方程的意义教学设计课(专业14篇)

格式:DOC 上传日期:2023-11-10 20:57:18
方程的意义教学设计课(专业14篇)
时间:2023-11-10 20:57:18     小编:琉璃

文学作品是人类情感和思想的抒发。学习是一种终身的行为,我们应该保持求知的热情,并不断充实自己的知识库。如果你正在纠结如何写一篇好的总结,不妨看看下面这些范文,或许能给你一些启示。

方程的意义教学设计课篇一

方程的意义对学生来说是一节全新的概念课,让学生用一种全新的思维方式去思考问题,拓展了学生思维的空间,是数学思想方法认识上的一次飞跃.方程的意义是学生学了四年的算术知识,及初步接触了一点代数知识(如用字母表示数)的基础上进行学习的,同时也是学习"解方程"的基础,是渗透用方程表示数量关系式的一个突破口,是今后用方程解决实际问题的一块奠基石.

根据新课标的要求,结合教材的特点和学生原有的相关认识基础及生活经验确定本节课的教学目标:

1,使学生在具体的情境中理解方程的含义,体会等式与方程的关系,并会用方程表示简单情境中的等量关系.

2,经历从生活情境到方程模型的构建过程,使学生在观察,描述,分类,抽象,交流,应用的过程中,感受方程的思想方法及价值,发展抽象思维能力和增强符号感.

3, 让学生在学习中体验到数学源于生活,充分享受学习数学的乐趣,进一步感受数学与生活之间的密切联系.

教学重点:理解方程的含义,以及在具体的情境中建立方程的模型.

教学难点:正确寻找等量关系列方程.

概念教学本来就比较抽象,而且方程思想作为一种全新的思维方式又有别于学生一贯的算术思路,因此在教学时要重视学生在理解的基础上感知方程的意义,充分利用学生原有的认识基础,关注由具体实例到一般意义的抽象概括过程,尽量直观化,生活化,发挥具体实例对于抽象概括的支撑作用,同时又要及时引导学生超脱实例的具体性,实现必要的抽象概括过程.经历从具体-----抽象------应用的认知过程.

:课件,天平,实物若干等

课前准备:利用学具(简易天平)感受天平平衡的原理.

教学过程

学生活动

设计意图

一,创设情景,建立表象

1.认识天平.

2.同学们通过课前的实际操作你发现要使天平平衡的条件是什么

(天平两边所放物体质量相等)

3.用式子表示所观察到的情景:

情景一:导入等式

(1)天平左边放一个300克和一个150克的橙子,天平的右边放一个450克的菠萝

300+150=450

(2)天平左边放四盒250克的牛奶,右边放一盒1000克的牛奶

250+250+250+250=1000

或250×4=1000

情景二:从不平衡到平衡引出不等式与含有未知数的等式

(1)

在杯子里面加入一些水,天平会有什么变化

要使天平平衡,可以怎么做

情景三:看图列等式

(1)

x+y=250

(2)

536+a=600

直观认识天平

回忆课前操作实况理解平衡原理

观察情景图,先用语言描述天平所处的状态,再用式子表示

观察课件显示的情景图,小组合作交流用等式表示所看到的天平所处的状态

数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.学生通过课前"玩学具"已建立天平平衡的条件是左右两边所放物体的质量相等的印象,通过天平的平衡原理引入等式是为下一步认识方程作好必要的铺垫,同时通过天平的直观性又进一步让学生体会等式的含义.

通过学生的观察以及对情景的描述并用等式表示,直观具体,生动形象,能充分调动学生的学习积极性和强烈的求知欲望同时又培养学生的语言表达能力及符号感(从具体情境中抽象出数量关系并用符号来表示,理解符号所代表的数量关系).

方程的意义教学设计课篇二

教学内容:

人教版课标教材小学数学第九册第四单元第53页、第54页“方程的意义”。教学目标:借助生活情境理解方程的意义,能从形式上判断一个式子是不是方程;经历从生活情境到方程模型的建构过程,感受方程思想;培养学生观察、描述、分类、抽象、概括、应用等能力。

教学重点:

准确从生活情境中提炼方程模型,然后用含有未知数的等式来表达,理解方程的意义。

教学难点:

教学过程一、呈现情境,建立方程。

1.师:(出示一台天平)请看,这是一台天平,在什么情况下天平会保持平衡呢?

提问:你能用一个式子表示这种平衡吗?(100+100=200或100×2=100)你怎么想到了用数学符号“=”来表示天平的平衡呢?(引导学生说出:这里的100+100表示的是天平左盘食物的质量,200表示的是天平右盘砝码的质量,正因为它们的质量相等,天平才会平衡,如果学生说成:食物的质量=砝码的质量,教师也给予肯定,然后问:现在已经知道这两袋食物的质量都是100克,砝码的质量是200克,那么上面的式子可以写成什么形式?)。

2.(出示两小袋食品)将左盘的食物换成两袋30克的食物,天平还是平衡的吗?为什么?你能用一个式子表示这种不平衡吗?(30+30200)咱们班谁喜欢喝牛奶?你喝吧!问:这盒牛奶被喝掉多少克了?再问:这盒牛奶现在的质量可以怎么表示?(275-x)克。

3.再将这盒喝过的牛奶放在天平的左盘,可能会出现什么情况?可以怎么表示?写一写!点名汇报,(切忌一问一答!当学生答出一种情况,老师随机问这种情况表示的是什么情况)。

(对不是方程的式子,一定要学生从本质上解释为什么不是方程)。

课件出示(配以录音):早在三千六百多年前,埃及人就会用方程解决数学问题了,在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的史料,一直到三百年前,法国的数学家笛卡尔第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。

很多以前用算术方法解起来很难的问题,用方程能轻而易举地解出来。

设计意图:

动态平衡是为了加深对方程本质的理解判断题中对不是方程的式子的合理解释,进一步明晰了方程的表现形式有别于其他等式、不等式或代数式,为了让学生感知方程的多样性,防止学生把未知数狭隘地理解为一个或者狭隘地理解为z,在这一题里设计了有两个未知数的,也设计了含有未知数a、y的。

方程的意义教学设计课篇三

1、知识目标:在自主探究的过程中,理解与掌握方程的意义,弄清方程和等式两个概念的关系。

2、能力目标:培养学生认真观察、思考分析问题的能力。渗透数学来源于实际生活的辩证唯物主义思想。

3、情感目标:通过自主探究,合作交流等教学活动,激发学生兴趣,培养合作意识。

教学重点。

教学难点。

弄清方程和等式的异同。

教具准备。

多媒体课件、作业纸。

教学设计。

一、情景导入。

师生谈话:同学们,你们玩过跷跷板吗?

