建议:(1)想想能把梯形转化成学过的什么图形。
(2)根据转化图形与梯形的关系,推导出梯形面积计算的方法。
(3)填写好汇报单,比一比,哪个小组的动作快。明白了吗?开始吧!
(二)小组活动十分钟。
(三)汇报。
6、在这个公式中,哪里应该引起我们注意呢?在计算的时候一定不要忘记。四、加深理解,巩固新知。
1、总结:好了,同学们,刚刚大家用学过的知识,通过拼合,分割,旋转,平移等方法,把梯形转化成了学过的图形,根据图形间的联系就推导出了梯形面积的计算方法。
2、这个方法你们记住了吗?那老师可要考考你了!(判断题)。
3、通过刚刚的研究和辨析,相信大家对梯形面积的计算方法一定有了深刻的理解吧!这个三秒限制区到底多大呢?你会求吗?需要什么条件?(课件出示)动笔试试吧。
4、梯形面积的计算方法在生活中经常用到,你们想用新知识来解决一些生活中的问题吗?
5、梯形面积的计算方法在生活中还有更广泛的应用,小到…大到…都会用到它。
五、结语。
转化在数学当中是一种非常重要而又常用的思想。在图形的学习中,同学们多次用到了转化的策略,(课件)其实在学习计算时我们也用到了。那我们转化的目就是化未知为已知。以后你再遇到一个未知的新问题,你会怎样想呢?是不是任何未知的问题都可以转化呢?这个问题留给同学们去思考。
三角形面积的教案篇四
知识与技能:
1.理解并掌握三角形面积的计算公式。
2.能运用公式计算三角形的面积、解决简单的与三角形面积有关的实际问题。
过程与方法:通过对三角形面积公式的推导过程,发展空间观念、体会转化、归纳的思想。
情感态度和价值观:乐于与他人合作交流,在探索活动中获得积极的情感体验。
教学重点:掌握三角形面积的计算公式并能初步运用。
教学难点:理解三角形面积计算公式的推导过程。
(一)导入新课
课件播放:两个小朋友在争论学校门前平行四边形的花园和三角形的花园哪个面积大。
引出课题:要想知道哪块地大、哪块地小,就要比较它们的面积。(板书课题:三角形的面积)
(二)新课教学
1.稳固知新
回忆在推导平行四边形的`面积公式时,用了什么方法?启发学生在研究三角形的面积也可以采用这样的思路。
2.小组合作学习
出示要研究的问题:
(1)可以把三角形转化成哪种学过的图形?怎样转化?
(2)三角形的面积可以怎么算?为什么要这样算?
提出活动要求:用一些三角形拼一拼、摆一摆,学生以小组为单位,展开研究。
3.交流小结
(1)展示一组学生得到的图形,说说你们是怎么做的?
怎样算出其中一个三角形的面积呢?为什么要这么算?
(3)在前两步的基础上,归纳三角形的面积公式。并学习用字母表示。
4.知识拓展。
课件播放《九章算术》中关于平面图形面积算法的论述。
(三)初步应用
算一算做一条红领巾需要多少布料。
(四)活用知识
1.下面这些三角形的面积你会计算吗?(只列式不计算)
2.出示课前情境图及相关数据,学生通过计算来比较出三块地的大小。
3.三角形的面积会变化吗?(出示在一组平行线间等底等高的三角形)
(五)课堂总结
同学们,哪位来和大家分享一下你今天的收获呢?
(六)作业布置
请同学们课后回家里找找有没有三角形的物体,自己用尺子测量出三角形的边长,并画出和测量出三角形的高,算出这个三角形物体的面积。
三角形面积的教案篇五
教学准备(含资料辑录或图表绘制)。
教和学的过程。
一、练习。
二、总结。
一、第5题。
可以通过计算解决,也可以把三角形的底和高与平行四边形逐一进行比较。教学时,重点放在后一种方法的比较上。
二、第6题。
要使学生画出的三角形的面积是9平方厘米,三角形底和高的乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。
三、第9题。
测量红领巾高时,可以启发学生把红领巾对折后再测量。
四、第10题。
要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。
五、思考题。
每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的'面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。
通过今天的练习我们对三角形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以至用的目的。
做练习。
三角形面积的教案篇六
作者:李胜国邮箱:lghmjl@作者单位:河北省临城县鸭鸽营乡忠信中心小学简介:课件名称:三角形、梯形基础知识及面积推导。
适用于人教版五年制数学第七册。
课件通过“基础知识”来演示说明三角形和梯形各部分名称及高的画法,
“巩固应用”中设计了三道练习题以巩固所学的知识。
说明:因为自己非常喜欢“枯枝”这个名字,所以在开头加了一个“枯枝作品”的动画。
相关课件:
三角形面积的教案篇七
“三角形的面积”是一节常见的课,一般的做法是在由学生拼组后直接推导出三角形的面积计算公式。本设计最大的特点是改革了这一常见的做法,在拼组后,通过对三角形与拼成的平行四边形之间的联系的探究,指导学生直接利用这种关系尝试计算三角形的面积,在积累了一定的感性认识后,再引导学生归纳、总结三角形的面积计算公式,更能为学生所接受。
苏教版标准实验教科书《数学》五年级上册p15~p16的内容,三角形的面积。
1、探索并掌握三角形的计算面积公式,能应用公式正确计算三角形的面积;
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
重点是探索并掌握三角形的面积公式,能正确计算三角形的面积。难点是理解三角形面积公式的推导过程和公式的含义。
cai课件、红领巾、每个小组准备相同的直角三角形、锐角三角形、钝角三角形各两个。
一、创设情境、导入新课。
1、提出问题。
2、揭示课题。
师:那我们今天就一起来研究怎样计算“三角形的面积”?(板书课题:三角形的面积)。
二、操作“转化”,推导公式。
1、寻找思路。
师:大家想想,怎样“转化”呢?可不可以用“割补”的方法呢?
