教案可以使教师在备课时更好地把握教学目标和教学步骤。编写教案时应该合理选择教学材料和教学活动。不同学段和学科的教案,小编为大家整理了一些,方便大家查阅和借鉴。
人教版六年级数学教案篇一
1.使学生认识圆,掌握圆的各部分名称。
2.通过动手操作、实验观察探索出圆的特征及同一个圆里半径和直径的关系。
3.初步学会用圆规画圆,培养学生的作图能力。
4.培养学生观察、分析、抽象、概括等思维能力。
教学重难点。
教学重点。
在动手操作中掌握圆的特征,学会用圆规画圆的方法。
教学难点。
理解圆上的概念,归纳圆的特征。
教学工具。
课件。
教学过程。
一、活动一:演示操作,揭示课题。
课件出示“大家都来当裁判喽!”
演示两人骑自行车的动画,一人的自行车轮子是圆形的,一人的自行车轮子是其它形状的。
让学生初步感知圆在生活中的应用。
二、活动二:动手操作,探究新知。
(一)教师让学生举例说明周围哪些物体上有圆。
(二)认识圆的各部分名称和圆的特征。
1.学生拿出圆的学具。
2.教师:你们摸一摸圆的边缘,是直的还是弯的?
教师说明:圆是平面上的一种曲线图形。
3.通过具体操作,认识一下圆的各部分名称和圆的特征。
(1)先把圆对折、打开,换个方向,再对折,再打开……这样反复折几次。
教师提问:折过若干次后,你发现了什么?
仔细观察一下,这些折痕总在圆的什么地方相交?
教师指出:我们把圆中心的这一点叫做圆心。圆心一般用字母o表示。
教师板书:圆心。
(2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?
教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?
在同一个圆里可以画多少条半径?
所有半径的长度都相等吗?
教师板书:在同一个圆里有无数条半径,所有半径的长度都相等。
教师提问:根据直径的概念同学们想一想,直径应具备什么条件?
在同一个圆里可以画出多少条直径?
自己用尺子量一量同一个圆里的几条直径,看一看,所有直径的长度都相等吗?
教师板书:在同一个圆里有无数条直径,所有直径的长度都相等。
(4)教师小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。
(5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?
如何用字母表示这种关系?
反过来,在同一个圆里,半径的长度是直径的几分之几?
教师板书:在同一个圆里,直径的长度是半径的2倍。
(三)反馈练习。
1、p58的“做一做”第1、3、4题。
2、练习十四的第2、3题。
(四)圆的画法。
1、学生自学,看书57页。
2、学生试画。
3、学生通过试画小结用圆规画圆的方法,注意的问题。
4、教师归纳板书:1.定半径;2.定圆心;3.旋转一周。
教师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚。
5、学生练习。
p58的“做一做”第2题。
(五)教师提问。
为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置?
教师板书:半径决定圆的大小,圆心决定圆的位置。
(六)思考:体育课上,老师想在操场画一个大圆圈做游戏,没有这么大的圆规怎么办?
三、全课小结。
这节课我们学习了什么?通过这节课的学习你有什么收获?