(课件出示:在美丽的大森林中,山羊、小猴、小狗、小兔在做游戏)。

让学生猜测如果让山羊和小猴玩跷跷板,会出现什么结果。

(课件演示验证学生的回答,出现跷跷板不平衡的画面)。

提问:怎样才能让小动物开心地玩起来呢?

学生:让小狗、小兔加入到小猴那边。

(课件演示:跷跷板逐渐平衡。并能一上一下动起来。)。

教师小结:当两边重量差不多时,跷跷板基本保持平衡,就能很好地玩游戏了。

[评析]:动物是学生们喜欢的形象,以故事情境导入,创设生动有趣的情景,借助多媒体课件演示的优势,使学生初步感受平衡与不平衡的现象。从而紧紧抓住学生的“心”。

二、探究新知。

师:在我们的数学学习中,还有一种更为科学的平衡工具,猜猜是什么?

1、直观演示,激发兴趣。

课件出示一架天平,教师向学生介绍它的工作原理。

让学生仔细观察,现在天平处于什么状态。

提问:能用一个式子表示这种平衡状态吗?

根据学生的回答,教师板书:50+50=100。

2、继续实验,自主发现。

1)分小组实验,让学生自己动手做一做(每个小组发一些有重量的砝码和学生自己手中的书本等)。

要求:三组设计平衡状态,三组设计不平衡状态。并据此列式。

2)、学生实验,教师巡回作指导。

3)、学生交流汇报,教师板书:

平衡状态的:50+10=6050=20+书……。

不平衡状态的:50+30﹥两本书50﹤三本书……。

4)、学生动手把不平衡状态的天平调平衡并列式。

50+30=四本书50+10=三本书。

5)、师生一起把书用字母代替:。

3、整理分类,认识方程。

1)、学生把上没面的式子进行分类。

2)、让学生明确:像这些含有等号的式子都是等式。(板书:等式,标出大集合圈)。

观察右边三个等式与左边一个等式有什么区别?

学生很快明确:右边的等式里都含有未知数。(在等式前面板书:含有未知数)。

教师。

总结。

:我们把右边这三个含有未知数的等式称为方程。

3)、学生齐读方程的意义,同桌互相说出一个方程。

[评析]:这部分教学设计为学生提供了充分的从事数学活动的机会,让学生动手去操作,去合作。让学生通过观察、思考、尝试分类、交流,积极主动的参与到数学活动中来,并初步渗透了数学中的集合思想。

三、

巩固拓展。

课件出示两个小动物争吵的画面。

小狗:我知道了,所有的方程一定是等式。

小兔:不对不对,应该说所有的等式一定都是方程。

判断谁说的对,并叙述理由。

四、总结。

学生阅读数学小知识“你知道吗?”

五、作业。

练习十一的1题。

教学反思。

1、利用兴趣调动学生的积极性,让学生主动参与。

生活是兴趣的源泉,体验是主动参与的动力。通过直观演示、学生实验,调动了学生的积极性和参与的热情,每一个学生都积极的加入了学习的热流中来。教学当中始终注意激发学生的学习兴趣,增强学生学习的信心。给学生提供了充分的归纳、类比、猜测、交流、反思的时间和空间,使学生的思维能力得到了进一步的提高。

2、关注情景教学。

在本节课中,将枯燥的方程概念融于浅显生动的情景中。导入利用小动物创设了生动有趣的教学背景,整个教学过程中,学生始终对天平的所有情景保持着浓厚的兴趣。通过天平称重的实验,让学生尝试用数学知识来描述实验现象,使学生获得了等式和不等式的知识。

教学反思《方程意义》教学反思。

方程的意义教学设计课篇四

1.理解和掌握等式与方程的意义,明确方程与等式的关系。

2.通过自主探究.合作交流激发学生的学习兴趣,养成合作意识。

3.感受方程与生活的密切联系,发展抽象思维能力和符号感。

理解和掌握方程的意义。

弄清方程和等式的异同。

符号化思想,转化的思想,数形结合的思想。

一.创设情境,引出问题

学生活动及达成目标

1.同学们,谁还记得《曹冲称象》的故事?

2.谁能简单地说一下曹冲是利用什么原理称出了大象的重量呢?

3.同学们其实在生活中有很多工具能帮我们测量出相同重量的物体。今天就先来认识其中的一种:天平。

简单介绍《曹冲称象的故事》

能说出让大象和石头的重量相等,再称石头的重量。

达成目标:创设贴近学生实际不仅能集中学生注意力,调动学生的积极性,激发学习兴趣,也为下面出示天平做好铺垫。

二.共同探索,总结方法

教师活动

学生活动及达成目标

1.出示天平:让学生说一说对天平有哪些了解?

如果学生说得不全教师做补充:使用天平一般是左盘放物体,右盘放砝码;指针在中间说明天平平衡。

2.合作探究。

(1)在天平的右边放一个100g的砝码,怎样才能让天平平衡呢?

用算式怎样表示呢?

让学生观察式子,等号左边与右边相等,这样的式子就是一个等式。(板书:等式)

(2)把一个杯子放在天平的左边,右边放100g的砝码,让学生观察天平说一说发现了什么。

教师质疑:如果我往杯子里倒些水,观察天平现在的情况。

师:一杯水的重量是多少,怎样表示?你有办法吗?

追问:如果用未知数x来表示水的重量,那么杯子和水一共有多重,又该怎样表示呢?

教师让学生继续操作,怎样才能使天平平衡呢?

这说明了什么?

(一杯水的重量等于250g)

(5)你们能用数学算式来表示这天平的状况吗?

(师板书)

引导学生观察比较这三个算式有什么不同?

loo+x200

loo+x300

loo+x=250

师总结:像这样两边相等的算式我们把它叫做等式。(板书:等式)

(6)让学生比较50+50=100与loo+x=250两个等式,有什么不同?