2、动手“转化”。
师:看来用“割补”方法很难“转化”。那我们可不可以用拼一拼的方法来“转化”呢?老师为每个小组的同学都准备了两个完全一样的三角形,请大家拼一拼,看看能不能把三角形“转化”成一个我们已经学过的图形。开始吧。
小组合作拼组图形,教师巡视指导。
[应变预设:一般情况下学生会拼出如下几种形状,老师选择其中三个图形贴到黑板上。]。
[评析:引导学生观察三角形的不同类别,弄清拼成不同形状的原因。]。
3、尝试计算。
师:同学们真棒,大家都发现,用两个完全相同的三角形可以拼成一个平行四边形或一个长方形。现在请同学们看图1。
师:知道了平行四边形的底和高,你们能求出所拼成的平行四边形的面积吗?算一算吧。
师:算完了吗?它的面积是多大?
师:我们知道,这个平行四边形是用两个完全一样的三角形拼成的,平行四边形的面积是20平方厘米,那这个绿色三角形的面积是多大呢?想一想,小组同学商量商量吧。
三角形面积的教案篇八
教学内容:人教版第九册第三单元的《三角形面积的计算》。
教学目的:(一)理解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。
(二)通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。
教学难点:理解三角形面积计算公式的推导过程。
教具准备:用纸皮剪好的两个完全相同的直角三角形、锐角三角形、钝角三角形。。
教学过程:
三角形面积的教案篇九
“三角形的面积”是一节常见的课,一般的做法是在由学生拼组后直接推导出三角形的面积计算公式。本设计最大的特点是改革了这一常见的做法,在拼组后,通过对三角形与拼成的平行四边形之间的联系的探究,指导学生直接利用这种关系尝试计算三角形的面积,在积累了一定的感性认识后,再引导学生归纳、总结三角形的面积计算公式,更能为学生所接受。
苏教版标准实验教科书《数学》五年级上册p15~p16的内容,三角形的面积。
1、探索并掌握三角形的计算面积公式,能应用公式正确计算三角形的面积;
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
重点是探索并掌握三角形的面积公式,能正确计算三角形的面积。难点是理解三角形面积公式的推导过程和公式的含义。
cai课件、红领巾、每个小组准备相同的直角三角形、锐角三角形、钝角三角形各两个。
一、创设情境、导入新课。
1、提出问题。
2、揭示课题。
师:那我们今天就一起来研究怎样计算“三角形的面积”?(板书课题:三角形的面积)。
二、操作“转化”,推导公式。
1、寻找思路。
师:大家想想,怎样“转化”呢?可不可以用“割补”的方法呢?
2、动手“转化”。
师:看来用“割补”方法很难“转化”。那我们可不可以用拼一拼的方法来“转化”呢?老师为每个小组的同学都准备了两个完全一样的三角形,请大家拼一拼,看看能不能把三角形“转化”成一个我们已经学过的图形。开始吧。
小组合作拼组图形,教师巡视指导。
[应变预设:一般情况下学生会拼出如下几种形状,老师选择其中三个图形贴到黑板上。]。
[评析:引导学生观察三角形的不同类别,弄清拼成不同形状的原因。]。
3、尝试计算。
师:同学们真棒,大家都发现,用两个完全相同的三角形可以拼成一个平行四边形或一个长方形。现在请同学们看图1。
师:知道了平行四边形的底和高,你们能求出所拼成的平行四边形的面积吗?算一算吧。
师:算完了吗?它的面积是多大?
师:我们知道,这个平行四边形是用两个完全一样的三角形拼成的,平行四边形的面积是20平方厘米,那这个绿色三角形的面积是多大呢?想一想,小组同学商量商量吧。
师:同学们太了不起了,开动脑筋,已经算出了这个绿色三角形的面积。
师:现在请同学们看屏幕,(课件出示,如下图)你们会计算屏幕上这个蓝色三角形(底3cm,高2cm)的面积吗?算一算。
4、推导公式。
师:同学们,刚才大家已经尝试着求出了三个三角形的面积,大家都算得很好。那么现在你们能把三角形的面积计算公式写下来吗?先写一写,同桌同学再商量商量吧。
5、理解公式。
6、用字母表示三角形的面积公式。
师:同学们,如果用a表示三角形的底,h表示三角形的高,s表示三角形的面积,你们会不会用字母表示三角形的面积公式呢?请写一写吧。
师:同学们,你们知道吗?今天我们一动手起推导出的三角形的面积计算公式,很早以前,我们的祖先就已经发现了,请看大屏幕。(课件出示如下图,课本p85页的数学常识。)。
[评析:这样表面是介绍数学常识,但实际渗透了爱国思想教育。]。
三、应用公式,解决问题。
师:那就请大家动手量一量它的底和高吧。
师:量完了吗?请大家算一算,看看做这样一条红领巾到底需要多少红布?
