人教版八年级数学教案全册课件(热门15篇)

格式:DOC 上传日期:2023-11-10 23:43:17
人教版八年级数学教案全册课件(热门15篇)
时间:2023-11-10 23:43:17     小编:ZS文王

教案是根据教学大纲,针对学习内容、学习目标和学生特点而设计的教学活动计划。要编写一份完美的教案,首先需要明确教学目标和学生的学习需求。大家可以参考下面的教案案例,了解一下如何编写一份高质量的教案。

人教版八年级数学教案全册课件篇一

学习目标:

1、巩固对整式乘法法则的理解,会用法则进行计算。

2、在学生大量实践的基础上,是学生认识单项式乘以单项式法则是整式乘法的关键,“多乘多”、“单乘多”都转化为单项式相乘。

3、在通过学生练习中,体会运算律是运算的通性,感受转化思想。。

4、进一步培养学生有条理的思考和表达能力。

学习重点:整式乘法的法则运用。

学习难点:整式乘法中学生思维能力的培养。

学习过程。

1.学习准备。

1.你能写出整式乘法的法则吗?试一试。

2.谈谈在整式乘法的学习过程中,你有什么收获?有什么不足?

利用课下时间和同学交流一下,能解决吗?

2.合作探究。

1.练习。

(1)(-5a2b)(2a2bc)(2)(-ax)(-bx3)。

(3)(2x104)(6x105)(4)(x)•2x3•(-3x2)。

2、结合上面练习,谈谈在单项式乘单项式运算中怎样进行计算?要注意些什么?

3、练习。

(1)(-3x)(4x2-x+1)(2)(-xy)(2x-5y-1)。

(3)(2x+3)(4x+1)(4)(x+1)(x2-2x+3)。

4、结合上面练习,体会单项式乘多项式、多项式乘多项式运算中,都是以单项式乘单项式为基础、运用乘法分配律进行计算。

3.自我测试。

1、3x2•(-4xy)•(-xy)=。

2、若(mx3)•(2xn)=-8x18,则m=。

3、一个长方体的长、宽、高分别为3x-4,2x和x,它的体积是。

4、若m2-2m=1,则2m2-4m+的值是。

5、解方程:1-(2x+1)(x-2)=x2-(3x-1)(x+3)-11。

6、当(x2+mx+8)(x2-3x+n)展开后,如果不含x2和x3的项,求(-m)3n的值.

7、计算:(y+1)(y2-y+1)+y(1+y)(1-y),其中y=-.

8、(北京)已知x2-5x=14,(x-1)(2x-1)-(x+1)2+1的值。

9、某公园要建如图所示的形状的草坪(阴影部分),求铺设草坪多少m2?若每平。

方米草坪260元,则为修建该草坪需投资多少元?

人教版八年级数学教案全册课件篇二

5.在同一平面内,用两个边长为a的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是()。

a、矩形b、菱形c、正方形d、梯形。

答案:b。

知识点:等边三角形的性质;菱形的判定。

解析:

解答:用两个边长为a的等边三角形拼成的四边形,它的四条边长都为a,根据菱形的定义四边相等的四边形是菱形.根据题意得,拼成的四边形四边相等,则是菱形.故选b.

分析:此题主要考查了等边三角形的性质,菱形的定义.

6.用两个边长为a的等边三角形纸片拼成的四边形是()。

a、等腰梯形b、正方形c、矩形d、菱形。

答案:d。

知识点:等边三角形的性质;菱形的判定。

解析:

解答:由于两个等边三角形的边长都相等,则得到的四边形的四条边也相等,即是菱形.由题意可得:得到的四边形的四条边相等,即是菱形.故选d.

分析:本题利用了菱形的概念:四边相等的四边形是菱形.

人教版八年级数学教案全册课件篇三

一、教学目的:

1.掌握菱形概念,知道菱形与平行四边形的关系.

2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.

3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.

4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.

二、重点、难点。

1.教学重点:菱形的性质1、2.

2.教学难点:菱形的性质及菱形知识的综合应用.

三、例题的意图分析。

本节课安排了两个例题,例1是一道补充题,是为了巩固菱形的性质;例2是教材p108中的例2,这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题.此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识.

四、课堂引入。

1.(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?

2.(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.

人教版八年级数学教案全册课件篇四

1.重点:勾股定理逆定理的应用.

2.难点:勾股定理逆定理的证明.

3.疑点及分析和解决方法:勾股定理逆定理的证明方法,又是学生前所未见的,是运用代数计算方法证明几何问题,是解析几何中研究问题的方法,以后会逐步见到,这一点要让学生有所认识.

人教版八年级数学教案全册课件篇五

严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。

人教版八年级数学教案全册课件篇六

1.使学生理解并能证明勾股定理的逆定理.