四、作业。
练习十四的第1题。
人教版六年级数学教案篇二
本单元内容是在学生认识了自然数、分数和小数的基础上,结合学生熟悉的生活情境初步认识负数。以往负数的教学安排在中学阶段,现在安排在本单元主要是考虑到负数在生活中有着广泛的应用,学生在日常生活中已经接触到了一些负数,有了初步认识负数的基础。在此基础上,初步认识负数,能进一步丰富学生对数概念的认识,有利于中小学数学的衔接,为第三学段进一步理解有理数的意义和运算打下良好的基础。
在实际生活中存在很多相反意义的量,比如,气温的零上和零下,存折上现金的存入和支取,水位高度的上长升和下降,海拔高度的高于海平面和低于海平面,等等。为了表示这样两种相反意义的量,还用学生原有的数概念知识就不够了,这样就自然引入了负数的认识。教材首先通过学生熟悉的生活情境如气温、存折中蕴含的具有两种相反意义的量来体会引入负数的必要性,初步理解负数的含义,接下来通过用负数表示日常生活中的简单问题加深对负数意义的理解。在此基础上,再让学生在直线上表示出正数和负数,初步建立数轴的模型,形成数的比较完整的认知结构,然后借助数轴对气温进行排序让学生初步辨别正数、0和负数之间的大小关系。
二、教学目标。
1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。
2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
3、能借助数轴初步学会比较正数、0和负数之间的大小。
三、教学重点:理解负数的意义,体会数轴上正、负数的排列规律。
教学难点:会在数轴上比较正数、0和负数的大小。
四、突破措施。
1、通过丰富多彩的生活情境,加深学生对负数的认识。
负数的出现,是生活中表示两种相反意义的量的需要。教学时,老师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起已有的生活经验,激发学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,老师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。
2、把握好教学要求。
对负数的教学要把握好要求,作为中学进一步学习有理数的的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,而是描述性的定义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。关于数的大小比较,特别是两个负数的比较,这里还不是抽象的比较,只要能借助数轴来比较就可以了。
五、本单元内容可安排2课时进行教学。
人教版六年级数学教案篇三
1、加深对圆锥体积计算公式的理解,能应用有关知识解决生活实际问题。
2、进一步理解等底等高的圆柱和圆锥之间的关系。
3、进一步培养学生的思维能力和综合应用所学知识解决实际问题的能力。
教学重难点:综合应用所学知识解决实际问题。
人教版六年级数学教案篇四
一、教学目标:
1、认识千米,初步建立1千米的长度概念,知道1千米等于1000米。
2、会进行长度单位间的换算及简单的计算。
3、进一步培养学生的估测意识和实践能力。
二、教学重点:
建立1千米的长度概念,会用千米表示实际长度。
三、教学准备:
要求学生到路边观察路标,教师制作一块路标。
四、教学过程:一、复习导入。
1、教师提问:我们都学了哪些长度单位?
学生回答后,让学生具体表示一下1毫米、1厘米、1分米及1米的长度。
学情预设:学生可能会提到“千米”。
二、探究新知。
1、认识千米。
【学情预设:看到上面的情境图,学生一下子会调出已有的知识经验,他们会想到周围的路标。】学生根据自己的生活经验解释路标上的“21千米”和“23千米”是什么意思。教师指出:在计量比较长的路程的时候,通常用千米作单位,千米也叫做公里。千米是比米大的长度单位。
2、出示老师收集到的学校附近的路标,让学生理解、体会从某路口到当地某个标志性建筑的路程是多少千米的含义。
3、建立1千米的长度概念。
教师指出:1000米就可以用较大的长度单位来表示,就是千米。
板书:1千米(公里)=1000米。
(2)实际感受1千米。
到操场上量出100米的距离,让学生仔细观察一下。并让学生按一般的步行速度实际走一走,所需时间大约是1分十几秒。(注:这个教学环节也可以放到课前进行)。然后告诉学生10个这样的长度就是1千米,一般步行12分左右的距离大约是1千米,并让学生想象一下10个100米有多远。
4、完成教科书第8页上的“做一做”。到校门口,以小组为单位,互相说一说(估)从学校门口到什么地方大约是1千米?在确保学生安全的前提下,可以组织学生到校外走1千米的活动,感受1千米的距离。(注:如果条件不允许,此题可以作为课外作业)。
5、教师出示教科书第22页的例5。
3千米=()米5000米=()千米教师放手让学生先独立填写,然后让学生在组内互相说说是怎样想的。