[应变预设:指导学生运用公式进行正确的计算,展示学生的算式,集体订正。]。
四、联系生活,适当拓展。
[应变预设:指导运用公式进行正确的计算,,然后集体订正。]。
师:同学们,你们还能算出这三个三角形的面积吗?(课件出示如下图1:底3厘米,高4厘米;图2:底4厘米,高1。5厘米;图3:底2。5厘米,高2。8厘米)看谁算得又对又快!
四、全课总结,反思体验。
教师:这节课你们学习了什么?有哪些收获?
三角形面积的教案篇十
教材第910页例4、例5及练一练、试一试、练习二第6-9题。
1.通过操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。
2.进一步体会转化方法的价值,培养自己应用已有知识解决新问题的能力,发展自己的空间观念和初步的推理能力。
经历探究三角形面积计算公式的过程,理解并掌握三角形的面积计算公式。
多媒体课件、教材第115页的三角形。
一、自主准备。
()()()。
2.思考:(1)三角形的面积与它拼成的平行四边形的面积有什么关系?
(3)假如要你探究三角形的面积,你打算把它转化成什么图形进行研究?我想转化成。
二、自主探究。
1.拼一拼:从课本第115页上选两个完全一样的三角形剪下来,看看能不能拼成平行四边形。
2.填一填:你剪下的两个完全一样的.三角形能拼成平行四边形吗?如果能,拼成的平行四边形的面积和每个三角形的面积各是多少?请填写下表。
3.想一想。
(1)拼成平行四边形的两个三角形有什么关系?
(3)根据平行四边形的面积公式,怎样求三角形的面积?
三、自主应用。
试一试:完成书上第10页的试一试。
四、自主质疑。
说一说:
(2)你认为本节课应学会什么?
三角形面积的教案篇十一
“三角形的面积”是一节常规性的课,关于这节课的教案不少,课我也听了不少,如何体现“观念更新,基础要实,思维要活”,我觉得以往老师们对教材的把握与处理,对课堂的设计以及处理都很不错,而这节课让我感触很深。
以前的教学只是注重学生的双基训练,不重视知识的生成过程,而这节课的所有设计都围绕学生的思维,学生的分析问题能力,整节课体现学生主动参与、乐于探究、勤于动手,培养了学生获取新知识的能力,分析问题和解决问题的能力,以及交流与合作的能力,教师把整个学习过程放给学生,让学生小组合作,全员参与,共同探究,由感性认识上升到理性认识,让学生参与知识获得的全过程。
开放的探究式学习要不受任何人的约束,要有教师层层深入的引导。这节课设计中,教师注重教材的开放性和思考性,不断鼓励学生去思考,去探索不同的办法,让学生有自主选择的权利和广阔的思维空间,让学生独立思考与小组合作相结合,在相互交流的过程中,自行总结出了三角形的面积公式,学生在操作活动中展现了自我,方法多样且独特,是以往教学所没有的,效果很好。创设引导学生主动参与的教学环境,激发学生的学习积极性,培养学生掌握和运用知识的态度和能力,使每个学生都得到充分的发展。
本节课老师赋予了学生很多思考、动手和交流的机会,教师扮演了组织者、引导者和合作者的角色,充分发挥学生的主体作用,较好的体现了教师是学生学习的引导者,引导学生围绕问题的核心进行深度探索、思想碰撞等。从根本上改变了传统的教学模式,使学生达到对知识的深层理解,还培养了他们敢于探索、勇于创新的精神。拓宽了学生在数学教学活动中的空间。
这个案例一定程度上反应了要改变传统的教学方法,要实施新课改,最根本的还是教师角色的转变,转变传统意义上的教师教,学生学,不断形成师生互教互学,彼此形成一个“学习共同体”。为了进一步激发学生的潜能,使他们的讨论和思考更有价值,我们每一位教师都应该不断学习,提高个人素质,以设计出更好的教学环节,让师生共同成长!
