2023年人教版六年级上数学教学设计(通用20篇)

格式:DOC 上传日期:2023-11-10 18:42:26
2023年人教版六年级上数学教学设计(通用20篇)
时间:2023-11-10 18:42:26     小编:QJ墨客

往日的痕迹在脑海中浮现,是时候总结一下了。写总结时要围绕主题展开,突出重点,避免不必要的废话和冗长的叙述。以下是小编为大家整理的一些总结范文,希望能给大家提供一些写作上的灵感和参考。

人教版六年级上数学教学设计篇一

第七单元。

教学目标:

1、了解“鸡兔同笼”的问题,感受我国古代数学问题的趣味性,提高学习数学的兴趣。

2、通过自主探索,合作交流,让学生体会代数方法的优越性。

教学重点、难点:

1、重点:尝试用不同的方法解决问题,使学生体会代数方法的优越性。

2、难点:在解决问题时培养学生推理能力。

教学过程:

(–)故事引入。

教师:在我国古代流传着很多有趣的问题,“鸡兔同笼”就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。

出示题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几只?(笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。鸡和兔各有几只?)。

师:我们今天就来学习--“鸡兔同笼”的问题。要解决这个问题,我们先从简单的问题入手。

(二)新授课程。

让学生以两人为一小组讨论。

汇报讨论的结果。

(1)列表:

鸡876543。

兔012345。

脚161820222426。

因此,鸡就有8-5=3(只)。

(3)用方程解:

解;设鸡有x只,兔有(8-x)只。

根据鸡兔共有26只脚来列方程式。

2x+(8-x)×4=26。

2x+8×4x=26。

32x-26=4x-2x。

2x=6。

x=3。

8-3=5(只)。

2,小结解题方法:新课标第一网。

3,延伸与应用:

师:其实生活中有许多类似“鸡兔同笼”的问题,下面分。

组研究这样一个问题:我们六年级38名少先队员划船活动,租了8条船,每条船都坐满人,大船能乘6人,小船能乘4人。这次活动租大船、小船个几条?(“做一做第2题”)。

(学生分组或独立完成后汇报交流)。

师:经过大家的一番努力,这个“租船”问题转化成了一道‘‘鸡兔同笼”问题。

4,畅谈收获,全课结束。

师:今天的学习有趣吗?大家有哪些收获?

师:希望你们能用今天学到的方法去解决更多实际生活中的数学问题。

人教版六年级上数学教学设计篇二

思考并回答:

1、在小学里我们学过哪些数?

2、最小的非0的自然数是多少?有没有最大的自然数?自然数的基本单位是多少?

3、小数又可以怎样分类?

4、我们学过的整数和小数的计数单位有哪些?数位的顺序是怎样的?

6、写数时应注意什么?用阿拉伯数字写出下面各数:七千零三十八、七亿零三十八万、

三亿零五十万六千、零点零四零六。

练习:

1、在数位顺序表里,小数点左边第一位是()位,计数单位是();第五位是()位,计数单位是()。小数点右边第一位是()位,计数单位是();第三位是()位,计数单位是()位。

2、最高位是百万位的整数是()位数;最后一位是百分位的小数是()位小数。

3、5830070420读作()。“8”在()位上,表示();“7”在()位上,表示()。

4、有一个四位数,加上“1”就变成五位数,这个四位数是();有一个四位数,减去“1”就变成三位数,这个四位数()。

5、地球有多大?请读出下面数据。

地球的半径6378.14千米赤道长40073.92千米。

地球表面积510067860平方千米地球海洋面积361745300平方千米。

思考并回答:

1、3.150=3.15、7.8=7.8000,这是根据什么?

2、一个数的小数点向左移动两位,再向右移动一位,它的值有什么变化?

3、1÷3、70.7÷33,商的小数部分的数字有什么规律?

5、下面的循环小数,如果各保留三位小数取它的近似值,该怎样写?.....

0.720.33.150。

6、以85400为例,省略万后面的尾数与写作以万为单位的数有什么区别?

8、三个连续的自然数的和是45,这三个数分别是()、()、()。

练习:

1、9035000以万为单位写作(),省略万后面的尾数写作()。408000000以亿为单位写作(),省略亿后面的尾数写作()。

2、7.85353……写作(),0.346346……写作()。

3、0.04×1000就是将0.04的小数点向()移动()位。

4、25.4÷100就是把25.4的小数点向()移动()位。3.002的小数点左移两位,是原数的(),小数点右移三位,是原数的()倍。

5、两个数相除的商是3.45,如果把被除数的小数点向右移动一位,除数的小数点向左移动一位,商是()。

数的整除。

思考并回答:

1、下面的除式,哪些是整除关系?是整除关系的两个数要具备哪些条件?

32÷4、45÷7、12÷0.3、720÷90、2÷4。

4、什么叫质因数?什么叫分解质因数?

5、下面各题分解质因数是否正确?为什么?不对的应该怎样改正?

6、求下面各组数的最大公约数和最小公倍数:14和42、24和32、12和18。

7、互质的两个数一定都是质数吗?怎样判别两个数是否是互质数?

练习:

1、在16、4、8、32、36、80、84、160这些数中,80的约数有(),16的倍数有()。

2、20的约数有(),32的约数有(),20和32的公约数有(),其中最大的公约数是()。

3、按照下面要求写出互质数:两个都是质数();两个都是合数();一个是质数,一个是合数()。

能被3整除的数。

能被5整除的数能被2整除的数。

5、求下面各组数的最大公约数和最小公倍数:27和18、39和117、8和15。

6、一个数用2、3、5除正好都是整数,这个数最小是();有一个数用它去除30、45、60正好都是整数,这个数最大是()。

7、判断题:

(1)没有约数2的自然数一定是奇数。

(2)一个自然数的约数总比它的倍数小。

(3)两个质数相乘,积一定是合数。

(4)一个奇数加上7,一定能被2整除。

(5)2、3、5都是质因数。

(6)两个合数不能成为互质数。

(7)17的约数都是质数。

(8)因为3、5、6的最大公约数是1,所以它们的最小公倍数是3×5×6=90。

分数和百分数。

思考并回答:

1、先填空,在回答:4/5=1÷×、4/5=÷;7/9=1÷×、7/9=÷。

什么叫分数?分数的分子、分母个表示什么?分数单位表示什么意思?