教师小结:像loo+x=250这样的含有未知数的等式,称为方程。(板书:方程)

(7)引导学生思考归纳小结:

是不是所有的等式都是方程?

是不是所有的方程都是等式?

那么,方程有哪些特点?

(8)让学生仿照课本情境图,自己试着写一些方程。

自由发言,可能会说:天平有两个托盘,中间有指针;天平一边放物品一边放砝码,物品的重量与砝码的重量相等;天平可以称量物体的质量,还可以判断两个物体的质量是否相等。

让学生自主思考.交流操作,得出:在天平的左边放2个50g的砝码就可以保持平衡。

用算式表示:50+50=100。

学生认真观察,然后会发现:现在天平平衡,说明空杯子重100g。

学生看出在空杯里加一杯水后天平不平衡了。

思考得出:一杯水的重量=水的重量十杯子的重量。

学生汇报:loo+x

学生回答:天平两边不平衡,用数学算式来表示loo+x100

学生观察后分组讨论:

汇报时用式子表示:

loo+x200

loo+x300。

这时学生很容易发现这杯水的重量大于200g,小于300g。

引导学生把右边的砝码换成250g,使天平左右两边平衡。

学生自主思考,再全班交流汇报:loo+x=250

生观察后会发现:前面两个算式两边不相等,后面一个算式两边是相等的。

达成目标:通过直观演示活动,在老师引导,学生积极参与讨论.交流的过程中得出上面的式子,为下面的分类讨论环节做准备,同时培养学生观察思考.发现问题和解决问题的能力。

学生自主思考,并交流得出:第一个等式没有未知数x,第二个等式含有未知数x。

不是

达成目标:这样的设计我主要是给学生创造了一个大胆设想,敢于发现,抽象概括的机会,真正体会到自己获取知识,发现知识的成功乐趣。

三.运用方法,解决问题

教师活动

学生活动及达成目标

完成教材第63页“做一做”第1题。

完成教材第63页“做一做”第2题。

让学生说一说什么样的式子是方程,再自主判断,最后集体交流。

先说一说图意,再写方程表示数量关系。

达成目标:通过学生自主分类比较,

调动了学生的主动性和能动性,

让学生自己发现知识的形成过程,

层层递进,达到理解方程意义和掌握方程判断方法的目的,同时培养学生对比.概括能力和发散思维。

四.反馈巩固,分层练习

教师活动

学生活动及达成目标

基础练习:66页练习十四第1.2.3题。

拓展练习:见课件

五.课堂总结,提升认识

教师活动

学生活动及达成目标

这节课你运用了哪些学习方法,你有什么收获?你对自己这堂课的表现是怎么评价的?

达成目标:方程的特点:是一个等式,且含有未知数。

1.像loo+x=250这样含有未知数的等式叫做方程。

2.方程有两个重要条件:一个是等式,一个是含有未知数。

3.方程一定是等式,等式不一定全都是方程。

方程的意义教学设计课篇五

教学内容:

教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。

教学目标:

理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。

教学重点:

教学难点:

会列方程表示数量关系。

教学过程:

一、教学例1。

1.出示例1的天平图,让学生观察。

提问:图中画的是什么?从图中能知道些什么?想到什么?

2.引导。

(1)让不熟悉天平不认识天平的学生认识天平,了解天平的作用。

二、教学例2。

1.出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。

2.引导:告诉学生这些式子中的x都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有什么共同的特点。

3.讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。

三、完成练一练。

1.下面的式子哪些是等式?哪些是方程?

2.将每个算式中用图形表示的未知数改写成字母。

四、巩固练习。

1.完成练习一第1题。

先仔细观察题中的式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用x表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。

2.完成练习一第2题。

五、小结。

今天,我们学习了什么内容?你有哪些收获?需要提醒同学们注意什么?还有什么问题?

六、作业。

完成补充习题。

x+50=100。

x+x=100。

像x+50=150、2x=200这样含有未知数的等式叫做方程。

方程的意义教学设计课篇六

〖教材分析〗:

《方程》是北师大版小学数学教材四年级下册第七单元《认识方程》中的第三课时,本节课是在学生学会用字母表示数的基础上进行教学的,是学生学习代数初步知识的开始。教材运用“天平称物”等三个问题情境,引导学生用语言描述具体情境中的等量关系,并用含有未知数的等式表示,在此基础上引导学生找出这些含有未知数的等式的共同特征,了解方程的含义,会用方程表示简单的数量关系。这样设置,符合小学生的心理发展规律和认知特点,也符合《数学课程标准》第二学段的目标要求。本课的教学在学生日后学习等式的性质、解方程及运用方程解决简单的实际问题的过程中起着承上启下的作用。它是学生学习用方程解决问题的起始课,在本单元中具有重要地位。

〖学情分析〗:

本节课方程对学生来说是一块崭新的知识点,对于四年级的学生来说,理解起来也有一定的难度。在学习方程之前,学生已学过整数四则运算、运算律及用字母表示数。学生学习了“用字母表示数”,对于方程,借助天平来理解不会很困难,重点是让学生用方程表示简单情境中的等量关系。因为本节课是一节小学阶段很重要和有价值的方程课,学生习惯用算术思维考虑问题,这是学生长期养成的学习习惯,算术思维是逆向思维,还要难一些,而且这个逆向思维肯定是由顺向的思维过渡过去的,涉及的基础知识也比较多,内容容量比较大,尽管学生年龄层次比较低,但是仍希望在本节对学生从正确构建到运用都恰倒好处进行引导,预设将可能产生的问题和探求解决方法,尽量在一节课内完成,形成一个有价值和有效的教学链。

学习困难:能根据已有信息列方程,表示具体生活情景中的等量关系和抽象概括能力。

教学过程:

一、课前谈话。

师:同学们玩过翘翘板的游戏吗?跷跷板这个游戏是怎么玩的呢?