三角形面积的教案篇十二
我说课的内容是三角形的面积。三角形面积的计算是义务教育课程实验教材第九册第六单元“多边形面积的计算”中的第二节。这部分内容是在学生掌握了三角形的特征,以及长方形、平行四边形面积计算的基础上教学的。教材的编排加强了学生的动手操作,如求三角形的面积,让学生用两个完全一样的三角形拼摆已学过的图形。一方面启发学生设法把研究的图形转化为已经会计算面积的图形,另一方面主动探索研究的图形与已学过的图形之间有什么联系,从而找出面积的计算方法,而不是直接把公式告诉学生。这样既使学生在理解的基础上掌握了三角形面积计算公式,又培养了学生的思维能力和动手操作能力。教材中的插图给出了转化的操作过程,同时渗透了旋转和平移的思想,以便于学生理解公式的来源。
基于以上认识,按照新课程理念,我确定了以下教学目标:
1、认知目标。
探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
2、能力目标。
使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3、情感目标。
在探索学习活动中,培养实践能力,培养学生主动参与学习活动的意识、合作意识和创新意识,体会数学问题的探索性,并获得积极的情感体验和成功体验。
根据以上的教学目标、教学重、难点,我准备采用以下教学方法进行教学:
1、发展迁移原则。运用迁移规律,引导学生在整理旧知的基础上学习新知。
2、加强学生动手操作。在学生拼摆实验的基础上,通过课件演示,采取旋转、平移的方法,将两个完全一样的三角形拼成平行四边形,加深学生对三角形面积公式来源的体验和理解。
本节课在学习方法上我侧重以下几点:
1、学会以旧引新,掌握运用知识迁移、学法迁移进行学习的方法。
2、操作实验法。学生自己动手用两个完全相同的三角形拼摆出自己学过的图形,弄清三角形面积与平行四边形面积的关系。
3、学习讨论法。在操作实验的基础上,讨论三角形的底和高与拼成的平行四边形的底和高的关系,从而总结出三角形面积的计算公式。
针对上述内容的需要,我设计了如下的教学程序:
一、激情导课。
1、师:同学们,我们来玩一个游戏好吗?(好)。请大家拿出信封内的长方形、正方形和平行四边形,听好了,既然是游戏当然就有游戏规则,请想一想,如何在每个图形上折一次,使折痕两边的形状、大小完全一样,先思考或讨论有几种折法,再开始折,并用彩色笔画出折痕。
2、小组学生代表上台汇报操作结果。
3、师根据汇报有选择地在黑板上贴出以下四种折法:
4、让学生观察后提问。
师:这三个图形分别折成了两个形状、大小完全一样的什么图形?
生:这三个图形分别折成了两个形状,大小完全一样的三角形。
从而引导学生可以先求长方形面积,再算它的一半就可以。
那么如果有一块花坛形状是这样普通的三角形,面积怎么计算呢?我们今天一起来研究,大家有兴趣吗?(教师板书课题:三角形面积的计算)。
二、自主探索,合作交流。
1、拿出信封里面的学具,从中找出两个形状、大小完全一样的三角形拼一拼,看你能发现了什么?同时在拼时要思考以下几个问题:
(课件出示以下问题)。
a、两个完全一样的三角形能拼出什么图形?
c、拼成的图形与原来每一个三角形有什么联系?
(学生在小组里动手拼一拼,并相互交流以上问题)。
2、操作探索。
(1)小组合作探索、操作。
(2)小组交流。(学生积极踊跃的动手动脑,教师融入其中并适当给以启发)。
3、展示交流。
师:同学们,方法找到了吗?哪个小组上来汇报?
三、检测导结。
解决实际问题,并进行课堂小结。
通过分层次的解决实际问题的练习,既巩固了学生对三角形面积计算公式的理解应用,又使学生感受到三角形面积公式的变形应用,同时对学生进行交通安全教育。
三角形面积的教案篇十三
教材分析:
三角形的面积是在学生掌握了三角形的特征以及长方形、正方形面积计算的基础上进行教学的。通过对这部分内容的教学,使学生理解并掌握三角形面积计算公式,会应用公式计算三角形的面积,同时加深三角形与长方形、正方形之间内在联系的认识,培养学生的实际操作能力。进一步发展学生的空间观念和思维能力,提高学生的数学素养。
学情分析:
在学习三角形的面积这一内容前,学生已经认识了三角形的特征;在学习长方形面积、正方形面积以及求组合图形的面积时,已经学会割、补、移等方法,也学会了把未知的学习问题转化为已知的问题。因此在教学三角形的面积这课时,学生已经具备了一定的知识准备和能力基础。
教学目标:
1、经历三角形面积公式的推导过程,理解公式的意义。
2、理解三角形的底和高与“被转化长方形”长和宽之间的关系。
4、培养学生运用所学知识解决简单的实际问题的能力,体验数学应用价值,使学生感受到数学就在身边。
教学难点:理解三角形是同底(长)等高(宽)长方形面积的一半。
教学过程:
一、导入阶段。
通过故事情景产生生活中三角形比较大小的问题:
1、比三角形的大小用数学语言来表达是比什么?
2、采用哪些方法可以比较呢?
小结:运用透明方格纸来比较三角形的大小是一种方法,但你感觉怎样?
二、探究阶段。
1、每个学生拿出准备好的长方形纸,按要求画三角形。
操作说明:(1)以长方形纸的一边作为三角形的底边。
(2)以对边的任意一点作为三角形的顶点。
(3)连接顶点与对面的两个角。
(4)你画了一个什么样的三角形?
2、大组交流。
4、观察已画三角形与长方形之间的特殊关系。
(二)实验。
操作说明:
(1)剪下你所画的三角形。
(2)将剩下部分拼到剪成的三角形中。
思考:剩下部分拼成的三角形是否与剪成的三角形一样大?