2、什么叫百分率?“9/100米”与“9﹪”在意义上有什么区别?

3、什么是分数的基本性质?分数的基本性质与。

商不变的性质、比的基本性质有什么联系?

4、什么叫约分?什么叫通分?你能说出约分和通分的方法吗?

5、下面括号里应填什么数?其中哪一个分数是最简分数?为什么?

24/40=()/20=48/()=()/5=()/15=36/()。

6、举例说明分数、小数、百分数的互化方法。

8、分数、小数、百分数混在一起,怎样比较它们的大小?比较0.6、2/3、61﹪的大小。

练习:

1、把3米长的钢管平均分成5段,每段钢管是全长的()/(),每段的长度是()/()米,3段占全长的()﹪。

2、生产500吨化肥,计划25天完成,平均每天完成计划的()﹪,每天生产()吨。

3、3里面有()个1/3,2/3里面有()1/12,1里面有11个2/(),100个1/7是()。

4、7/15的分数单位是(),添上()个这样的分数单位等于1,减去()个这样的分数单位等于1/5。

5、5/8的分母加上24,要使分数的大小不变,分子要();6/15的分母减去5,要使分数的大小不变,分子要()。

6、一个分数,它的单位是1/8,它有7个这样的单位,这个分数是(),化成小数是(),化百分数是()。

量和计量。

思考并回答:

1、在小学里已经学过哪些量?它们各有哪些计量单位?

各种量基本单位各单位之间的关系。

长度1米1千米=()米。

1米=()分米。

1分米=()厘米。

1厘米=()毫米。

面积1平方米1平方千米=()公顷。

1平方千米=()平方米。

1公顷=()平方米。

1平方米=()平方分米。

1平方分米=()平方厘米。

体积1立方米。

1升1立方米=()立方分米。

1立方分米=()立方厘米。

1升=()毫升。

质量1千克1吨=()千克。

1千克=()克。

时间1秒1日=()时。

1时=()分。

1分=()秒。

2、在进行单位之间的换算,或单名数与复名数之间的变换时,要注意什么?

练习:

1、填空:

(1)5米=()分米3.2分米=()厘米5平方米=()平方分米。

3.2平方分米=()平方厘米52700平方米=()公顷。

(2)4.8升=()毫升1.6千克=()克7.3米=()分米=()厘米。

(3)4.2公顷=()平方米0.8平方千米=()公顷。

1.05立方米=()立方分米1.45吨=()千克。

(4)210秒=()分1/6日=()时1时20分=()分。

2、选择:

(1)下列年份中,不是闰年的年份是()a1980年bc21。

(2)25厘米×()=1米a1/2b4c40。

(3)面积是1平方米的正方形的边长是()a10厘米b100厘米c10000厘米。

3、判断题:

(1)第一季度有91天的这一年是闰年。

(2)一水池装了0.3立方米的水,这池水的容积是300升。

人教版六年级上数学教学设计篇三

(至上学期)。

六年级数学学科教师:高春枝。

学习。

内容位置。

学习。

标1、在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

2、使学生能在方格纸上用数对确定位置。

重难。

点及。

突破。

措施教学重点:能用数对表示物体的位置。

教学难点:能用数对表示物体的位置,正确区分列和行的顺序。

课前。

准备。

导学案设计个性化设计。

3、用例1中表示班上同学所在位置的方法,表示出例2中的示意图上各场馆的位置。

流1、学习例1。

小组合作学习。

(1)、如果用第二列第三行来表示××同学的位置,那么你也能用这样的方法来表示其他同学的位置吗(2)练习用这样的方法来表示其他同学的位置。(注意先说列后说行)。

(3)××同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)。

(4)通过学习例1,你得出了什么结论?(确定一个同学的位置,用了两个数据,我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。)。

2、学习例2。

(1)依照例1的方法,全班一起讨论说出如何表示大门的位置。

(2)同桌讨论说出其他场馆所在的位置,并指名回答。

(3)小组合作根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。

3、练习。

(1)同桌合作,一个说出班内某个同学的名字,另一个在练习本上写出他的准确位置。

(2)生活中还有哪里时候需要确定位置,说说它们确定位置的方法。

(3)练习一第3、4、6题。

馈1、小明在教室的位置是(3,4),他在左边同学的位置是,右边同学的位置是(),前面同学的位置是(),后面同学的位置是()。

展作业:练习一第1、2、5、7、8题。

审核人:

人教版六年级上数学教学设计篇四

班级姓名小组小组评价。

学习目标:

1、学会用方程解答“已知一个数的几分之几是多少,求这个数”的应用题。会分析除法应用题中的数量关系,学习用线段图表示题中数量关系的方法。

2、通过独立思考、小组合作、展示质疑,在学习过程中,感悟分数除法应用题之间的内在联系,培养推理能力。

3、极度热情,全力以赴,精彩展示,做最好的自己。

重点:会用方程解答“已知一个数的几分之几是多少,求这个数”的实际问题。

难点:根据分数乘法的意义,找到等量关系,正确列出方程。

使用说明与学法指导:

先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够学会用方程解答“已知一个数的几分之几是多少,求这个数”的应用题。会分析除法应用题中的数量关系,学习用线段图表示题中数量关系的方法。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。

一、自主学习:

1、自学课本p37-p39页。

思考:1)、列方程解应用题的关键。

2)、用算术法解除法应用题的关键。

2、填空。

1)、米是米的();米相当于()米。

2)、自行车的速度是汽车的,把()看作单位“1”。

3)、一个数的是,这个数是()。

4)、一根卅绳长54米,剪去,还剩()米,把()看作单位“1”。

3、解方程。

二、合作探究:

例1、根据测定,成人体内的水分约占体重的,而儿童体内的水分约占体重的,小明体内有28千克的水分,小明的体重是爸爸的。

1)、小明的体重是多少千克?

2)、小明爸爸的体重是多少千克?