通过学生回答,使学生明白:1千米是1000米,3千米是3个1000米,就是3000米;1000米是1千米,5000米是5个1000米,就是5千米。
6、练一练。
6000米=()千米4千米=()米。
()米=7千米9000米=()千米。
三、巩固练习。
1、指导学生完成练习二第1、2题。
第1题,是关于物体运动速度的练习,目的是让学生对常见物体运行速度有一定的认识。可以先让学生独立完成,然后再进行反馈。
第2题,目的是帮助学生进一步感受千米在生活中的应用。可以让学生独立完成。
2、练习二第3题。
学生在教科书上独立完成,然后集体订正。
3、解决生活中的问题。
四、课外拓展。
1、汽车在高速公路上行驶每小时不能超过()千米,磁悬浮列车每小时可行驶()千米,地球绕太阳每秒运行()千米。马拉松长跑比赛全程大约()千米。(课后可在父母的帮助下到图书馆或网上查找这些资料。)。
2、写一篇数学日记:《我心目中的千米》。
人教版六年级数学教案篇五
1、理解分数乘、除法的运算意义,掌握分数乘、除法的计算方法和分数四则混合运算的运算顺序;能正确计算分数乘、除法和分数四则混合运算(不超过三步)式题,能应用运算律和运算性质进行有关分数的简便计算;能应用分数乘法解决“求一个数的几分之几是多少”的简单实际问题,能列方程解决“已知一个数的几分之几是多少,求这个数”的简单实际问题,能用分数乘法和加、减法解决稍复杂的实际问题(不超过两步)。
2、理解比的意义和基本性质,能应用比的意义和基本性质求比值、化简比,能正确解决按比例分配的实际问题。
3、理解百分数的意义,能正确进行百分数与分数、小数的互化,会解决“求一个数是另一个数的百分之几”的简单实际问题。
4、认识圆,掌握圆的基本特征,理解直径与半径的相互关系;会用圆规画圆。
2.理解圆周率的意义,掌握圆周率的近似值,理解和掌握圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。
5、学生在整理与复习的过程中,进一步体会数学知识和方法的内在联系,能综合应用学过的数学知识和方法解释日常生活现象、解决简单实际问题,进一步发展数感、空间观念和统计观念,增强解决问题的策略意识和反思意识,提高解决问题的能力。
6、学生在整理与复习的过程中,进一步评价和反思自己在本学期的整体学习情况,体验与同学交流和获取知识的乐趣,感受数学的意义和价值,发展对数学的积极情感,增强学好数学的自信心。
人教版六年级数学教案篇六
教学内容:
例5体现了找规律对解决问题的重要性。这里的规律的一般化表述是:以平面上几个点为端点,可以连多少条线段。这种以几何形态显现的问题,便于学生动手操作,通过画图,由简到繁,发现规律。解决这类问题的常用策略是,由最简单的情况入手,找出规律,以简驭繁。这也是数学问题解决比较常用的策略之一。
例6以选送节目为题材,讨论怎样分两步找出组合数,再求选送方案的总数。这里渗透了作为排列组合基础之一的'乘法原理。
例7是一个比较复杂的逻辑推理问题,借助列表,则比较容易逐步缩小范围,找到答案。这里渗透了逻辑推理的常用方法排除法。
教学目标:
1.通过学生观察、探索,使学生掌握数线段的方法。
2.渗透化难为易的数学思想方法,能运用一定规律解决较复杂的数学问题。
3.培养学生归纳推理探索规律的能力。
重点难点:
引导学生发现规律,找到数线段的方法。
教具学具:
多媒体课件。
教学指导:
2.探究例6时,可以直接给出题目,由学生自己尝试,也可以将例题分解,让学生先回答。
3.探究例7时,必须先让学生仔细读题,理解题意。
教学过程:
一、复习回顾,游戏设疑,激趣导入。
1.师:同学们,课前我们来做一个游戏吧,请你们拿出纸和笔在纸上任意点上8个点,并将它们每两点连成一条线,再数一数,看看连成了多少条线段。(课件出现下图,之后学生操作)。
2.师:同学们,有结果了吗?(学生表示:太乱了,都数昏了)大家别着急,今天,我们就一起来用数学的思考方法去研究这个问题。(板书课题)。
新知学习。
二、逐层探究,发现规律。
1.从简到繁,动态演示,经历连线过程。
人教版六年级数学教案篇七
1、通过练习,进一步巩固复式条形统计图与复式折线统计图的知识。
2、从统计图中获取尽可能多的信息,体会数据的作用。3、进一步学习制作复试折线统计图,培养学生动手操作能力,分析能力和合作能力。教学重点:从统计表里收集信息,并能用这些信息分析问题。
如何根据信息绘制统计图。
一、基础练习,全班交流。
1、练功房。
基础练习,了解统计图的种类。分辨什么数据用什么统计图描述更清楚更直观。
2、智慧树。
(1)这是什么统计图?
(2)分析图中的`数据,回答问题。
(3)第3题,你能知道哪些信息?
3、实践大本营。
提高练习。
让学生选择一题来绘制统计图。
(1)绘制统计图需要哪些数据?
(2)绘制统计图你需要注意什么?
学生独立完成后,集体订正。
二、变式练习题。
课件出示练习题。
学生看题,先集体分析题目,一起探讨数学问题。
1、这是什么统计图?
2、你能解决这些问题吗?