2.能应用逆定理判断一个三角形是否是直角三角形.

3.使学生进一步加深性质定理与判定定理之间关系的认识.

4.使学生初步了解,用代数计算方法证明几何问题这一数学思想方法对开阔思路,提高能力有很大意义.

人教版八年级数学教案全册课件篇七

(1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。

(2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述)。

(3)、问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。

(4)、这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。

2、教材p145例5的意图。

(1)、通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售,以便给商家合理的建议。

(2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述)。

(3)、例5也反映了众数是数据代表的一种。

人教版八年级数学教案全册课件篇八

教学目标:

探究:知道茎的向光性是植物器官受单向光照射所引起的弯曲生长现象。

知识:到校园或大自然中细心观察植物茎的特点,推测茎的生长特性,并能自行设计科学合理的实验,细心观察并做好记录,根据接的事实归纳分析茎的向光性。

情感:通过对茎的观察、推测、实验、记录等活动激发学生研究科学的兴起,培养学生爱护环境与自然和谐相处的态度和品质,在实验活动中培养他们认真细致习惯。

教学重点:知道茎的向光性是植物器官受单向光照射所引起的弯曲生长现象。

教学难点:植物茎的生长特点。

教具准备:硬纸盒、白纸、剪刀、小尺子、记录本等。

教学方法:实验观察。

教学过程:

一、导入问题:

2、平时生活中你对树枝的生长情况有何发现?

二、观察树枝生长情况。

1、划分小组观察区域。

2、提出观察要求和注意事项:

(1)观察时一定要认真细致;。

(2)要尽量与组员合作观察;。

(3)注意安全;。

(4)不伤害树木。

3、小组活动。

4、活动情况交流,交流以小组代表发言的方式进行,根据观察到的现象,推测茎的生长有向光特性。

三、讨论制定科学合理的实验方案,研究茎的向光特性。

1、提问:我们怎样科学合理地观察到茎的生长呢?

3、交流。

4、小组讨论:为了能更有效地研究发现茎的生长特征。应怎样实验效果更好?

5、课外进行实验观察听见。

6、指导做好观察记录表。

四、总结与拓展。

1、整理记录并发现出茎有向光性。

2、农业种植倡导“合理密植”说明了什么科学道理?

3、植物茎的向光特性对植物自身生长有何意义?你有何启发?

人教版八年级数学教案全册课件篇九

1、认识中位数和众数,并会求出一组数据中的众数和中位数。

2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。

3、会利用中位数、众数分析数据信息做出决策。

人教版八年级数学教案全册课件篇十

一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算。

二、重点、难点。

1、重点:熟练地进行分式乘方的运算。

2、难点:熟练地进行分式乘、除、乘方的混合运算。

3、认知难点与突破方法。

顺其自然地推导可得:

===,即=。(n为正整数)。

归纳出分式乘方的法则:分式乘方要把分子、分母分别乘方。

三、例、习题的意图分析。

1、p17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判。

断乘方的结果的符号,在分别把分子、分母乘方。第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除。.

2、教材p17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习。同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好。

分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点。

四、课堂引入。

计算下列各题:

(1)==()(2)==()。

(3)==()。

[提问]由以上计算的结果你能推出(n为正整数)的结果吗?

五、例题讲解。

(p17)例5.计算。

[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方。第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除。

六、随堂练习。

1、判断下列各式是否成立,并改正。

(1)=(2)=。

(3)=(4)=。

2、计算。

(1)(2)(3)。

(4)5)。

(6)。

七、课后练习。

计算。

(1)(2)。

(3)(4)。

八、答案:

六、1.(1)不成立,=(2)不成立,=。

(3)不成立,=(4)不成立,=。

2、(1)(2)(3)(4)。

(5)(6)。

七、(1)(2)(3)(4)。

人教版八年级数学教案全册课件篇十一

教学目标:

1.认识“左、右”的位置关系,体会其相对性。

2.能够初步运用左右描述物体的位置,解决实际问题。

3.通过生动有趣的数学活动,使学生体会到学习数学的乐趣。

教学重点:

认识“左、右”的位置关系,体会其相对性。

教学难点:

运用左右描述物体的位置,解决实际问题。

教学过程:

一、创设情境,导入新课。

1.同学对你的同桌说一说,哪只是右手,哪只是左手。

2.我们要来认识“左右”。(板书课题:左右)。

二、联系自身,体验左右。

1.摸一摸。

(2)哪只是左脚?哪只是右脚?