(3)填写实验报告。
2、学生完成报告后交流。
(三)归纳。
根据学生的实验得出结论:
(1)请学生用一句话来概括。
(2)用数学的方式来表示:三角形面积=相应长方形面积/2。
三、运用阶段:
1、教学例1。
(1)分别测出3个三角形的底与高,作好记录。
(3)交流。
nm。
ac。
b
d3、拓展:找出下列图形中面积相等的两个三角形,为什么?
四、总结。
这节课我们学习了什么?2、计算三角形面积要知道那些条件?
三角形面积的教案篇十四
学习目标:
1.通过将多边形分割成三角形,从而探索出多边形内角和的计算公式,并能进行应用.
2.经历操作、探索等活动,提高分析问题、解决问题的水平,提升从不同角度思考问题的能力.
学习重点:理解多边形的内角和公式的推导过程,体会化归思想.
学习难点:从不同角度思考问题.
导学过程:
三角形面积的教案篇十五
本课题是人教版五年级上册第五单元一课时的教学内容。三角形的面积计算是学生在掌握了它的特征的基础上学习的,它是进一步学习圆面积和立体图形表面积的基础知识之一。因此,体验和感知三角形面积计算的探索过程,掌握三角形面积计算公式,是学生后继学习的重要基本技能和基础知识。教材的编排是在学生已经学习了长方形、平行四边形的面积的基础上学习的。
1、知识与技能。
(1)使学生经历三角形面积计算公式的探索过程,理解三角形面积计算的公式。让学生亲身经历三角形面积公式探索与获得的过程,而不是要教师直接把三角形面积计算的方法讲明给学生,让学生处于接受的状态。这样设计,符合了新课程学生的现代学习观。
(2)通过多种学习活动,培养学生动手操作的能力,和学生的抽象、概括、推理能力,培养学生的合作意识和探索精神。
(3)培养学生应用所学知识解决生活实际问题的能力。
2、过程与方法。
使学生经历操作、观察、讨论、归纳等数学学习活动,通过图形的拼摆,割补、折叠来渗透图形转化的数学思想,在探索学习和解决实际问题的过程中体验数学与生活的联系。
3、情感、态度与价值观。
让学生在探索活动中获得积极、愉悦的情感体验,进一步培养学生学习数学的兴趣。
重点是理解三角形面积计算的推导过程,会根据公式进行计算。难点是理解三角形的底、高和面积与拼合而成的平行四边形的底、高和面积之间的关系。
“动手实践、自主探究与合作交流”是学生学习数学的重要方式。因此,在本课的教学采用:
1、实验法。
学生通过自己动手操作学习新知识比听教师讲解新知识记忆更加深刻,兴趣更加浓厚。因此,在教学三角形面积计算公式推导过程时,让学生动手操作、讨论,体现了以学生为主体,教师为主导的教学原则。
2、课件演示,配合启发。
学生动手实验,交流汇报之后,再看课件演示,教师给予点拨,使学生更直观,更形象地理解三角形面积的计算方法。
(一)创设生活情境,揭示课题。
1、请学生回忆并指名学生说明上节课同学们推导平行四边形面积计算的过程。以解决生活中高庙公园一长方形地为出发点,园林师傅想分成相同的两半,如何去分提出问题,揭示课题。板书课题:三角形的面积(设计意图:有学生熟悉的知识并继续渗透转化的数学思想,即:把平行四边形转化成长方形来计算面积,为新知识的学习作好铺垫。对于表达不清楚、不完整的同学,教师显示课件,启发其完整的表达,并给予鼓励。)。
(二)探索新知。
出示问题:怎样把三角形的转化成我们学过的图形呢?
1、小组合作,动手拼摆,(说明:学生准备直角、钝角和锐角三角形各两个,且两个直角、两个钝角和两个锐角三角形的形状分别完全一样。设计意图:教师为学生提供一个开放的空间,让学生亲身经历自主探索的过程。创设了一个问题情景,让学生在发现问题,解决问题之中感悟出“形状完全一样的三角形”是拼摆的前提,通过学生亲手拼摆,最大限度地发挥学生学习的主体性,也有助于“用两个形状完全一样的三角形拼出了一个平行四边形”等概念的建立。)。
2、小组代表汇报实验成果,并演示拼摆的操作过程,说明拼摆的方法。“我的发现”这一栏教师要鼓励学生充分、大胆地发言,说出自己在操作中的发现,教师给予鼓励。(设计意图:让学生汇报实验成果,教师给予表扬肯定,使学生体验学习成功的喜悦,设置“我的发现”这一开放性的问题,培养学生发散思维的能力。)。
3、课件演示三角形拼摆成平行四边形的过程。(设计意图:先让学生动手拼摆,再播放课件演示这一顺序必须把握好。先让学生自由做实验,有利于学生在操作过程中自由发挥,而不束缚学生的想象力和思维能力。学生汇报实验成果之后,再观看课件演示,这就更形象、更直观,更生动的展现了图形拼摆的过程,有利于学生形象思维能力的培养。)。
4、小组合做,讨论问题。
问题:两个完全一样的三角形可以拼成?