3、你知道了哪些信息?
4、你还有什么疑问?
教学小结:
通过这次练习,你有什么收获?通过练习,进一步巩固结复式统计图的理解与掌握。
通过自主交流与探索,让学生自主选择。
人教版六年级数学教案篇八
1、使学生初步了解归总应用题的基本结构和数量关系,能够正确地解答这种应用题。
2、进一步提高学生分析问题和解决实际问题的能力。
使学生掌握乘、除应用题的数量关系,结构特征和解答方法。
学画线段图,并借助线段图分析题中数量关系。
投影片或教学课件。
1、学习例5(为了贴近学生生活,便于学生理解、计算,将例题进行了改编)。
(1)教师说:小华读一本书,如果每天读9页,几天可以读完?(学生各抒已见)。
(3)小组展开讨论,并独立列式试做。(教师注意巡视,及时发现学生出现的问题。)
(4)小组汇报自己的想法,教师点拨,小组间相互质疑问难。
(5)教师根据小组的汇报情况,边小结边进行必要的板书:
先求这本书一共多少页?126=72(页)
再求几天能读完?729=8(天)
(6)让学生根据分步算式,独立列出综合算式。
2、改编例题,引出题目:(如果小华8天读完,他每天读几页?)
(1)学生独立思考,并试着列式解答出来。
(2)请一名学生汇报。通过学生之间的质疑问难,教师根据出现的情况,及时进行小结:要求每天读几页?首先知道这本书一共有多少页?遇到问题,一定要分析清楚先求什么、再求什么。
(3)学生独立列出综合算式。
3、比较例题和改编的问题有什么相同点和不同点?
让学生说一说自己的想法,教师根据学生的回答,小结。相同点:都是先求这本书的总页数。不同点:例题是求几天读完,改编后的问题是求每天读几页。
4、教科书第112页做一做的第2题和例5,让学生独立完成。
1、做练习二十五的第1题。
让学生认真读题,独立完成,并找出两个小题的异同点。
让学生说一说想法,然后独立列式解答。
3、做练习二十五的第3、4题。
让学生独立列式解答。做完后,集体订正。
通过师生交流,突出两步应用题的数量关系。
板书设计:
两步应用题
(1)先求这本书一共多少页?(2)先求这本书一共多少页?
126=72(页)126=72(页)
再求几天能读完?再求每天读几页?
729=8(天)728=9(页)
答:8天可以读完。答:每天读9页。
人教版六年级数学教案篇九
二
(1)引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
(2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个是多少?(列式:×3=)。
人教版六年级数学教案篇十
教科书第55页例2,课堂活动第2题,练习十五第4~7题。
1.进一步掌握按比例分配解决问题的方法,能合理、灵活地解决3个数连比的按比例分配的问题。
2.经历解决三个数连比的按比例分配解决问题的过程,总结出按比例分配问题的解决方法,提高解决问题的能力。
3.通过小组交流合作,共同寻找解决问题的方法,使学生的个性得到了张扬,获得了积极的情感体验。
4.在配置混泥土的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。
5.在按比例分配的过程中,感受分配方案的简洁美、理性美。
6.经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。
重点:把两个数比的问题的解题方法推广到三个数连比的问题。
难点:理解三个数连比的问题的解题方法。
学好按比例分配,不但能解决生活中的实际问题,还能帮助我们更全面地分析问题。
导入新课
1.填空。(多媒体出示题目)
(1)小明家养了35只鸡,公鸡和母鸡只数比是3∶4,公鸡( )只,母鸡( )只。
(2)丹顶鹤是国家一级保护动物。我国与其他国家拥有丹顶鹤只数的比是1∶3,20xx年全世界大约有20xx只丹顶鹤,我国有( )只。其他国家有( )只。
学生回答反馈,说说怎样思考,集体评价。
2.引入谈话:怎样解决按比例分配的问题?
在实际生活中还有哪些问题可以用按比例分配的'方法解决?生举例。(组织学生分组讨论.
反馈.
交流后,老师及时做出评价)
在建筑业中很多地方也用到按比例分配的方法来解决实际问题,今天我们继续研究这方面的问题。
独立思考再交流方法和结果,集体评价。
举例,分组讨论、反馈、交流。
1.课件出示例2:从题中你获取了什么信息?(学生交流获取的信息)
2.教师组织学生讨论:这道题与前面所做的题有什么区别?怎样解答?