(4)还有左耳和右耳。

(5)还有左眼和右眼。

(6)还有左肩和右肩。……。

(7)生每说一种,教师都引导全体学生用手摸一摸。

三、实际操作,探索新知。

1.摆一摆。

游戏做完了,现在我们要开始摆文具了。同桌的同学互相合作,听清楚老师说的话。

请你在桌上放一块橡皮;。

在橡皮的左边摆一枝铅笔;。

在橡皮的右边摆一个铅笔盒;。

在铅笔盒的左边,橡皮的右边摆一把尺子;。

在铅笔盒的右边摆一把小刀。

生摆好后,师用出示正确的排列顺序,生检查自己的排列。

2.数一数。

从左数橡皮是第几个?从右数橡皮是第几个?

从左数橡皮是第二个,从右数橡皮是第四个。

为什么橡皮一会儿排第二?一会儿又排第四?

什么东西反了?能讲得更清楚一些吗?

(数的顺序反了,开始是从左数,后来是从右数。)。

师小结:也就是说,同样一个物体,从左数和从右数,结果就可能不一样。

3.爬楼梯。上楼梯时我们要靠哪边走?

下楼梯时我们又要靠哪边走?

请你们两位示范一下,把教室中间过道当楼梯,一个从前往后走是下楼梯,另一个从后往前走是上楼梯。

(生观察时师提醒:下楼梯的同学是靠哪边走?)。

(生还是有的说左边,有的说右边。)。

师:教学楼中间有一个楼梯,同学们想不想去走一走?

(全体学生进行室外活动:走上楼梯,又走下楼梯。下楼梯时,师又提醒:下楼梯时你靠哪边走?)。

回到教室。

现在同学们明白下楼梯时靠哪边走吗?

为什么上、下楼梯都靠右边走?

(如果不这样走,上、下楼梯的人就会相撞。)。

对!特别是要做课间操时楼梯比较拥挤,如果相撞就会发生危险。

4.练一练。

(出示课本第61页第3题图)他们都是靠右走的吗?

五、运用新知,解决问题。

1.转弯判断。同学们想不想去公园玩?

那我们就坐这辆大客车去吧!(师拿出玩具客车。)。

准备好,要出发了,请同学们判断客车是往左转还是往右转?

(师在“十字路口图”上演示转弯。)。

小组讨论一下,客车到底是往哪边转。

(生组内讨论交流意见。)。

师生共同小结:站的方向不同,左右也不同。在日常生活中,汽车转弯的方向常常以司机为准。

2.小游戏:我是小司机。

同桌的同学互相配合,左边的同学说命令,右边的同学用玩具小汽车在“十字路口图”上转弯,然后交换角色。

六、课堂总结。

通过这节课,你有哪些收获?你印象最深的是什么?你有什么感想吗?

人教版八年级数学教案全册课件篇十二

1、理解分式的基本性质。

2、会用分式的基本性质将分式变形。

二、重点、难点。

1、重点:理解分式的基本性质。

2、难点:灵活应用分式的基本性质将分式变形。

3、认知难点与突破方法。

教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。

三、例、习题的意图分析。

1.p7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。

2.p9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。

3.p11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。

“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.

四、课堂引入。

1、请同学们考虑:与相等吗?与相等吗?为什么?

2、说出与之间变形的过程,与之间变形的过程,并说出变形依据?

3、提问分数的基本性质,让学生类比猜想出分式的基本性质。

五、例题讲解。

p7例2.填空:

[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。

p11例3.约分:

[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。

p11例4.通分:

[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号。

[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变。

解:=,=,=,=,=。

六、随堂练习。

1、填空:

(1)=(2)=。

(3)=(4)=。

2、约分:

(1)(2)(3)(4)。

3、通分:

(1)和(2)和。

(3)和(4)和。

4、不改变分式的值,使下列分式的分子和分母都不含“-”号。

(1)(2)(3)(4)。

七、课后练习。

1、判断下列约分是否正确:

(1)=(2)=。

(3)=0。

2、通分:

(1)和(2)和。

3、不改变分式的值,使分子第一项系数为正,分式本身不带“-”号。

(1)(2)。

八、答案:

六、1.(1)2x(2)4b(3)bn+n(4)x+y。

2、(1)(2)(3)(4)-2(x-y)2。

3、通分:

(1)=,=。

(2)=,=。

(3)==。

(4)==。

4、(1)(2)(3)(4)。

人教版八年级数学教案全册课件篇十三

采用教材原有的引入问题,设计的几个问题如下:

(1)、请同学读p140探究问题,依据统计表可以读出哪些信息。

(2)、这里的组中值指什么,它是怎样确定的?

(3)、第二组数据的频数5指什么呢?