师:看来跷跷板不仅好玩,还能比较出两个人的轻重关系。

二、学习新课。

(一)、认识天平。

师:在我们的数学上,也有一种和跷跷板类似的工具,出示图片,你们认识吗?(天平)关于天平,你知道哪些知识呢?课前我们做了一些预习,谁来说一说。(a.称物体质量,b.表示两个物体质量之间的关系)(师评价:你知道的真多。)。

师:现在就让天平和我们一起进入今天的学习之旅。

(二)、合作探究。

1、引导学生感受相等关系的量。

师:拿出老师发给你们的a作业纸,先读读淘气的要求。

师:你明白了吗?那我们开始吧!

(1)、

从图中我知道:

(2)、

从图中我知道:

你能用一个式子来表示吗?

(写完式子,教师要再次问一问式子表示的意思,特别是=的意思)。

(3)、

从图中我知道:

如果樱桃的质量用x表示,你能用一个式子来表示吗?

(4)、思考:上面3副图有什么相同点?

师:观察这3个情境,它们有什么共同之处吗?(2-3名同学回答)。

(5)、教师小结:这些情境都反映了一种两个量相等的的关系,这种相等的关系叫就等量关系,等量关系不仅天平上有,在我们的生活中也有很多。我们先来欣赏一个小故事,里面也藏着一个等量关系,我们一起来找找吧!

师:这就是著名的《曹冲称象》的故事,你找到里面的等量关系了吗?

2、学生能从生活情景中找等量关系,并会用式子表示自己找到的`等量关系。

师:还想找吗?拿出你的b作业纸,这些情境也藏着等量关系,找之前,还是先读读淘气的要求吧。

师:要求明白了,我们开始找吧。

(1)、

我从图上找到的等量关系:

如果用y表示每块月饼的质量,那么请你一个式子表示这个等量关系:

(2)、

刚好倒满两个热水瓶和一杯。

我从图上找到的等量关系:

如果用z表示一个热水瓶的盛水量,请你用一个式子表示等量关系:

3、

我从图上找到的等量关系:

我用式子表示的等量关系:

(4)、师:那个小组来分享一下自己的看法?

(5)、师:观察我们列出的这些式子,他们有哪些相同的特点?(小组交流讨论)。

3、教师小结:像这样表示相等关系的式子我们把它叫做等式。如果把这些等式进行分类,你会怎么分,先想一想,再分一分:

学生汇报。

4、教师总结:像x+5=10、4y=380这样含有未知数的等式叫做方程。

师:你能和同位说说什么是方程吗?指名说什么是方程,教师板书,生齐读。

师:你认为在这句话里,哪些需要重点读呢?那我们就按这样的要求读一读。

5、师:老师也找了一些式子,它们是不是方程呢?

练习判断方程。

6、师:我们再来看这些方程,这些方程是怎么一步步列出来的呢?(你说的非常清楚:1、观察情景,2、找等量关系,3、根据等量关系列出方程。)。

教师小结:那我们以后列方程的时候就可以按照这种步骤来写了。

三、练习巩固:智创三关。

1、第一关:我学我运用,看图列方程。

课件依次出现数学书上练一练1、2、4、5、6。

2、第二关:数学小博士:你知道吗?

师:方程看似简单,但它的产生也经历了一个漫长的过程。现在我们来了解一下有关方程的历史文化:早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的史料。一直到三百年前,法国的数学家笛卡尔第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。

师:听了这段话,你有什么感受呢?看来在我们的数学史上,每一项成就的取得,都经历了漫长而复杂的形成过程。同学们,只要我们愿意积极用脑,肯于钻研,我们一定也会有所成就的。

3、第三关:我创意我精彩:任选一个方程编(或画)一个故事。

师:下面我们来一个思考无限创意大赛,任选下面一个方程编(或画)一个故事,在小组内说一说,画一画。

20+x=100。

2x=100。

师:谁来分享一下自己的创意。

四:教师总结。

师:同学们编的画的太好了,只有对方程的准确理解,才会有这么贴切奇妙的创意,下课之后我们可以把这奇妙的创意带回家给自己的和自己的爸爸妈妈一起分享。

方程的意义教学设计课篇七

1、教学设计的意义,教学设计与备课息息相关。教学设计是教师进行教与学研究活动的先决条件,也是教师上好课的关键因素之一。教学设计的好坏与课堂教学的效果息息相关。

2、怎么进行教学设计?设计什么内容&怎么设计。

教学设计要想真的有效果,第一不要从网上下载别人的教学设计,可以参考,但是要有自己的思考在里面。移植也要内化,教学设计不是给别人看的,是给自己看的。教学设计的过程中一定要体现学生的学习活动,如果教学设计只是反应老师的教学流程,但没有更多的考虑学生的学习活动,是空洞的。教师要时刻反思自己的教学对学生学习的影响。

要结合课标、学科改革意见及先进的教育教学理论,结合先进的教育教学理论,要抓住其中最核心的部分和本质,切记照搬照抄,然后根据核心部分给予学生适度的提升。教学要基于学生的认知,如果在教学之前对学生的认知有所了解,然后针对学生的认知设计教学,对后面教学能够达到事半功倍的效果。

教材无非就是个例子。——叶圣陶。

先进的教育教学理论是教学的指导,老师要给学生创立一个长期训练的教学生态环境,让学生的学生能力有所提高,教育教学理论与教学紧密结合起来,语文学科教学要更多体现文化,教育得最终目的不是传授已有的东西,而是要把人的创造能力诱导出来,将生命感、价值感唤醒。

老师的责任在于唤醒,而不在于告诉。

从知识到智慧中间有一段距离,就是学生的体验。从体验中感悟,形成自己的智慧,老师告诉学生很容易,不要轻易告诉学生,通过课程,培养一种素养。要注意素养的提升。老师想要告诉学生一个知识点很容易,自主。自主、合作、探究,探究的前提是自主,学生的潜能无限,老师应该学会放手,要相信学生,翻转课堂、学习杜郎口让学生学会自主,当学生哪天离开老师也能自主学习,用老师教授的方法去解决很多问题,由自主变为自觉,引导学生自己去发现问题,自己去解决问题,教师则要积极的去给学生创造自主学习的空间。教师要培养学生自主学习的意识和自主学习的能力,在课堂上给学生们空间去让他们呈现自己预先学到的东西,然后老师根据学生的学情来调整自己的教学。在课堂上及时调整。

课程的主要思想是什么。教学内容的选择不要面面俱到,不要贪多,要抓住核心的东西重点突破。

方程的意义教学设计课篇八

教学目标:

1.理解比的意义,知道比是表示两个数之间的一种关系。

2.会读比、写比、知道比的各个部分名称。

3.渗透“变与不变”的函数思想。

教学重点:理解比的意义,知道比是表示两个数之间的一种关系。

教学难点:沟通比与倍数、分数(百分数)、除法之间的内在联系。教学过程:

一、初步理解比是一种关系。

1、引入比。

(1)问题:一个摸球游戏,在盒子里要放黄球和红球两种球,要求黄球和。

红球按4比1,应该怎么放?