每个三角形的面积等于?这个平行四边形的底等于?这个平行四边形的高等于?三角形的面积公式是?学生借助手中的图形讨论问题。小组代表汇报讨论学习成果。
(设计意图:让学生亲自讨论、交流中发现三角形的底、高和面积与所拼成的平行四边形的底、高和面积的关系,帮助学生对三角形面积公式的推导。培养学生的合作学习意识。)。
(三)巩固拓展。
1、课件出示解决红领巾面积的练习。
学生独立计算,教师指名学生上黑板板演。
课件演示规范的板演过程。(设计意图:基本题的设计,巩固了学生对基本知识的掌握。渗透对估算的学习)。
2、出在同一三角形中底对应的高的练习来解决问题。
3、以生活为例交通警示牌进行安全教育,计算面积。
(四)全课总结。
同学们,这节课经过大家亲自实验,归纳推导出了三角形面积计算的公式,真了不起!但请大家仔细想想,这节课,你们还有什么问题吗?(设计意图:一堂课的学习,不能让学生产生错觉,认为把本节课所有的问题都解决了,教师要注重培养学生的问题意识,学生产生了疑问,才会积极地去探究。)。
这节课我们学习的是三角形面积的计算,说说你都获得了哪些知识?
三角形面积的教案篇十六
2、通过操作、观察、比较,进一步发展空间观念,提高分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
理解和掌握怎样用两个完全一样的三角形转化成平行四边形,推导出三角形的面积计算公式。
1、若干个完全一样的按比例放大的锐角三角形、直角三角形、钝角三角形。一套多媒体课件。
2、每个学生准备一个长方形、两个平行四边形,一把剪刀。
2、解决方案:
师:要想知道三角形的面积怎样求,你想用什么方法来研究?你是怎么想到的?
(前面我们刚学过平行四边形面积的推导,是把平行四边形通过分割、平移、拼补转化成长方形研究的,所以我想到了转化的方法。板书:转化)。
师:今天这节课让老师陪着大家运用转化的方法研究三角形的面积。
(一)实验一:剪。
1、师:下面让我们做几个实验,好不好?
(学生拿出准备好的一个长方形,两个平行四边形。平行四边形上画好底和高。)。
2、(1)师:请大家拿出准备好的三个图形,平放在桌上,用剪刀沿虚线把它们剪开,剪开后一对一对的放在一起。(标上1、2、3号)。
(3)师:通过刚才的实验我们知道一个平行四边形可以分成两个三角形,这两个三角形大小、形状怎样?你怎么知道的?(学生演示重合的过程)。
师:重合了,在数学上叫“完全一样”(板书:两个完全一样)。
师:现在你能用“完全一样”说一说我们剪到的`三角形吗?(学生说1号是两个完全一样的三角形,2号、3号是两个完全一样的三角形)。
学生演示重合过程,课件演示剪、重合的过程。
师:谁能说一说根据刚才的实验,你想到了什么?
小结并出现字幕:一个平行四边形可以分成两个完全一样的三角形。
(4)师:这两个三角形与原来平行四边形面积相等,(课件演示两个完全一样的三角形拼成平行四边形的过程)其中一个三角形的面积和原来平行四边形的面积有什么关系?(课件闪动演示,学生回答,出现字幕:其中一个三角形的面积等于这个平行四边形面积的一半)。
师:谁能完整地说一说,通过刚才的实验,你得出什么结论?看字幕说:一个平行四边形可以分成两个完全一样的三角形。其中一个三角形的面积等于这个平行四边形面积的一半。
说一说1号、2号、3号各是什么三角形?(板书:锐角三角形、直角三角形、钝角三角形)。
三角形面积的教案篇十七
核心提示:本节课是在学生已掌握了长方形、正方形、平行四边形的面积计算的基础上进行教学的。教学这部分内容对于培养学生识别图形,解决日常生活中的简单实际问题,发展学生空间观念和初步的逻辑思维能力都有重要意义,也是进。。。
本节课是在学生已掌握了长方形、正方形、平行四边形的面积计算的基础上进行教学的。教学这部分内容对于培养学生识别图形,解决日常生活中的简单实际问题,发展学生空间观念和初步的逻辑思维能力都有重要意义,也是进一步学习几何知识的基础。
在教学中我力求突破传统教学的模式,充分体现以“学生发展为本”的`教学理念,在获取新知的过程中大胆放手,引导学生自主探索,培养学生的创新意识和实践能力。通过创设情境,激发学生探索的欲望。数方格的方法是求三角形面积的一种方法,但不是最普通适用的方法,为了引起学生对探索三角形面积产生强烈的欲望,在学生用数方格的方法求平行四边形、三角形面积的基础上,我有意出示一块很大很大的草地,问学生还能用数方格的方法求它的面积吗?从而激发学生初步探究。
引导学生结合复习环节中的平行四边形面积的推导过程,想到把三角形转变成已学过图形的面积进行计算。组织学生在操作中探索三角形面积的计算方法。课前我请学生准备了一些三角形,课中让学生自由选择一种三角形(锐角,直角,钝角三角形),用剪一剪,拼一拼,摆一摆,移一移等方法进行操作、探索,在学生展示出各种转化图形后,引导学生主动探索、观察、发现、讨论、交流研究图形与已学图形之间的内在联系,大胆推导三角形的面积计算公式,培养了学生的自主创新精神。经历探索之后的获得的成功,是另人快乐的,学生对数学的感受是美好的,这正是我们教师的期待,放手让学生去做、去发现、去探索,让学生体会到成功的快乐。
三角形面积的教案篇十八
教学目标:
1.通过操作探究三角形三边关系,知道三角形任意两边之和大于第三边。
2.根据三角形三边关系解释生活中的现象,提高解决实际问题的能力。
3.通过积极参与探究活动,在活动中获得成功的体验,产生数学学习的兴趣。
教学重点:
知道三角形的三边关系,并运用到实际生活中。
教具准备:
小棒、记录表1、记录表2、多媒体课件。
教学过程:
一、复习导入。
生:b没有封口c的两个端点没有连接。
师:看来要围成三角形这三条边一定要做到。
生:首尾相连。
师:那老师给你3根小棒你能围三角形吗?都这么肯定能围?