要求:(1)、用两种方法解答。

(2)、画出线段图表示题中的数量关系。新课标第一网。

小结:(1)、列方程解应用题的关键:

(2)、用算术法解分数除法应用题的关键:

要求:1)、用两种方法解答。

2)、画线段图表示题中的数量关系。

小结:1)、分数连除应用题的解题关键:

2)、分数连除应用题的解题方法:

方程解法:

算术解法:

三、学以致用:

1、画线段图表示下面各数量关系。

1)、鸡的只数是鸭的。

2)、女生人数占全班的。

2、列式计算新课标第一网。

1)、一个数的是64,求这个数。

2)、12的与什么数的2倍相等?

3)、加上一个数的,和是1,求这个数。

四、解决问题:

1、小红看一本书,已看了76页,是未看页数的,这本书小红还有多少页未看?

人教版六年级上数学教学设计篇五

教学内容:义务教育课程标准实验教科书三年级上册106页例3及“做一做”,练习二十的第4、6、10题。

教学目标:

1、知识目标:经历可能性的试验过程,知道事件发生的可能性是有大小的。

2、能力目标:培养学生通过实验获取数据、利用数据进行猜测与推理的能力;并能列出简单试验所有可能发生的结果。

3、情感目标:在活动交流中培养合作学习的意识和能力。

教学重点:学生通过试验、收集和分析试验数据知道事件发生的可能性是有大小的。

教学难点:利用可能性的知识解决实际问题。

教学准备:两个转盘、盒子、红球24个、蓝球6个、漂亮的卡通人物、硬币、多媒体课件,颜色笔。

教学过程:

一、创设情境,激趣猜测。

1、听故事,激发学习兴趣。

(1)老师知道同学们最喜欢听故事,特意准备了一个《小猴子下山》的故事,想听吗?

(动画播放:有一天,小猴子下山来。它看见玉米地里的玉米结得又大又多,就掰了一个扛着往前走。走着走着,来到桃树底下,看见满树的桃子又大又红,就扔了玉米去摘桃子。小猴子棒着几个桃子走到一个瓜地里,它看见满地的西瓜又大又圆,就扔了桃子去摘西瓜。它抱着一个大西瓜往回走,走着走着,看见一只小兔蹦蹦跳跳的多可爱,就扔了西瓜去追小兔。)。

2、猜测:请同学们想一想,小猴去追小兔,结果会是怎样呢?

学生猜测:它有可能追到小兔,也有可能追不到小兔。

师:那追到的可能性会……很小。

3、有些同学认为小猴不可能捉到小兔,有些同学认为小猴还有可能捉到小兔,只是可能性很小,看来,事情的发生不仅有可能性,而且发生的可能性还有大、有小。今天这节课我们就继续来学习有关可能性的问题。

(板书课题:可能性的大小)。

实践是最好的老师,下面我们就通过摸球试验来研究,好吗?

二、探究、验证。

1、试验准备。

(1)介绍试验材料。

师:每个小组准备了一个盒子,盒子里都有红球和蓝球。

(2)说明试验要求。

(多媒体出示小组合作要求。)。

(二)摸到哪种颜色球的可能性小?

(3)提出注意事项。

师:最后还请同学们特别注意:摸球时不能用眼晴看,摸球试验结束后不要打开盒子哟,能做到吗?下面请小组长拿出记录表和统计图,就可以开始试验了。

2、合作试验、初步推测。

(1)各小组试验,教师巡视。

(2)观察、汇报。

师:谁把你们组的试验结果给大家汇报一下?

生汇报。

3、推理、验证、归纳。

(1)观察。

(集中展示各小组的摸球情况统计图。)。

师:这是我们6个小组的摸球情况统计图,请同学们仔细观察,你发现什么呢?

生发现:每个小组都是摸出红球的可能性大,摸出蓝球的可能性小。

(2)思考。

师:这都是你们的推测,到底对不对呢?有什么方法可以知道?

师:好!莫老师数三声,我们就一起把盒子打开。

(红球的数量多,摸到的可能性大,蓝球的数量少,摸到的可能性小。)。

师:也就说,在摸球试验中,可能性的大小和什么有关系呢?

(与球的数量有关。)。

师:如果让你在自己小组的盒子里再摸一次,你觉得摸到什么颜色球的可能性大?为什么?好,请六个小组长一起来摸摸看。

(3)归纳。

三、应用、拓展。

1、转转盘。(课本106页的“做一做”。)。

(生可能会选黄色)你为什么会选黄色格呢?

(因为黄色格的数量多,红色格的数量少,所以转到黄色的可能性大。)。

转转试试看?

不行,每次都是你们赢,我得换个转盘,这次如果你还是转到黄色格的话,我就送你一张更漂亮的图案,谁来转?(指名3名学生上台转)。

师:为什么只有()个同学拿到图案?

3、拓展。

师:老师这里还有一个有趣的转盘(出示幸运转盘)。

(因为一等奖的奖品很贵重,所以要让人们转到一等奖的可能性小,转到其它奖的可能性大。)。

师:你们能用学到的数学知识解释生活中的问题,真是棒极了!

2、设计转盘。(练习二十第4题。)。

师:看了这个转盘,你们想不想也来设计这样有趣的转盘?

(1)课件出示设计要求。

请同学们在书本109页上涂一涂。

(2)谁想上来展示一下自己的作品?(用实物投影仪投影学生作品)。

问:在设计转盘时你是怎样想的呢?你们也是这样想的吗?

(3)小结。

4、解决问题。

师:今天还有一位我们非常熟悉的朋友来到了我们的课堂,看谁来了?(课件出示小猫扑蝴蝶)。

师:小精灵明明带着他的魔棒来了,还有谁来了?(小猫)。

(小猫扑到黄色蝴蝶的可能性大。)。

师:那我们就来看看小猫是不是扑到黄色蝴蝶的可能性大。(课件演示小猫扑到了一只黄色的蝴蝶。)。

(天空中还有6只黄蝴蝶3只红蝴蝶,小猫随意扑一只,还是扑到黄色蝴蝶的可能性大。)。

师:我们一起来看一看。(课件演示小猫扑到了一只红蝴蝶。)。

师:(疑惑地)咦!不是说小猫扑到黄蝴蝶的可能性大吗?怎么会扑到一只红蝴蝶呀?