方案1:黄球4个,红球1个。

方案2:黄球8个,红球2个。

讨论:8个对2个应该是8:2,为什么也可以说成4:1,你能说明理由吗?

学生独立思考。交流:1个看作1份,4个就是4份,2个红球也可以看作1份,黄球有这样的4份,所以是4:1。黄球个数是红球个数的4倍。方案3:红球12个、白球3个;红球16个、白球4个;。。。。。。

讨论:为什么这些方法都是4:1?

(2)红球和黄球的比呢?

(3)小结:黄球个数除以红球个数等于4,黄球除以红球等于1/4。两个。

数的比其实就是两个数相除,4:1就是4除以1,1:4就是1除以4。

2、认识比的各个部分的名称。

中间象冒号的叫做“比号”,前面的`数叫做比的“前项”,后面叫做比的“后项”。

1、出示羊毛衫图。

(1)讨论:从这个2:3中,你可以得到哪些信息?

(2)2:3是羊毛和兔毛的比,那么,3:2是谁和谁的比?

2、出示新生儿图。

(1)讨论:这里的1:4是什么意思?

交流:1:4是指新生儿的头长是身长的1/4,身长是头长的4倍。

(2)如果新生儿的头长是10厘米,那么身长是多少?头长是15厘米呢?

新生儿的头长是1米呢?

说明新生儿的头长是有一定范围的。一般新生儿的身高在40到60之间。

(3)讨论:(指名以为学生)这位学生的头长与身长的比是:4吗?那么。

你估计大概是多呢?也就是说这个1:4是特指新生儿的。

3、举例。

1、出示:我坐飞机从杭州出发到成都,飞行的路程大约上1800千米,大约飞行了3小时。

(1)你看出了什么?

交流:飞机飞行的速度是1800÷3=600千米/小时。

1800:3,这是路程和时间的比。

(2)我们以前学的路程除以时间等于速度,其实就是路程和时间的比,结果就是速度。我们称它为“比值”,这里的600千米就是这个比的比值。

2、出示:嘉兴的特产是五方斋的粽子,花20元可以买4个。

讨论:你看到比了吗?

交流:总价和单价的比是20:4=5元/个。这里的比值就是单价。

四、总结提升。

1、总结。

(1)今天我们研究了什么?说说什么是比?

(2)比和我们以前学习的很多知识有联系,你能说说吗?

2、应用。(机动)。

(1)出示:地球储水量中,淡水与海水的比是4:141。

从杭州坐火车到成都,路程约是2480千米,需要行驶41小时。

今年流行16:9的宽频数字电视。

最新统计显示:我们在新生的婴儿中,男女人数的比约为119:100。

(2)说说你看懂了什么意思?

方程的意义教学设计课篇九

1、借助计数器,掌握小数的数位。

2、根据小数的数位顺序表,能理解数位顺序表上的计数单位,以及进率关系。

3、结合具体情境,能抽象出小数的基本性质的具体内容,并能牢固掌握和灵活运用。教学重点:

掌握小数的数位和计数单位。

掌握小数的基本性质。

课件、计数器。

(课件出示)1、填空。

3写成小数是10。

表示()写成小数是()100。

表示()写成小数是()表示()。

2、读一读下面一段话中的小数。

北京地铁10号线列车的'最高运行速度是80千米/时,约为米/秒。

师揭题:今天这节课,我们首先要来研究小数“”中每个数字的含义。(板书课题:小数的意义(三))。

出示计数器,师问:这个计数器有什么特点?

学生观察后汇报。

师小结并引导学生拨数:同学们的观察都非常仔细,??百位、十位、个位、十分位、百分位、千分位??都是小数的数位。小数点的左边依次是个位、十位、百位??右边依次是十分位、百分位、千分位??那你们能在这个计数器上拨出“”吗?学生尝试在计数器上拨数,师指名上台演示。

课件出示拨数情况,引导学生认识:

师提问:小数点右边第2个“2”在百分位上,它表示2个。

师追问:说得很有道理,那最后一个“2”在什么位置,表示多少呢?

学生思考后回答:最后一个“2”在千分位上,表示2个1,也可以表示2个1000。

师引导学生再次思考:小数点左边两个2分别表示多少?

学生先独立思考,再小组内交流,最后集体汇报。

课件出示小数的数位顺序表,介绍数位名称及对应的计数单位:

小数点右边第一位是十分位,计数单位是十分之一();

小数点右边第二位是百分位,计数单位是百分之一();

小数点右边第三位是千分位,计数单位是千分之一();

小数点右边第四位是万分位,计数单位是万分之一();

相同点:相邻计数单位间的进率都是10.

师强调:小数的半数单位也是“满十进1”,引导学生观察教材第6页“看一看,说一说”的图片,进而发现:10个元是1元;10个元是元,再次明确小数的计数单位是“满十进1”。

引导学生讨论后交流汇报。

2、出示教材第7页“试一试”情境二:涂一涂,你发现了什么?

让学生自主涂色,并汇报:和0一样大。

师提问:哪位同学能够运用我们学过的数位和计数单位的相关知识来解释一下为什么和0一样大?师归纳小结小数的基本性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

3、即时练习。

课件出示题目:下面的数中哪些“0”可以去掉?哪些“0”不能去掉?

通过这节课的学习,我们学会了哪些知识?