生1:前面所做的题都是两个量的比,这道题是三个量的比。
生2:可以仿照上节所学的按比例分配方法去解。
3.学生尝试解答,教师巡视。
4.展示学生解法,说出解题思路。
方法1:220÷(2+3+6)=20(吨)
需要水泥的吨数:20×2=40(吨)需要沙子的吨数:20×3=60(吨)需要石子的吨数:20×6=120(吨)
答:需要水泥40吨,需要沙子60吨,需要石子120吨。
方法2:总份数:2+3+6=11
需要水泥的吨数:220x2/11=40(吨)
需要沙子的吨数:220x3/11=60(吨)
需要石子的吨数:220×6/11=120(吨)
方法3:根据已有知识,用方程解。先求出每份是多少吨,再分别求出沙子、石子、水泥应需的吨数。
解:设每份是x吨.
2x+3x+6x=220
11x=220
x=20
需要水泥的吨数:20×2=40(吨)需要沙子的吨数:20× 3=60(吨),需要石子的吨数:20×6=120(吨)
5.议一议:怎样解决按比例分配的问题?
学生先独立思考,再在小组内交流,最后师生共同总结出解决按比例分配问题的一般方法:要先求出总份数,求出每一份的量,再求出各部分的量;或者求出总份数后再看各部分量占总数量的几分之几,最后求各部分量;或者设每1份的量为未知数,列方程来解答。
学生交流获取的信息。
讨论交流异同。
尝试解答,再展示交流解题思路。
独立思考,再小组交流、小结解决按比例分配问题的一般方法。
在配置混泥土的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。
在按比例分配的过程中,感受分配方案的简洁美、理性美。
1.课堂活动第2题。
根据给出的这三种蛋的连比,组织学生讨论后尝试独立解题,交流解题方法。
教师组织学生讨论:这道题与前面所做的题有什么区别?
引导学生得出,这个问题中虽然没有给出沙子、石子、水泥的连比,但已给出了一个配料方法,根据给出的数值,可以求出这三种料的连比。
学生讨论后尝试独立解题。完成后交流解决问题的方法。
再次组织学生讨论,交流得出:先求出现场测量的三种配料的比3:2:5,然后与要求的配料的比比较,得出:这堆混凝土不符合要求。
学好按比例分配,不但能解决生活中的实际问题,还能帮助我们更全面地分析问题。
学生讨论找到方法。
独立解题,再交流解题方法。
讨论交流得出结论。
经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。
想一想,今天学习的知识与昨天有什么不同?又有什么相同?
谈收获。
练习十五第4―7题。
独立完成。
人教版六年级数学教案篇十一
从知识角度分析为什么难。
打折销售与学生的日常生活息息相关,学生并不感到陌生,但在促销活动中选择最佳消费方式,要运用所学的百分数知识解决问题有一定的难度。
从学生角度分析为什么难。
学生在解题的过程中,要懂得“满100元减50元”的促销方式,对于消费者来说不如打五折实惠;如果总价是整百元的,那两种促销的方式优惠的结果是一样的,但要得出这种结论,对于学生来说有一定难度,需要运用所学的百分数知识去分析、交流、比较才能解决。
在教学时,先让学生结合自己的生活经历去理解“满100元减50元”的含义,然后根据实际情况进行表述,再引导学生体会这种促销方式的计算方法,接下来要由学生独立完成两种购买方式所要支付的钱,并通过比较来解决题目中的问题。
一、复习旧知,引入新课。
1、提问“一件物品打九折出售”表示什么意思?
2、生活中,是不是所有的优惠都是以“几折”来表示的呢?
3、购物中优惠的形式有很多种,我们要做一个精明的小买家。今天,我们就来研究购物中的折扣问题。(板书:购物中的折扣问题)。
二、教学新知。
(一)出示例5:某品牌的裙子搞促销活动,在a商场打五折销售,在b商场按“满100元减50元”的方式销售。妈妈要买一条标价230元的这种品牌的裙子。
1、根据这些信息,学生提问题。
教师板书:
(1)在a、b两个商场买,各应付多少钱?
(2)哪个商场省钱?
2、分析问题,理解题意。
(1)结合题目给出的数学信息,哪些是关键的?
(2)怎样理解“满100元减50元”?