(因为天空中还有红蝴蝶,所以还是有可能扑到红蝴蝶的,只不过扑到红蝴蝶的可能性小一点。)。

师:扑到红蝴蝶的可能性小并不是说不可能扑到红蝴蝶。

听!小猫又有问题想问了:你能想办法让我扑到红蝴蝶的可能性大吗?(增加红蝴蝶的只数,让它的只数比黄蝴蝶多。)。

(师用课件演示:小精灵用它的魔棒增加了7只红蝴蝶。)。

5、猜一猜。(练习二十第10题。)。

师:下面我们来做个游戏怎么样?这里有四个盒子,其中只有一个盒子里面放着一个硬币,你来猜一猜,可能会在哪个盒子里?下面我们来统计一下,注意:每个同学只能选择一次;认为在一号盒子里的举手,认为在二号盒子的,三号盒子,四号盒子。

汇报:因为硬币只能在四个盒子中的一个,有三个盒子中没有,所以猜错的人数多,猜错的可能性就大。

师补充:虽然猜对的可能性小,但我们也是有可能猜对的。

四、总结、延伸。

1、延伸。

2、小结。

(3)师:刚才《小猴子下山》的故事还没讲完,想听完吗?

出示录音:小兔子看到小猴追上来,马上串进草丛里不见了,这时太阳快下山了,小猴只好空着手回家去了。

师:看了这个故事结果后,你们有话要跟小猴子说吗?

小朋友们,我们可不要像小猴那样三心两意哦!

五、板书设计。

可能性大小。

数量多可能性大。

数量少可能性小。

人教版六年级上数学教学设计篇六

根据教材的安排,教学的程序是先讲座教材情境图的内容,然后现说一说自己班级的位置,而我的设计是先说一说自己在班级中的位置,再把情境图作为巩固练习。因为讨论的是学生每天都坐的位置,所以这一交换就很容易激发起学生兴趣,使教材内容更加丰富了。

(2)充分利用现场资源,把数学问题简单化。

我根据学生已有的知识经验,创设真实、具体的问题情境,让学生大胆探索确定位置的方法,体会“数对”在确定位置的作用。在教学时,我让学生从自己十分熟悉的座位入手,用自己唤起探究如何确定位置的欲望。在学生探究确定位置的方法时,我不急于告诉学生答案,而是让学生开动脑筋,尝试用自己的方法去描述,组织学生讨论谁的方法比较好。引入“数对”表示位置的方法时,我没有直接讲授,而是让学生运用自己喜欢的方式表示。此时,本课重要的知识点从学生之口引出,使学生获得极大的满足感,更进一步激发学习兴趣。同时从学生已有的知识经验中逐步抽象出数学的表示方法,也使学生更易理解和接受。

2.《整数乘法运算定律推广到分数乘法》的教学反思。

(1)、注重了情境的导入,提高孩子们的参与热情。

本节课,开启课时,我注重从孩子的身边挖掘素材,引出整数乘法运算定律,加以复习巩固,紧接着引导学生回忆这些运算定律曾经运用到什么知识中,引导到小数乘法的简算中,为后面的新知学习打下良好的基础。真正达到了“以旧导新,以旧带新”的效果。

(2)、鼓励学生大胆的质疑与猜想,激发学生内在的求知动力。

在新授课时,我设计的两个环节,引起了学生强烈的求知欲望。第一,在复习完后,我让学生自己说说,你现在最想研究一个什么样的问题?孩子们表现出空前的热情,比如有的孩子谈到想研究一下整数乘法运算定律是否可以推广到分数乘法?于是我鼓励学生根据已有的知识,去大胆的猜想。孩子们的思维活跃极了,甚至大大超出了我事先的预料;第二,在探究确认上述问题后,我又让学生大胆的质疑,定律推广到分数乘法中会起到什么作用呢?真的能简便吗?孩子的好奇心又一次被激起,他们又乐此不疲的投入到了简算的探究中去。整堂课下来,孩子们始终处在“质疑——猜想——验证”的学习过程中,真正变成了学习的主人。

3.《解决问题》的教学反思。

“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的意义的应用。它是分数应用题中最基本的。不仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的意义.在教学中我抓住关键句,找到两个相比较的量,弄清哪个量是单位“1”,要求的量是单位“1”的几分之几后,再根据分数的意义解答。在教学中,我强调以下几点:

(1)、让学生用画图的方式强化理解一个分数的几分之几用乘法计算.

(2)、强化分率与数量的一一对应关系.并根据关键句说出数量关系。

(3)、帮助学生理解“一个数的几分之几”与“一个数占另一个数”的几分之几的不同.

对稍复杂的分数应用题,通过分析关键句与线段图,为后面的新授作铺垫,并提高学生分析题意、理解数量关系的能力。通过沟通练习题与例题,利用学生解决稍复杂的应用题,并从中理解新旧应用题的不同结构。

4.《倒数的认识》教学反思。

(1)、在课的导入部分,联系学生熟悉的生活情景,由倒影和一些有趣的文字引出本节课所要探究的问题――倒数,从形象直观上感受颠倒位置,既激发了学生的探究兴趣,为学生学习新知识做了充分的准备,为学生较好理解倒数的意义做了铺垫。

(2)、变例题教学为学生自学课本,发现求一个数的倒数的方法,然后通过举例,检查学生的掌握情况,再总结出求一个数的倒数的方法。

(3)、丰富练习的形式。在充分利用教材的练习同时,我还适当地补充了练习的内容,使学生在练习中巩固,在练习中提高。比如设计的“比较大小”,在比较大小之后,让学生找找其中的规律,为接下来的分数除法做铺垫。“猜一猜“,不仅用到了倒数的知识,也联系到前面学的分数乘法应用题。

(4)、给学生独立思考的时间,相信学生能具有独立思考的能力,教学中每一个问题的提出,要使学生不是坐等听别人讲,而是能养成先自己积极思考的习惯。

(1)、重视新旧知识之间的联系.