二、操作探究,引入新知。
(学生活动)。
(教师板书整理)。
师:和他们小组结果一样的举手,不一样的举手。
生:2、6、8不能围成。
师:嗯,这里有问题了,我们先来标注一下。
那2、5、8这一组怎么没有围成三角形呢?
生:有两条边连不起来。
师:会围成什么样子呢?你的情况和我一样吗?到最后2和5这两条小棒还是没有连到一块,围不成三角形。(课件展示)大家再来看:2厘米加5厘米等于(7厘米)比下边的8厘米短。哦,这样的不能围成三角形。
师:那2.6.8这三根小棒到底能不能围成呢,咱们再重新认真地围一围。
(同桌两人一起操作)。
师:好了,认为不能围成的请举手,认为能围成的请举手,赶紧把你们的作品展示给大家看一看。你们还说围不成,这不是围成了吗?(展台展示学生作品)。
生:这个地方没连起来(学生到前边指)。
师:你们看见了吗?
生:看见了。
师:观察真仔细,这三条小棒没有做到首尾相连所以不是三角形。
师:仔细观察一下你围成的图形,认为自己围成的是三角形的举手。
都没有了,刚才还有很多,怎么现在没有了?
生:要不这边没连起来,要不那边连不起来。
师:那通过刚才的操作你的.结论是。
生:围不成。
生:变成了两条线段。
师:这两条线段是(一样长的)。
通过刚才的操作演示我们确定了2、6、8这一组确实不能围成三角形。
师:同学们想一想,三根小棒一定能围成三角形吗?(课件展示)。
生:不一定。
生:与小棒的长度有关。
师:你们说的各不相同但是老师发现了你们都觉得与三角形的三条边的长度有关,那到底怎样的三条边能围怎样的三条边不能围?这节课我们就来探索一下三角形的三边关系。(板书课题)。
同学们对这个结果还有什么意见吗?
生:没有。
师:那接下来你还想研究什么?
生:为什么有的能围成,有的不能围成?
生:上边这两条加起来和另一条边相等、上边这两条边加起来比另一条边短。
生:上边这两条边加起来比另一条边长。
(学生活动)。
生:我们组选的是5.6.8这一组。
师:你们有什么发现?
生:我们发现两条边加起来都比另一条边长。
师:都是哪两条边呢?具体给同学们说一说。
师:也就是说这三条边我(随便两条边加起来都比另一条边长)。
是这样吗?我们看一下(课件演示)确实是啊,你们真棒,发现了这个三角形的秘密,那另一个三角形呢?谁发现了它的秘密?请你来?(展台展示记录表2)。
生:我们发现的和刚才一样,随便两条边加起来比另一条边长。
师:同意吗?
生:同意。
师:那通过刚才的研究,你能不能说说只要这三根小棒怎样就能围成三角形了?
生:随便两条边加起来比另一条长。
生:三个。
三、应用新知,解决实际问题。
课件展示题目。
1、5cm4cm6cm能围成吗?
三个条件都符合吗?我们一起来看一下。课件演示。
4+6的和大于5吗?5+6的和大于4吗?5+4的和大于6吗?
三个条件都符合,说明能围成。
2、2、4、6cm能围成吗?理由?会成什么情况。
3、这次老师要提高要求了,请你快速判断,行不行?
5、8、4cm。
师:又对又快,你是怎么判断的?
生:三个算式。
师:他是看了三个算式,都是这样想的吗?谁还有不一样的想法?
生:5+48。
师:他只看了一个条件。另外两个就不看了吗?为什么?
师:这个道理说得真好,看来咱们只看一个条件就可以了,看哪一个呢?
生:5+48。
5、6、9cm为什么?用的很好。
4、再来一个3、1、5cm能不能?为什么?会是什么情况?
生:任意选2条加起来。
师:从学校到少年宫有几条路线?走哪条路近?能不能用今天咱们学的知识来解释一下?
2条路线正好构成了一个三角形,第1条路线就是三角形2条边的和肯定大于第2条路线。
其实啊在我们生活中经常用到三边关系解决问题,课后咱们同学要多观察。
练习题三。
生:7+10<18。
师:那同学们想一想,现在老师就给你7cm和10cm这2根小棒,请你再给它配上一根小棒,让它们能围成三角形,除了可以是8cm和10cm之外,这根小棒还可以是多长?注意一定要是整厘米数不能出现小数,把你找到的小棒的长度写在练习本上。
完成的同学请坐好,谁来说说你配了哪些长度的小棒。
生:6、5、4、3、2cm。
生:2、3cm不行。
师:为什么不行?