板书。

方程的意义教学设计课篇十

教学内容:义务教育课程标准实验教科书六年级下册数学第32至33页“比例的意义”。

教学目标:

2、掌握组成比例的必要条件和方法。

3、会运用比例的意义组成比例,检验组成的比例是否正确,能用两种形式写比例。

4、在比例意义的学习探究中,培养学生的观察、比较、分析、推理、概括能力和勇于探索的精神。

5、进行爱国主义教育。教学重点:理解比例的意义;

教学难点:掌握组成比例的条件,能正确组成比例;教学关键:会运用比例的意义检验两个比是否能组成比例。教具准备:多媒体课件教学过程:

(一)复习准备。

1、谈话导入。

师:同学们,上学期我们学习了比,这节课我们继续学习和比有关的知识——比例。在学习之前,我们先来复习有关比的一些知识。

2、学生回忆:什么是比值?怎么求一个比的比值?

3、计算下面每组中两个比的比值。

6:10和9:156:4和:0.6:0.2和:20:5和1:4师:观察以上几组比中有没有比值相等的比?如果有请找出来。教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们可以用等号连起来。

(板书:6:10=9:156:4=:)。

(二)探究比例的意义出示例1插图。

师:同学们,看这四副图,你们发现了吗?在不同的场合国旗的大小一样吗?(不一样)。

师:请同学们写出每面国旗长和宽的比,并计算出比值。

121312133414。

(每面国旗宽和长的比;每两面国旗的长之比;每两面国旗的宽之比等。)。

这些比能组成比例吗?学生写比,并写出比例。

1、思考:比例由几个比组成?任意两个比都能组成比例吗?为什么?

两个比能否组成比例的关键是什么?

2、判断练习:

(1)、下面每组中两个比能组成比例吗?为什么?1∶5和3∶1210∶20和30∶60(2)、判断下面每个式子是不是比例,为什么?10∶11„„„„„„„„„„„()8∶10=0.8„„„„„„„„„()7∶14<28∶14„„„„„„„()。

3、写出两个比值是3的比,并组成比例。

4、比例是由比组成的,小组同学说一说比和比例有什么区别?小结:从形式上区分,比由两个数组成,是一个式子;比例由四个数组成,是一个等式。

方程的意义教学设计课篇十一

2、感受数学知识是在人类生产和实践中产生的,体会数学在实际生活中的运用,培养学生对数学的兴趣和利用所学数学知识解决实际问题的能力。

1、理解分数的意义;。

2、了解分数单位,并会找分数单位;。

多媒体课件、小棒、一米长的绳子、小正方体、长方形纸等。

讲授法、小组合作探究法等。

(一)复习导入。

师:三年级的时候我们已经学过分数的初步认识,板书出示,这个分数读作?你能说一说它各部分的名称吗?今天这节课我们继续学习分数的相关知识,板书“分数的意义”。

(二)课堂新授。

1、介绍分数的'产生。

生活中,在测量、分物或计算时往往不能得到整数的结果,这时我们可以用分数来表示。

2、初步感知:

ppt出示,把一个饼平均分成四份,其中的一份可以用哪个分数来表示?如果这样把一个饼分成4份,其中的一份可以用表示吗?为什么不可以?因为没有平均分,板书“平均分”,强调在谈到分数的时候我们要考虑到平均分。

3、活动一、动手操作,再认识。

(1)准备。老师给每个小组准备了不同的学具,(出示学具)你能利用你手中的学具通过折一折、分一分、摆一摆等方法,表示出吗?找同学为大家朗读活动要求。

(2)小组活动。小组合作,动手操作,教师巡视。

(3)汇报展示。你能表示出一张纸的吗?4跟小棒的应该如何表示?你还用什么表示了?

(4)总结,认识单位“1”。刚才我们都是把哪些物体平均分的?像把一张纸平均分我们可以说成把一个物体平均分;把一米长的绳子平均分我们可以说成把一个计量单位平均分;把4根小棒、八个小立方体平均分,我们可以说成把一些物体平均分。一个物体、一个计量单位、一些物体都可以看做一个整体,一个整体可以用自然数1来表示,我们通常把它叫做单位“1”。板书单位“1”。介绍这个单位“1”同我们之前学过的1不一样所以要加引号。

4、活动二、联系实际,加深对单位“1”的理解。

(1)你举出用单位“1”表示一个物体的例子吗?你能举出用单位“1”表示一个计量单位的例子吗?你能举出用单位“1”表示一些物体的例子吗?总结,单位“1”可小可大,自然界中小到一粒尘埃,大到整个宇宙都可以用单位“1”表示。

5、活动三、理解分数的意义。

(2)活动。你能任意写一个分数,并和同桌说一说你写的这个分数表示的意义吗?抽签决定第几小组给大家分享自己写的分数。教师板书。

6、认识分数单位。

整数有计数单位个、十、百、千等,分数也有计数单位,分数的计数单位是什么呢?请看大屏幕,“把单位‘1’平均分成若干份,表示其中一份的数就是分数单位”。以为例,把单位“1”平均分成5分,表示其中一份的数是,所以的分数单位是。举例练习。

(三)生活中的分数。

分数在我们的生活中随处可见,ppt出示:据统计五三班女生人数占全班人数的,你能说一说这里的所表示的意义吗?五三班在午托班吃饭的人数占全班人数的,你能说一说这里的所表示的意义吗?人从小到大,身体的比例一直在变化,新生儿的头长占身长的,5岁时头长占身长的,成年人的头长占身体的。

(四)课堂小结。

(五)练习巩固。

接下来我们来检测下大家的知识掌握情况。

1、填空。

(1)表示把x平均分成x份,取其中的x份。

(2)说出下面各数的分数单位。

(3)在括号里填上合适的分数。

2、判断。

(1)把一堆苹果平均分成4份,每份占这堆苹果的。

(2)把5米长的绳子平均分成7份,每份占全长的。

(六)课堂小结。

通过这节课的学习,你学到了什么?你还有什么疑惑?你有什么问题要问?

方程的意义教学设计课篇十二

教学目标:1.理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。

2.通过动手、动脑、观察、计算、讨论交流等方式,使学生自主获取知识,全面参与教学活动,体验获取获取知识的过程。

3.培养学生在实际生活中发现数学的存在,感受数学的区位和快乐,获得成功体验,增强学好数学的信心,提高学习积极性。适时进行爱国主义教育。教学重点:理解比例的意义。教学难点:应用比例的意义判断两个比能否组成比例,并能正确地组成比例。教学过程:。

一、创设情境。

1、播放国歌:

你知道他们在干什么?