虽然是分数四则混合运算,但是只要旧知识过关,这一单元并不难,于是我在教学中特别重视新旧知识之间的联系.首先,我把分数乘除法练好.再复习分数加减法,这样学生记算起来感到很顺利.最后,我又充分复习整数四则混合运算,主要是让学生明白分数混合运算运算顺序和整数四则混合运算的顺序一样.

(3)、提出问题,引导学生发现问题.“学源于思,思源于疑”.尝试题的出示,促使学生心理上产生疑惑而发生认识上的冲突,激发了学生的内部动机,有利于在新旧知识的联结点上展开教育.因而我注意在关键处提出一些问题,且内容恰当,难易适度,并富于思考性,易调动学生思维的积极性.出示尝试题后,说:“谁能不听老师的讲解就能做题”引导学生自己去探索知识,做的过程中提出:“先算什么后算什么”由于学生对这些知识并不陌生,很快会根据先算什么,后算什么而计算.这一系列问题,对于学生的思维,有明确的导向作用.

6.《分数乘法的意义整理和复习》的教学反思。

为了更好地完成本节课的教学目标,这节课我在以下几个方面做了努力:

(1)、充分发挥学生的主体地位在整个教学过程中,我努力把自己的角色转变为学生学习的组织者,引导者与合作者。发挥学生的主体地位,注重学生理解性学习和主动性学习,使学生在活生生的情境中,通过观察、变换、、自主探索、合作交流等多种形式使学生真正地理解所学知识,并对所学知识进行梳理。

(2)、注重《整理和复习》课的条理性、系统性在上课初,首先采取提问的形式让学生回忆本单元所学的知识,使学生很快的进入教学情景当中。教学中的知识安排上层层递进;在应用上,既重视发挥课本习题的导向作用,面向全体学生,掌握基本知识,形成基本技能,又注意培养学生的创新意识。注重补充习题的生活性,习题与生活紧密联系,使学生感受到数学就在身边,生活中处处存在着数学。不足之处:在操作过程中难免会有一些处理不当的地方。如对学生的评价语言不够到位,没有起到激励的作用,因而课堂气氛不是特别活跃,我会在以后的教学过程中不断改进,争取更大的进步。在上过分数乘法后,才知道有多少得失..

今天的教学内容是分数乘分数,重点是巩固和进一步理解分数乘法的意义,探索分数乘分数的计算法则。

在教学实践中我继续采用“数形结合”的数学方法,帮助学生达成以上的两个数学目标。对于今天的“探究活动”没有直接放手,这是因为学生对“求一个数的几分之几是多少”的分数乘法意义的理解还不够深刻,因此在整个得教学过程分为三个层次:

(1)、引导学生通过用图形表示分数的意义,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。

(2)、学生运用数形结合的方法独立完成教材中的“做一做”,进一步达成以上目标,并为总结分数乘分数的计算积累知识。

可以说整体教学的效果还好。

通过今天的课我对数形结合的思想有了更进一步的理解。由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,帮助学生理解分数乘分数的计算道理;体现了教材对数形结合思想渗透的一个过程。

人教版六年级上数学教学设计篇七

学习目标。

1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例或反比例。

2、使学生初步认识正比例的图像是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。

4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动地参与学习活动的习惯,提高学好数学的信心。

考点分析。

1、两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。

如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:=k(一定)。

2、用“描点法”可以得到正比例的图像,正比例的图像是一条直线。对照图像,能根据一种量的值,估计另一种量相对应的值。

3、两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。

如果用字母x和y分别表示两种相关联的量,用k表示它们的积,反比例关系可以用这样的式子来表示:xy=k(一定)。

4、两个变量的比值一定,这两个变量成正比例;两个变量的积一定,这两个变量成反比例;没有上述两种关系,这两个变量不成比例。

典型例题。

例1、(正比例的意义)一列火车行驶的时间和路程如下表。这两种量有什么关系?

时间/时123456……。

路程/千米120240360480600720……。

分析与解:(1)从上表可以看出,表中有时间和路程两种量。

(2)从左往右看,时间扩大,路程也扩大;从右往左看,时间缩小,路程也缩小。所以它们是两种相关联的量。

(3)路程和时间的比值始终不变,=120,=120,=120……这个比值就是火车的行驶速度。

通过观察和计算,我们对路程和时间的关系有两点发现:第一点路程和时间是两种相关联的量,也就是时间变化,路程也随着变化;第二点路程和对应的时间的比的比值(也就是速度)是一定的,有这样的关系:=速度(一定)。

具备了这两个条件,我们就可以得到结论:行驶的路程和时间成正比例关系;行驶的路程和时间成正比例的量。

点评:判断两种量是不是成正比例,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的比值是否一定。不要省去任何一步。如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:=k(一定)。

例2、(判断是否成正比例)。

练习本的单价一定,买练习本的数量和总价是不是成正比例?为什么?

分析与解:根据正比例的意义,看两个变量的比值是否一定,如果两个变量的比值一定,那么这两个变量就成正比例,反之,则不成正比例。

买练习本的数量和总价是两种相关联的量,它们与练习本的单价有下面的关系:

=练习本的单价(一定)。

所以练习本的数量和总价成正比例。

例3、(正比例的图像)磁悬浮列车匀速行驶时,路程与时间的关系如下。

时间/分1234567……。

路程/千米7142128354249……。

(1)图中的点a表示时间为1分钟时,磁悬浮列车驶过的路程为7千米。请你试着描出其他各点。

(2)连接各点,它们在一条直线上吗?

42。

35。

28。

21。

14。

7●a。

1234567时间/分。

分析与解:根据提供的各组数据描出图像的许多个点,再依次连成直线。路程和时间相对应的数的比值都是7,即速度一定,路程和时间成正比例,图像是一条直线。对照图像,可以根据时间的值估计出路程的值,也可以根据路程的值估计出时间的值,估计时允许有一定的出入。

(1)描点、连线如图。

路程/千米。

42●。

35●。

28●。

21●。

14●。

7●a。

1234567时间/分。

(2)在一条直线上,因为路程和时间成正比例,正比例的图像是一条直线。

(3)根据图像,列车运行2分半钟时,行驶的路程是17.5千米;行驶30千米大约需要4.3分钟。

例4、(辨析)圆的周长和直径成正比例,圆的面积和半径成正比例?