(3)不足100元的部分呢?怎么办?
3、独立思考,尝试解决。
师:请同学们独立思考,看能否解决黑板上的这两个问题?
4、交流并汇报方法。
师:谁来说说自己的解决方法?
学生展示自己的算式,并解释。
5、启发思考,辨析原因。
(1)满100元减50元,少了50元,也是打五折啊,怎么优惠的结果却不一样呢?
(2)什么情況下两种优惠是一样的呢?
6、小结:在今天的折扣问题中,我们知道了优惠的形式有很多种,解决这些问题时要注意的是“满100元减50元”和打五折的区别:
(1)“满100减50”,就是够100才能减50,不够则不减。
(2)打五折实际售价都是原价的50%,不满100元的也能按50%计算。
(3)售价刚好是整百元的时候,两种优惠结果才是一样的。
三、练习巩固,提高能力。
1、做一做。
某品牌的旅游鞋搞促销活动,在a商场“每满100元减40元”的方式销售,在b商场打六折销售,妈妈准备给小丽买一双标价120元的这种品牌的旅游鞋。
(1)在a、b两个商场买,各应付多少钱?
(2)选择哪个商场更省钱?
同学们,在今天学习的折扣问题中,我们知道了不同形式的优惠有很多种,在解决这些问题时要注意的是“满100元减50元”和打五折的区别。
人教版六年级数学教案篇十二
1.使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,明白相邻的两个体积单位之间的进率是1000的道理.
2.会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握它们相邻两个单位间的进率.
3.会正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题.
棱长为1分米的正方体以及棱长为10厘米的正方体挂图。
一、复习导入。
1、教师提问:
(1)常用的长度单位有哪些?相邻的两个长度单位间的进率是多少?板书:米分米厘米。
(3)我们认识的体积单位有哪些?
板书:立方米立方分米立方厘米。
提问:你能猜出相邻两个体积单位间的进率是多少呢?引出课题:相邻体积单位间的进率。
二、自主探索验证猜测。
1、教学例11。
(1)挂图出示一个棱长1分米的正方体和一个棱长10厘米的正方体。
(2)提问:这两个正方体的体积是否相等?你是怎样想的?
(引导学生根据两个正方体棱长的关系作出判断,即:1分米=10厘米,两个正方体的棱长相等,体积就相等。)。
(3)用图中给出的数据分别计算它们的体积。
学生分别算一算,然后在班内交流:
棱长是1分米的正方体体积是1立方分米;(板书:1立方分米)。
棱长是10厘米的正方体体积是1000立方厘米。(板书:1000立方厘米)。
(4)根据它们的体积相等,可以得出怎样的结论?
1立方分米=1000立方厘米(板书:=)。
(5)谁来说一说,为什么1立方分米=1000立方厘米?
2、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?
学生在小组里讨论。(板书:立方米=1000立方分米)。
引导学生把棱长1米的正方体和棱长10分米的正方体进行比较,并通过计算得出:1立方米=1000立方分米。
三、巩固深化。
1、出示书第30页的“练一练”。
学生先独立完成。
交流你是怎样想的。
小结:相邻体积单位间的进率是1000,把高级单位的数改写成低级单位的数要乘进率1000,所以要把小数点向右移动三位;把体积低级单位的数改写成高级单位的数,要除以进率1000,所以要把小数点向左移动三位。
2、出示练习七第1题。
学生独立完成表格。
班内交流:说说长度、面积和体积单位有什么联系?
而它们的进率是不同的,你能说说它们每相邻两个单位间的进率分别说多少呢?
3、出示练习七的第2题。
学生先独立完成。
交流:你是怎样想的。
指出:面积单位换算与体积单位换算的区别,它们相邻单位间的进率不同。
4、出示练习七的第3题。
学生独立完成。
交流:结合前两题说说怎样把高级单位的数量换算成低级单位的数量,再结合后两题说说怎样把低级单位的数量换算成高级单位的数量。
5、出示练习七的第4题。
学生独立完成后集体交流。
四、课堂总结。
通过这节课的学习,你有什么收获?