生:2+7<103+7=10。
师:好,我把2和3擦掉。谁还想说?
生:大于4cm的都可以。
师:大于4cm的都可以,同意吗?
生:不同意,举个例子。
师:好,谁还有补充。
生:小于17cm。
师:17cm能围吗?
师:只要小棒的长度从(4cm到16cm)就可以了。
四、课堂小结。
好了同学们课上到这已经差不多了,想想这节课你有什么收获吗?
三角形面积的教案篇十九
教学目标:
1、了解三角形的稳定性作用。
2、掌握三角形的特点。
3、会画三角形及能标出三角形的高和相对应的底。
教学重难点:
1、掌握三角形的特点。
2、能标出三角形的高及相对应的底。课时安排:一课时。
教学准备:ppt。
教学过程:
1、谁发现了三角形?
课前把已准备好的三角形发给同学们,每人一张。
师:同学们,上课了哈,看谁还没坐好的'?老师这边有几张图片,同学们可要认真看好咯、看看谁最快找到老师要问的问题的答案??(出示ppt:谁发现了三角形?在哪儿?)。
2、起名字,说特点。
看完图片,找到三角形后(图片选取的都是生活中的图片),既然三角形在生活中的运用如此广泛,让同学们动手画画三角形,任意画一个三角形,请同学来说说自己发现的三角形的特点。
生:...
师:那么现在老师请同学们拿出课堂作业本,在本子上任意画一个三角形。(2。
分钟后)。
师:画完三角形的同学想想三角形有什么特征。待会儿老师请几位同学来说说哈。生:??
师:是啊,三角形的各部分都有它的名称呢,大家再看看自己画的三角形,看看三角形都有什么共同的特点呢?(出示一个三角形,问题:大家画的三角形都有什么共同点呢?)。
生:...
3、到底什么样的图形叫三角形呢?
先给出三角形的定义,重点解释三角形含义中的“围成”,然后给一组图形让学生找出哪些是三角形哪些不是三角形,并给予命名。
生:...
师:同学们刚刚都有提到一点儿,说的都很棒呢,现在请同学们翻开课本80页,在80页的最下面,我请位同学起来念下,要声音洪亮的。
生:...
师:同学们刚刚有没听见**同学把什么字念得特别的大声啊?
生:...
师:看来同学们上课都很认真呢,听得很仔细。是啊,那围成是什么意思呢?我请几位同学说说。
生:....
生:...
(这一环节主要是为了巩固三角形的含义。)。
生:...
师:为了表达方便,我们可以用字母a、b、c分别表示三角形的三个顶点,也可以用efg,还可以用123??那么上面的三角形就可以表示成三角形abc。(出示ppt)。
4、怎么画高和标底呢?
先是在ppt上演示一遍画高的过程及要注意的地方,然后请同学们也动手画任意一条高,在那几份同学们画的投影给同学们看是否是对的,在再针对可能画错的地方,在投影仪上演示一遍。(强调用直角三角板,一手握住三角板的斜边,一直角边对着三角形一条边,然后慢慢的平移到你所要画的顶点,用虚线连接,并标上直角符号,在顶点所对的那条边写上“底”)。
师:那我们再来看一遍吧??这是最后一边咯,要认真观察哈。
师:现在,请同学们在刚刚老师发给大家的三角形上,任意画上一条高并标出那条高所对的底。(3分钟后)。
师:都画完了吗?有谁愿意把自己的作品拿上来和大家分享分享的啊?生:??
生:...
(注重画法,及高所对的底)。
5、三角形有什么作用呢?
先做一个小实验,道具是一个三角形和一个四边形,然后请同学们上来拉动图片的任意一条边,目的是为了引出三角形的稳定性。
师:高都学会画了吗?那现在呢,我们来做一个小实验,老师这边啊,有一个三。
角形和一个四边形,现在老师请一位同学上来拉拉这两个图形,看看会有什么变化?
生:...(四边形易变形三角形不易变形。)。
师:那这个小实验证明了什么呀?
生:...三角形具有稳定性。)。
师:老师现在想让四边形也不变形,可是手上只有一条这样的棒棒,该怎么办啊?请学生上台演示。
生:...
三角形面积的教案篇二十
今天我说课的内容是第9册的“三角形面积的计算”。
在学这课之前,学生已有的知识基础有:长方形、正方形、平行四边形的面积计算;一些简单多边形的特征等。学习方法方面的基础有:在学习习近平行四边形面积计算的时候,学生已经初步感受了可以用剪拼、平移、旋转等操作活动,使图形等积变形。事实上,在学这课之前,部分学生对三角形面积计算的公式并不是一无所知,但那只是一种机械记忆,知道公式,说不清所以来。
教学目标:
1、使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确计算三角形的面积,并应用公式解决简单的实际问题。
2、使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。
教学重点:
将本文的word文档下载到电脑,方便收藏和打印。
【本文地址:http://www.xuefen.com.cn/zuowen/10569540.html】