分析与解:圆的周长和直径成正比例,而圆的面积和半径却不成正比例。

可列表判断。

半径/cm123456……。

直径/cm24681012……。

周长/cm6.2812.5618.8425.1231.437.68……。

面积/cm3.1412.5628.2650.2478.5113.04……。

圆的周长和直径的相对应的数的比值都是3.14,所以圆的周长和直径成正比例。而圆的面积和半径的相对应的数的比值是变化的,所以圆的面积和半径不成正比例。

圆的周长和直径成正比例,圆的面积和半径却不成正比例。

例5、(反比例的意义)。

每小时加工零件的个数/个2030406080……。

加工的时间/时128643……。

分析与解:(1)从上表可以看出,表中有每小时加工零件的个数和加工的时间两种量。(2)从左往右看,每小时加工零件的个数扩大,加工的时间反而缩小;从右往左看,每小时加工零件的个数缩小,加工的时间反而扩大。所以它们是两种相关联的量。(3)每小时加工零件的个数和相对应的加工的时间的积都始终不变,如20×12=240,30×8=240,40×6=240……而这个积就是这批零件的总个数。

通过观察和计算,我们发现:每小时加工零件的个数和加工的时间是两种相关联的量,每小时加工零件的个数随着加工的时间变化而变化,但无论它们怎么变化,相对应的积是一定的,有这样的关系:每小时加工零件的个数×加工的时间=零件的总个数(一定)。

所以每小时加工零件的个数和加工的时间成反比例的量,它们之间的关系叫做反比例关系。

点评:判断两种量是不是成反比例,和正比例一样,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的乘积是否一定,进行判断。不要省去任何一步。如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy=k(一定)。

例6、(判断是否成反比例)。

总产量一定,每公顷的产量和公顷数是不是成反比例?为什么?

分析与解:根据反比例的意义,看两个变量的乘积是否一定,如果两个变量的积一定,那么这两个变量就成反比例,反之,则不成反比例。

每公顷的产量和公顷数是两种相关联的量,它们与总产量有下面的关系:

每公顷的产量×公顷数=总产量(一定)。

所以每公顷的产量和公顷数成反比例。

例7、(辨析)和一定,一个加数和另一个加数成反比例。

分析与解:判断两个变量是否成反比例,关键是看两个变量的乘积是否一定。很明显,和一定,两个加数的积是变化的,所以它们不成反比例。

和一定,一个加数和另一个加数不成反比例。因为它们的积不一定。

点评:有些相关联的量,虽然也是一种量变化,另一种量也随着变化,但它们不是积一定,也不是比值一定,它们就不成比例。像这样的还有:人的跳高高度和身高;减数一定,被减数和差等。

例8、(综合题1)。

(1)长方形的面积一定,长和宽成反比例吗?为什么?

(2)长方形的周长一定,长和宽成反比例吗?为什么?

分析与解:判断时可以用列表的方式列举数据,也可以根据计算的公式来推导。

(1)因为长方形的长×宽=长方形的面积(一定),所以长和宽成反比例。

(2)长方形的周长=(长+宽)×2,长方形的周长一定,长+宽的和一定,但不是积一定,所以长和宽不成反比例。

例9、(综合题2)。

分别说明大米的总千克数、每天吃的千克数和天数这三种量中,每两种量的比例关系。

(1)大米的总千克数一定,每天吃的千克数和天数;

(2)每天吃的千克数一定,大米的总千克数和天数;

(3)天数一定,大米的总千克数和每天吃的千克数。

分析与解:在大米的总千克数、每天吃的千克数和天数这三种量中,当某一种量一定时,另外两种量可能成正比例关系,也可能成反比例关系。可以根据数量关系式来判断。

(1)因为每天吃的千克数×天数=大米的总千克数(一定),所以大米的总千克数一定时,每天吃的千克数和天数成反比例。

(2)因为=每天吃的千克数(一定),所以每天吃的千克数一定时,大米的总千克数和天数成正比例。

(3)因为=天数(一定),所以天数一定时,大米的总千克数和每天吃的千克数成正比例。

人教版六年级上数学教学设计篇八

学情分析。

本课从人类生存的角度介绍了地球的有关知识,阐明了人类的生存“只有一个地球”的道理,说明了保护地球的重要性。课文从宇航员在太空遥望地球所看到的景象写起,引出了对地球的介绍。从地球在宇宙中的渺小,人类活动范围很小,地球所拥有的自然资源有限又被不加节制的开采或随意损坏等方面,说明地球面临着自然资源的枯竭的威胁。用科学家研究的成果证明,当地球资源枯竭时,没有第二个星球可供人类居住。人类的选择只有一个,那就是精心保护地球,保护地球的生态环境。本文语言朴实、流畅自然,清晰的说理,又饱含深情。尤其在表达方面,本文注意用词的准确性,行文十分严谨,知识性较强。

教学目标。

1.学会本课生字、读准生字的读音,能正确读写课文中的词语。

2.能正确、流利、有感情朗读课文,体会课文语言材料的巧妙组合以及在谋篇布局上的条理性。

3.理解课文内容,懂得“只有一个地球”的道理,教育学生要珍爱地球,善待地球。了解课文介绍的有关地球的知识,懂得保护生态环境,保护地球的重要性;增强环保意识,受到保护环境的教育。

4.培养学生收集整理材料的能力,通过调查地球的资源以及地球所受到污染的有关信息,让学生具备查找资料补充课文内容的能力。

教学重点让学生明白人类的生存“只有一个地球”,懂得珍惜资源,保护地球的生态环境。教学难点通过联系实际思考问题,加深对课文的理解,并将保护地球的意识付诸行动。

教具ppt。

教学流程二次备课。

一、导入新课。

同学们,我们有一个共同的家园,她孕育了亿万个生灵,并且无私的奉献着。你知道她是谁吗?对,她就是地球。

今天,我们一起来学习一篇文章《只有一个地球》,来了解我们这位母亲。(板书,齐读课题。)。

二、初读读文、整体感知。

1.同学们跟随老师一起去看看我们的家园地球吧!就让我们乘坐中国人自己研究的宇宙飞船,去太空旅行吧。(播放课件)请同学们闭上眼睛,我们的飞船马上就要发射了。请同学们睁开眼,这个水蓝色的星球就是我们的地球。地球美吗?看到这个美丽的星球,你用一句话来谈谈感受?(生说)。

2.老师来检查一下大家的预习情况。(指名读课文。)。

4.课文读完了,老师给大家提个问题:宇航员在太空中看到地球后发表了怎样的感慨?(生说)。

(板书:可爱容易破碎)。

三、整体分析,点拨升华。

1.你从课文中的哪些地方可以体会到地球的可爱?