人教版六年级数学教案篇十三
掌握条形和折线统计图表示统计数据的方法。
11、掌握条形和折线统计图表示统计数据的方法,加深对条形和折线统计图所表示的数据的理解,能利用折线统计图对数据进行分析。
2.联系实际进行统计,经历统计过程,体会统计在实际中的应用和作用,培养统计的意识,提高实践能力。
导学法、尝试法。
利用条形和折线统计图。
教师预设。
学生活动。
(1)复习条形和折线统计图的有关知识。
(2)说说条形统计图和折线统计图的区别。
1、请学生测量全班的身高,并把数据记录下来。
2、学生完成书中表格。
3、师生核对。小结。
4、完成书中复式条形统计图。
提问:你认为完成一项统计要经过哪些过程,
说明:一项完整的统计,先要收集数据并进行分类整理,再选择适当的统计图或。
5.做p63练习四实践活动第(3)小题。
让学生看第3题,说一说第3题的题意和从统计表里知道了什么。
学生独立完成,小组合作研究,派代表发言。
2.统计表表示出相关的数据,然后对数据作出比较,分析、推理和判断。
1.做补充练习。
让学生了解题意。要求两名学生相互合作,按要求从复印的身高记录上收集自己。
和同伴的身高数据。要求在课本上制成复式折线统计图。让学生与自己的同伴讨论从。
图中能得出哪些结论。组织学生在班内交流自己得出的结论。提问;你认为复式折线。
2.统计家庭电话费支出情况。
让学生拿出事先收集的家庭电话费支出情况,要求学生看一看每月的`支出的金额。你能与自己的同桌同学合作,制作出你们两家的电话费支出的复式折线统计图吗?学生完成复式折线统计图。现在请大家仔细观察自己制作的复式折线统计图,看看你们家的电话费支出情况怎样,比比两家去年下半年的电话费支出有什么不同。
这节课我们练习了什么内容?你进一步明确了哪些问题?
自制练习纸(每生一张:内容是身高、体重统计图)。
人教版六年级数学教案篇十四
1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。
2、让学生切实体会到数学在体育等领域的广泛应用。
如何确定每一条跑道的起跑点。
确定每一条跑道的起跑点。
一、提出研究问题。(出示运动场运动员图片)。
1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)。
2、各条跑道的起跑线应该向差多少米?
二、收集数据。
1、看课本75页了解400m跑道的结果以及各部分的数据。
2、出示图片、投影片让学生明确数据是通过测量获取的。
直跑道的长度是85.96m,第一条半圆形跑道的直径为72.6m,每一条跑道宽1.25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)。
三、分析数据。
学生对于获取的数据进行整理,通过讨论明确一下信息:
1、两个半圆形跑道合在一起就是一个圆。
2、各条跑道直道长度相同。
3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。
四、得出结论。
1、看书p76页最后一图:
2、学生分别计算各条跑道的半圆形跑道的.直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1.25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2.5m)。
3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2.5)。
五、课外延伸。
200m跑道如何确定起跑线?
人教版六年级数学教案篇十五
课本第57——58页“扇形统计图“。
1、通过实例,认识扇形统计图,了解扇形统计图的特点与作用。
2、能读懂扇形统计图,从中获取有效信息,体会统计图在现实生活中的作用。
3、提高学生的实际应用能力。
认识扇形统计图,了解扇形统计图的特点与作用。
学生的实际应用能力的提高。
课件。
一、复习旧知,引入新知。
1、电脑课件呈现下表。
种类摄入量/克占总摄入量的百分比。
油脂类50。
奶类和豆类450。
鱼、禽、肉、蛋等类600。
蔬菜和水果类900。
谷类1800。
2、电脑课件呈现统计图(或以学生的作品亦可)。
3、引入新知。
二、探索交流,获取新知。
1、什么样的统计图是扇形统计图呢?
2、了解扇形统计图特点。
3、即时练习。
完成课后的“说一说”。
(1)学生观察课文中的扇形统计图,读一凑统计图中的各类信息。
(2)说一说,你有什么体会。
学生说信息,并计算各种成分的百分比。
汇报计算结果,订正。
学生发言、交流。
学生汇报:条形统计图可以清楚地看到每一种食物的摄入量。
观察,说出获得的信息。
根据教师引导说出发现。
从扇形统计图中能够清楚地看到各类食物的摄入量占总摄入量的百分之几。
观察数据,发现,说出不同,说出自己的看法。
进行计算,订正。
三、小结本课学习内容。
揭题,板书课题:扇形统计图。
出示课件一边呈现扇形统计图,一边进行简要讲解,使学生了解扇形统计图是用扇形面积的大小(占圆面积的百分之几)来表示各类数量的多少。(占总摄人量的百分之几)。
四、巩固升华。
完成课后“试一试”。
1、比较各项活动时间,说一说有什么不同。提出数学问题。
2、总时间是多少?各项活动时间可以怎么计算?