你们知道在哪些地方可以看到国旗呢?

校园升旗仪。

3、媒体出示国旗的长和宽,并提出问题。(1)呈现信息:

天安门升国旗仪式:长5米,宽10/3米。校园升旗仪式:长2.4米,宽1.6米。教室场景:长60厘米,宽40厘米。

4、学生探索,发现问题。

(2)学生自主探索:学生自主观察、计算,发现国旗的长和宽的比值相等。(3)通过计算,发现它们的比值都相等,解释说明我国国旗法规定:任何一面国旗的长宽之比都是3:2。,这是对国旗的尊重,进行爱国主义教育。

二、认识比例,理解含义。

1、引出比例,理解比例的意义。

(1)媒体出示操场上的国旗和教室里国旗长和宽,计算出两面国旗的长和宽的比值。

并板书:

2.4∶1.6=3/2。

60∶40=3/2(2)引导写出:指出这两面国旗的长和宽的比值相等,中间可以用等号连接,并板书:2.4∶1.6=60∶40(3)指着这些等式说:“在数学中,像这样的等式就叫做比例(4)学生尝试说说什么叫比例。

(5)共同归纳,得出结论:表示两个比相等的式子叫做比例。这就是我们这节课所学的内容“比例的意义”。(板书课题)请同学们齐读并理解。

2、探讨一:判断两个比是否能够组成比例,关键是什么?(学生讨论,教师参与引导)。

3、探讨二:我们刚才一直在强调比和比例的联系,那么比和比例有什么区别吗?(小组讨论)。

学生从形式上区分:比由两个数组成;比例由四个数组成。

学生从意义上区分:比表示两个数相除;比例表示两个比相等的式子。

三、

巩固应用。

课本做一做(1)选择两题。(学生汇报比值是否相等,所以成不成比例。)(四)拓展练习(课件演示):

1、猜一猜并填空,说说你是怎样思考的?120:6=():2。

2、生活中的比例。

b、分别写出上午、下午时间与路程的比,求出比值,看两个比能否组成比例?

四、

总结。

评价。

1、课件出示:你说我说大家说,说你说我说大家。(前一句偏重是说收获,后一句是互相评价,当然包括评价老师。)。

2、课件出示老师的话:我为你们今天的表现感到骄傲和感动!期待你们更好的表现!

总结:同学们说的很好,通过这节课的学习,我们认识了比例,并会判断两个比能否组成比例,还会自己根据数据组比例,看来同学们这节课真是掌握了不少的知识,继续加油哦!板书设计:

表示两个比相等的式子叫做比例。

2.4:1.6=3/2。

60:40=3/2。

2.4:1.6=60:40。

教学反思:

比例这部知识是在学习了比的知识和除法与分数关系的基础上教学的,属于概念教学,为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触对应函数的思想,而且可以用来解决日常生活中一些具体的问题。

本节课,为了更好地突出重点,突破难点,按照学生的认知规律,遵循自主性原则,主要让学生在情境中通过观察、计算、比较等的学习过程中掌握知识。为充分调动学生的学习积极性,促进学生有效学习。本节课力求做到以下几点:

一、创造有效学习情境,激发学习激情。

数学课堂教学需要必要的生活情境,这节课为学生提供四个实际情境图,创设这个情境有五方面的考虑:一是歌曲情境引入;二生活情境和已有知识经验、基础引入比例意义的教学;三是依据四面国旗长与宽可以组成多个比例式。四是有助于在教学中渗透爱国主义教育,注重了“数学化”和“生活化”,为学生展现出了“活生生”的思维活动过程,充分发扬自主。

二、活用教材。

教材是提供给学生学习内容的一个文本,我根据学生和自己的情况,大胆对教材进行了再思考、再开发和再创造,用活、用实教材。这节课中在四面国旗的尺寸中找比组成比例,学生比较容易找到国旗长与宽的比,两两可以组成比例。同样国旗宽与长的比,两两也可以组成比例。另外每两面国旗的长之比与它们的宽之比也可以组成比例,课题中通过“你还能找出其它的比例吗?”的提问,鼓励学生打开思路,充分发挥合作学习的作用,调动学习的主动性,从不同角度去寻找,以加深对比例意义的认识。

方程的意义教学设计课篇十三

方程的意义(人教版义务教育课程标准实验教材五年级上册第四单元第二小节解简易方程的第一课时)。

新课标要求数学课程的培养目标要面向全体学生,适应学生个性发展的需要,使得人人都获得良好的数学教育,不同的人在数学上得到不同的发展。让学生获得数学活动经验,培养学生在活动中从数学的角度进行思考,直观地、合情地获得一些结果。学会用图形思考、想象问题,能从“数”与“形”两个角度认识数学。

本节课我根据盲生因视觉障碍,对事物缺少整体感知,不能准确地理解抽象的数学观念这一特点,我充分利用直观创设情境,恰当地构造数学问题,将抽象的数学关系具体化,调动学生的直观思维;让学生经历观察、感知、思考、猜想、验证、分类比较、归纳概括的过程。通过数形结合的方法实现抽象与具体之间的转变。

方程的意义这部分内容是在学生充分理解了四则运算的意义和会用字母表示数的基础上进行学习的。由学习用字母表示数到学习方程,从未知数只是结果到未知数参加运算,是学生学习数学方法的一次提升;也是学生又一次接触初步代数思想,是思维的一次飞跃。代数思维是数学学习的"核心思想",本课教学内容是学生从算术思维到代数思维的过渡。

1.根据天平平衡的原理,理解等式。能用方程表示简单的数量关系,理解方程的意义,渗透符号意识,发展数感。

2.使学生在观察、感知、思考、猜想、验证、分类比较、归纳概括的过程中,经历从现实生活或具体情境中抽象出数学问题,用数学符号建立方程,表示数学问题中的数量关系,培养学生形成方程模型的思想,掌握研究问题的方法。

3.分类分层教学,在学生学习数学知识的同时,体会数学与生活的密切联系,提高对数学的兴趣和应用意识。

结合具体情境理解方程的意义,用方程表示简单的等量关系。

从算术思维到代数思维的过渡。

玩具天平塑料香蕉小袋子多媒体课件、盲文及低视力卡片。

1.认识天平。

同学们认识天平吗?知道天平是干什么用的吗?(称质量、比较物体的质量)那天平是根据什么来称量或者比较物体的质量?(平衡)让学生用玩具天平来感知一下平衡(低视生看,老师协助全盲生用手慢慢向上托,直到手掌触到物体)。

低视力生看大屏幕,根据自己看到的画面,帮助全盲生把实物挂起来(天平左面有60克和40克的香蕉,右面有100克的香蕉)。

天平此时的状态怎么样哪?(低视力生观察,全盲生感知。)天平平衡说明什么?(左右两边质量相等)。

能用数学式子表示出来吗?