指导学生抓住课文中的重点语句分析理解。

指导学生有感情朗读课文第一段,学生评价。

老师也想读一读,请大家自己听。(教师范读)。

让我们一起来赞美我们的母亲地球吧!(学生齐读)。

2.地球的可爱仅仅是因为它的外表美吗?(学生谈谈自己的认识)。

从文章中哪些段落可以看出?(学生读有关的段落)。

让学生体会出地球的慷慨。理解能把有限的资源无私的奉献给人们这就是最大的慷慨。

读到这我想同学们应该理解到,为什么我们把地球称为我们人类的母亲了。只有母亲才能有这样的心去包容、去奉献。

3.理解了课文相信大家会读的更好。(学生读课文)。

4.是啊,茫茫宇宙,只有地球对人类是慷慨无私的,他像母亲一样为我们提供了温暖舒适的生活环境。在我们的心中,他永远都是那样的美丽壮观,可亲可爱。

5.在我们的眼里,地球是那样的坚固。地球的容易破碎又表现在哪些地方呢?

(1)地球的渺小。谁能通过自己的朗读表现出地球的渺小?

(2)资源有限。谁来说说地球上矿产资源的有限性?

板书资源有限。

(3)谁来说说可再生资源的情况又是怎样呢?

(4)完成填空:地球拥有的自然资源是有限的。地下埋藏的(),如果人们没有节制的开采,最多开采二三百年就没有了。人类生活所需要的()、()、()、大气资源,由于人们随意毁坏自然资源,……如果不顾后果地滥用化学品,就会造成一系列()。

板书不可再生。

大家通过练习,了解到我们地球上的资源是有限的。这个练习也告诉了我们一个写作的方法:我们想要阐明自己的观点,可以采用举实例的方法。

6.我们的地球的资源是有限的,她却依然在遭受着破坏。课前老师让大家收集了有关生态环境遭受破坏的资料。请你根据自己收集的图片、资料,讲解我们的地球遭受了怎样的灾难?(生说)。

同学们,看着这些令人触目惊心的图片,我仿佛看到地球在哭泣,你不想说点什么吗?

8.地球这个孕育着亿万生灵的神奇母亲,我们只有保护她。那是因为--。

(课件展示:)。

科学家已经证明,在以地球为中心的40万亿千米的范围内,没有适合人类居住的第二个星球。

(学生齐读。)有什么不对吗?学生找出问题,少了“至少”二字。

科学家已经证明,至少在以地球为中心的40万亿千米的范围内,没有适合人类居住的第二个星球。

让学生比较这两个句子,谈谈自己的理解,从而让学生理解说明文用词的准确性。

学生对比着进行朗读,培养学生的语感。

9.同学们,我们只有一个地球!但我们可亲的地球妈妈,正在遭受着无情破坏我们的家园--这个水蓝色的星球太可爱了,同时又太容易破碎了,她需要我们一起去精心保护她。

请同学们带着对地球母亲的一片爱心,齐读最后一个自然段。

看到我们的地球母亲所遭受的灾难,我们能为保护地球做点什么呢?(生说)。

板书精心保护地球。

四、全文小结。

听了同学们的发言,老师感受到你们已经了解了地球母亲的苦难。作为一名小学生,作为国家未来的建设者,我们应该从现在开始、从自己做起,为保护地球母亲做贡献,让我们的家园的天空更蓝,空气更清新,清清的河水鱼虾欢畅,处处山青水秀、鸟语花香。

板书设计。

可爱:美丽慷慨无私。

只有一个地球精心保护地球。

容易破碎:资源有限不可再生。

作业设计。

倾听家园的呼唤,语文实践活动,展示介绍空气、水资源、森林资源等被污染和破坏的情况,可以是资料图片,也可以是文字介绍。

教学反思。

五年级学生曾接触过有关的说明文。在本课中除了让学生体验用词的恰当外,课堂中还可以适当的渗透有关说明方法。同时结合课文内容,让学生收集整理有关的材料,完成倾听家园的呼唤语文综合实践活动,将课内知识延伸到课外,锻炼学生的能力。教学过程按设计进行,抓住了重点,引导学生在自由阅读的基础上,理解地球的慷慨与无私,地球的渺小与容易破碎,在此基础上使学生领悟“只有一个地球”的道理。教学中较好地体现了语文的人文性与工具性的统一,从而使学生将语文和相关的知识内化为自己的语文和思想认识,实现了教学目标。

人教版六年级上数学教学设计篇九

教学目标:

使学生进上步理解和掌握比和比例的意义与性质。

区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。

教学过程:

讲述本课复习课题并板书。

基本概念的复习。

比和比例的意义与性质。

比和分数、除法有什么联系?

说说比的基本性质的比例的基本性质?

比的基本性质与比例的基本性质各有什么用处?

看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?

完成教材95的“做一做”。

结合第3题让学生说说什么叫做解比例?根据是什么?

示比值和化简比。

独立完成教材96页上的题目。

说说求比值与化简比的区别?

(求比值是根据比的意义。用前项除以后项,得到结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。

看书中的表,总结方法。

完成教材96页的“做一做”

比例尺。

问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。

2)一幢教学大楼平面图的比例尺是1/100,这比例尺表示的是什么意思?

比例尺除写成数字化形式处,还可怎样表示?