3、参照题目,画一个扇形统计图表示自己一天的作息时间,并和同学进行交流。
五、全课小结:你今天有什么收获?还有什么不懂的地方?
板书设计:
扇形统计图。
能清楚地反映整体与部分的关系。
人教版六年级数学教案篇十六
教科书第2页的例3、例4,做一做中的习题和练习一的第6~11题。
使学生掌握用整十数乘的口算方法。
理解用整十数乘的算理。
用十位上的乘后,在得数的末尾填一个0。
例3、例4的教学挂图。
一、复习。
口算下面各题:
1352732304。
1541621405。
指名让学生说一说135、2304、1404的口算过程。
二、新课。
1.教学例3。
教师出示例3的乒乓球挂图,如下:
用纸盖住最右边的一袋,提问:
这里有几袋乒乓球?每袋几个?要求一共有多少个乒乓球,怎样列式计算?学生回答后,教师板书:59=45。
接着露出盖住的那袋乒乓球,提问:
刚才有9袋乒乓球,一共有45个。再增加1袋,是几袋?一共有多少个乒乓球?怎样列式计算?指名学生回答,教师板书:510=50。
谁能说一说510=50是怎么想的?(因为9个5是45,45+5=50,也就是10个5就是50。)多指几名学生说说。
2.做做一做的第1题。
让学生独立口算,指名回答口算结果和口算过程,教师板书出算式和得数。然后提问:
这些题的得数和被乘数有什么关系?使学生通过观察得出:一个数乘以10,可以在这个数的后面直接添一个0。
3.做做一做的第2题。
让学生把得数写在书上。集体订正。
4.教学例4。
教师出示例4的.皮球图。如下:
提问:
这里有20盒皮球,每盒有6个。求一共有多少个皮球,怎样列式计算?学生回答后,教师板书:620。
620怎样口算呢?
先让学生说一说自己的想法,然后教师引导学生推想620的口算过程:
从图中我们可以看出每2盒是一摞,20盒是几棵?让学生数一数回答。
求20盒皮球的个数,也就是求几橡皮球的个数?
要求10摞皮球的个数,可以先求几橡皮球的个数?
一摞皮球有多少个?怎样想的?
几乘以几?学生回答后,教师在620的右下方用红粉笔板书:62=12。
一摞是12个,10摞是几个12?是多少?
几乘以几?学生回答后,教师在62=12的下面用红粉笔板书:1210=120。
算出10摞皮球的个数,就是20盒皮球的个数,也就是620等于多少?学生回答后,教师在620后面板书:=120。
最后,教师概括出620的口算过程:620可以先求62=12,再用1210,等于120。
5.做例4下面的做一做的第1题。
让学生先做,做完后,指名说一说各题的得数和口算过程。然后提问;
这几道题和例4的被乘数都是几位数?乘数都是什么数?
一位数乘以整十数在口算时,分了几步?
最后,让学生用这个规律把这道题再口算一遍。
6.做例4下面做一做的第2题。
三、练习。
做练习一的第6~11题。
1.第6、7题,让学生独立做,做完后,指名说得数,每道题抽几个小题让学生说一说口算过程。
2.第8题先让学生填出左边一题方框中的得数,再让学生填出右边一题方框中的得数,然后集体订正。
3.第9题,让学生先自己做,做完后说一说各是怎样列式计算的,为什么用乘法计算。
4.第10题,让学生自己读题,在练习本上解答。订正时,说一说为什么用乘法计算。
5.第11题,先让学生独立做,做完后,教师把学生的不同算法板书出来:205=100520=100。提问:
这两个算式表示的意思一样吗?为什么?(不一样,205是一排一排地算的,一排有20格,5排有205格;520是一行一行地算的,一行有5格,20行有520格。)。
205是怎样口算的?520是怎样口算的?通过分析使学生体会到:无论是205还是520都是把2和5相乘得10,再在后面添写一个0,得100。
【本文地址:http://www.xuefen.com.cn/zuowen/10399993.html】