预设:40+60=10060+40=100(板书)。

像这样含有等号的式子我们叫它等式。

3、让学生再说几个等式。

1.理解不相等。

如果把左边40克的香蕉拿下去了,天平会怎样?(预设:左边轻,右边重。)。

此时天平的状态又怎样哪?(不平衡。)低视生观察,全盲生感知。

让学生用一个数学式子表示。(预设:60<100,10060。

刚才相等的式子叫等式,这样不相等的呢?(预设:不等式,或不知道。)。

2、让学生再说几个不等式。

1、猜想:如果把一个袋子放到天平的左边,天平会怎么样?可能会出现哪些情况?

2、交流。(预设:左边重,右边轻;右边重,左边轻;一样重。)。

3、验证:低视力生协助全盲生操作验证(教师协助)。

1、谈话:看来这一个小小的天平帮我们记录了这么多的数学现象,现在我把天平藏起来了(把玩具天平收起来)。

还有天平吗?(预设:没有。)。

你心中的天平还有没有?(有)。

2、出示课件:

3、低视力生看大屏幕,并叙述图意。

5、让学生用数学式子表示出来。(预设:5x=800)并让学生说一说5x表示的意思。(预设:5x是5个苹果的质量)。

6、说一说:5个苹果的质量为什么用5x来表示?(预设:因为一个苹果的质量不知道,可以用x表示,5个苹果的质量就用5x来表示。)。

7、评价:真了不起,会用字母来表示不知道的数量,这个未知的数量也可以参与到我们的运算中来解决问题。

1、一小组为单位,让学生拿出自己的卡片,给刚才的式子分类。并思考分类标准。

2、学生交流(预设:

1、按是否是等式来分。

2、是否含有字母来分。

3、还有学生把60+x=100,5x=800单分一类)。

3、教师揭示:象60+x=100,5x=800就是方程。

4、让学生根据这两个式子的特点说一说什么叫方程?

5、教师点题:含有未知数的等式叫做方程。

1、让学生试着说一说方程与等式的关系。

2、学生交流。

3、教师引导:如果方程是一个大圆,方程应该是什么?(预设:一个小圆,在大圆中)。

刚才我们认识了方程,你能判断什么是方程吗?

1.应用概念,判断方程。

判断下面的式子是否是方程。(提问c类学生)。

x+515+5=202x+31036-x=9×32.应用概念,解决问题。

(1)课件出示:(提问b类学生)。

(5)课件出示:(提问a、b类学生)。

教法同上。

(6)课件出示:(提问a类学生)。

(7)先让低视生说说这幅图的意思?

(9)评价:真棒!用字母表示未知数参与到运算中,找到了图中的等量关系。

总结提升这节课你学到了什么?

(结合学生的回答,小结)。

(2)根据今天学习的知识,编一个关于方程的数学故事。

教学内容:苏教版四年级(第八册)教学目标:(1)使学生理解方程概念,感受方程思想。(2)经历从生活情景到方程模型的建构过程。

(3)培养学生观察、描述、分类、抽象、概括、应用等能力。

方程的意义教学设计课篇十四

执教:龙华中心小学冯春莲学习内容:五年级下册第61—62页内容学习目标:1.认识单位“1”,理解分数的意义及分母、分子的含义。

2.培养学生的观察、分析、抽象、概括等思维能力。

3.通过层层设疑,不断强化学生的质疑意识,提高学生的质疑能力。

教学重点:建立单位“1”的概念和分数意义的教学。

教具准备:。

纸片、磁钉教学过程:

一、谈话导入新课。

说说你已经认识的数都有哪些?

二、讲解分数的意义和分数单位。

(一)旧知识回顾。

1、举例:你认识的分数(学生试写)。

2、教师引导纠正分数的书写格式先写分数线后写分母最后写分子。

3、教师小结分数有很多很多。

4、联系实际,说说分数的含义(分数强调平均分,只有平均分才能用分数表示)。

(二)看图说分数说含义。

圆、线段、苹果、熊猫等这些物体用分数表示并说说它们的含义小结:这4幅图,同学们不仅能用分数表示还能说出它们的含义那么这4幅图表示的含义有什么相同与不同之处?(思考)。

预设结果:都是平均分成若干份,有一些物体,一个物体等,平均分的份数不同,意义不同等。

(四)认识单位“1”教师提问:除了刚刚这些,还有什么可以看作一个整体?板书:一个整体可以用自然数1表示,通常叫做:单位“1”教师问:自然数1和单位1有区别吗?(思考)区别在于:自然数1表示一个具体的数量,如1个苹果、一支笔等,单位“1”表示一些整体也可以表示一个具体的数量。

强调:把谁平均分谁就是单位“1”

教师提问:观察黑板上的四幅图说说它们的单位“1”是什么?

(六)认识分数的计数单位。

1、回顾已学的计数单位。

2、概念讲解:把单位“1”平均分成若干份,表示其中的1份,就是分数单位。

3、举例说明。

结论:由分母决定,分母是几,分数单位就是几份之一。

三、练习延伸(课本第64页第7题)。

第一题:把人的身高看作单位“1”,平均分成8份,头部占其中的1份。第二题:把长江干流的水看作单位“1”,平均分成5份,其中有3份受到不同程度的污染。

第三题:把死海表层的水看作单位“1”,平均分成10份,其中盐占了3份。

四、全课小结。

五、做笔记时间………。

【本文地址:http://www.xuefen.com.cn/zuowen/10402161.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档