(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。

人教版八年级数学教案全册课件篇十四

教学目标:。

1.在生活实例中认识轴对称图。

2.分析轴对称图形,理解轴对称的概念。

3.了解两个图形成轴对称性的性质,了解轴对称图形的性质。

教学重点1、轴对称图形的概念;2、探索轴对称的性质。

教学难点1、能够识别轴对称图形并找出它的对称轴;。

2、能运用其性质解答简单的几何问题。

教学方法启发诱导法。

教具准备多媒体课件。

教学过程。

一、情境导入。

同学们,自远古以来,对称的形式被认为是和谐、美丽的.不论在自然界里还是在建筑中,不论在艺术中还是在科学中,甚至最普通的日常生活用品中,对称的形式都随处可见,对称给我们带来了美的感受!而轴对称是对称中重要的一种,今天让我们一起走进轴对称世界,探索它的秘密吧!

从这节课开始,我们来学习第十二章:轴对称.今天我们来研究第一节,1.认识生活中的轴对称图形,并能找出轴对称图形的对称轴。2.了解两个图形成轴对称,能找出它们的对称轴及对应点。3.弄清轴对称图形,两个图形成轴对称的区别与联系。

人教版八年级数学教案全册课件篇十五

加权平均数.

(二)内容解析。

学生在第二学段已学过平均数,初步了解了平均数的实际意义,这个课时将在此基础上,在研究数据集中趋势的大背景下,学习加权平均数,体会权的意义、作用,并进一步体会平均数是刻画一组数据集中趋势的重要的统计量,是一组数据的“重心”.

教科书设计了以招聘英文翻译为背景的实际问题,根据不同的招聘要求,各项成绩的“重要程度”不同,从而平均成绩不同,由此引入加权平均数的概念.权的重要性在于它能够反映数据的相对“重要程度”.为了更好地说明这一点,教科书设计了“思考”栏目和例1,从不同方面体现权的作用,使学生更好地理解加权平均数,体会权的意义和作用.

基于以上分析,本节课的教学重点是:对权及加权平均数统计意义的理解.

二、目标和目标解析。

(一)目标。

1.理解加权平均数的统计意义.

2.会用加权平均数分析一组数据的集中趋势,发展数据分析能力.

(二)目标解析。

1.理解权表示数据的相对“重要程度”,体会权的差异对平均数的影响,会计算加权平均数.

2.面对一组数据时,能根据具体情况赋予适当的权,并根据得到的加权平均数对实际问题作出简单的判断.

三、教学问题诊断分析。

加权平均数不同于简单的算术平均数,简单的算术平均数只与数据的大小有关,而加权平均数则还与该组数据的权相关,学生对权的意义和作用的理解会有困难,往往造成数据与权混淆不清,只会利用公式,而不知加权平均数的统计意义.

本节课的教学难点是:对权的意义的理解,用加权平均数分析一组数据的集中趋势.

四、教学支持条件分析。

由于教学重点是对加权平均数意义的理解,可以用电子表格excell来辅助计算加权平均数,同时加深对权意义的理解.

五、教学过程设计。

(一)创设情境,提出问题。

通过已有的统计学方面的知识,我们知道当收集到一些数据后,通常用统计图表整理和描述这些数据,为了进一步获取信息,还需要对数据进行分析,小学时我们学习过平均数,知道它可以反映一组数据的平均水平.本节我们将在实际问题情境中,进一步探讨平均数的统计意义,并学习中位数、众数和方差等另外几个统计量,了解它们在数据分析中的作用.

师生活动:阅读章引言.

设计意图:让学生回顾统计调查的一般步骤,了解本节的大致内容,体会数据分析是统计的重要环节,而平均数等统计量在数据分析中起着重要作用.

问题1一家公司打算招聘一名英文翻译,对甲、乙两名候选人进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:

应试者听说读写。

甲85788573。

乙73808283。

如果这家公司想招一名综合能力较强的翻译,该录用谁?录用依据是什么?

师生活动:学生提出评判依据,若学生提出以总分作为依据,教师要引导学生思考:已学过的哪个统计量可反映数据的集中趋势?学生计算平均数,解决问题.

设计意图:回顾小学学过的平均数的意义,为引入加权平均数作铺垫.

追问1:用小学学过的平均数解决问题2合理吗?为什么?

追问2:如何在计算平均数时体现听、说、读、写的差别?

师生活动:教师适时地追问,学生自主设计计算平均数的方法,教师收集整理学生的计算方法,并统一计算形式,讲解权的意义及加权平均数.

设计意图:追问1让学生理解问题2与问题1的有区别,问题2中的每个数据的“重要程度”不同,追问2让学生自主探究如何在计算平均数时体现的每个数据的“重要程度”不同,从而体会权的意义.

(二)抽象概括,形成概念。

【本文地址:http://www.xuefen.com.cn/zuowen/10456870.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档