完成教材97页上的“做一做”。(理解比例尺实质上是一个比,此比的前项与后项表示的意义是什么。)。

练习巩固。

完成教材十九页第1~4题。

全课总结(略)。

人教版六年级上数学教学设计篇十

有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。引导学生开展观察、操作、交流等活动,使学生通过数学活动,掌握基本的数学知识和技能,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣。

二、教材分析:

教材第76页例2是只含有一次进位的笔算乘法。由于学生是初次学习进位,所以这里安排了一个数目较小的两位数乘一位数的例子,以便学生更容易理解进位的道理。情境图引出了小精灵提出的问题:“王老师买了多少本连环画?”

这道例题出现的是两位数乘一位数,只有一次进位的乘法。教师可以让学生自己先尝试着做一做,然后在小组内和全班进行交流。应组织学生着重讨论两个问题:一是先乘哪一位?再乘哪一位?使学生体会到应从个位乘起,否则遇到进位就很麻烦。二是遇到个位上的积满十应该怎么办?在竖式中,对进到十位上的数该怎么处理?这些问题应尽可能由学生自己找出答案,自己解决问题。在教学中,还可以借助学具操作来帮助学生理解。

三、学情分析:

记在竖式十位的横线上。

在学生做过一些练习后,教师可引导学生探寻计算的规律:什么时候要进位?什么时候不进。

位?怎么知道该进几?怎么进位?启发学生得出:哪一位上的积满几十,就要向前一位进几。

四、教学目标:

1、帮助学生进一步理解并巩固乘法竖式的计算法则。

“满几十进几”的算法,初步掌握进位法则,并正确进行计算。

3、培养学生主动获取新知识的学习习惯。

五、重点难点:

重点是使学生进一步理解并巩固乘法竖式的计算法则,经历只含有一次进位的笔算乘法的计算过程,理解“满十进一”的算理,进而类推“满几十进几”的算法,初步掌握进位法则,并正确进行计算。难点是掌握笔算乘法中的进位方法,并正确进行计算。

六、教学策略与手段:

根据学生的认知水平,在教学中,让学生自行观察、独立思考、自主实践,从而有效地促进学生对知识的理解。

七、课前准备:

1、课前要求学生预习。

2、教师准备课件。

八、教学教程:

(一)、复习旧知。

a)用竖式计算。

32×2=321×3=431×2=。

最后一题请学生说说你是怎么算的?

设计意图:复习巩固多位数乘一位数的竖式计算方法,为进位乘法的学习做好铺垫。

(二)新课教学:

1、引入新课。

课件出示主题图,

新年快到了,王老师准备给大家买一些连环画作为礼物,从图中,你了解了哪些数学信息。请学生看图口头表达图中所表示的意思。

2、探索算法。

教师引导学生进行语言表达,简要概括,并板书题目:

板书:王老师买了3套连环画,每套18本,一共买了多少本?

(1)可以怎样列式解决这个问题呢?引导学生独立思考后列出算式。

(2)你用什么方法计算出结果的?想好后在小组内进行交流。

(3)指名汇报。

设计意图:让学生会采用不同的方法解决问题,培养学生对知识活学活用的能力。

3、指导竖式算法。

(1)计算18×3,写成竖式该怎么写?先乘哪一位?(个位)结果是多少?(3×8=24)。

(2)个位上的积满十怎么办?(个位上的积满十应该向十位进位,个位积是24,4写在个位上,2写在十位上,写得小一点。)。

(3)再乘哪一位?(十位)。

(4)在竖式中,对进到十位上的数该怎么处理?(在竖式中,进到十位上的数应该加上)。

(5)指导看书:引导学生认真观察、比较这两个竖式。

一个加法算式:18一个乘法算式:18。

18×3。

+182。

5454。

(6)找出异同点:相同点:结果一样,都有进位“2”。

不同点:竖式的写法不一样。

算理一样,乘法比较简便。

设计意图:通过计算过程的思考与探讨,发散思维。

(7)引导学生归纳笔算乘法的算法。

(8)练习反馈:

课本第76页的“做一做”。

巡视、指导学习有困难的学生,进一步掌握进位乘法的计算方法。

指名板演,说说计算方法。

反馈:计算时要注意什么问题,指名回答。

通过练习,反馈存在的问题,特别抓住第3小题,指导学生领会三位数乘一位数的运算方法和两位数乘一位数的运算方法相同。

4、小结归纳。

谁能说说我们是怎样计算多位数乘一位数的?

引导学生回答、归纳:哪一位乘积满几十,就向前一位进几。

设计意图:通过引导学生探寻计算的规律,使学生更好地掌握进位乘法的计算方法。

(三)巩固练习。

1、判断:下面的计算对吗?把不对的改正过来。

(1)18127。

×2×3。

26561。

(2)课本第77页第1题。比一比,看谁算得又对又快。

(3)指导学生完成练习十七第2-4题。

指导学生理解题意,先自己独立解答,然后在小组内交流。指名汇报,说说你是怎么想的?

设计意图:帮助学生巩固所学的知识,提高计算的准确性。

(四)拓展性练习。

你会用电脑打字吗?

每分钟你能打()个字,4分钟能()个字。

设计意图:把所学的知识灵活运用到生活中,使学生感受到生活中处处有数学。

九、板书设计。

板书:王老师买了3套连环画,每套18本,一共买了多少本?

18×3=54(本)。

1818。

18×3。

+182。

5454。

用乘法计算比较简便。

十、作业设计。

1、笔算。

31×3=12×4=243×2=312×3=。

2、交朋友,把积相同的算式连接起来。

39×2224×415×6。

18×56×13112×8。

3、解决下面问题。

(1)黄花有32朵,红花是黄花的3倍,红花有多少朵?

(2)201班第一小组同学拍皮球,平均每人拍111下,6人一共拍了多少下?

教学反思:

十一、镇街交流意见。

十二、教师使用体会。

人教版六年级上数学教学设计篇十一

教学内容:课本89页例1、例2、做一做、练习二第1、2题。教学目标:

1、让学生在已有的分数加法的基础上,通过小组合作,自主探究建构,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、让学生在合作学习、汇报展示、互动交流中,体验学习带来的喜悦,培养学生的学科兴趣和学习能力。

3、让学生在课堂学习中感悟到数学知识的魅力,领略到美。教学重点:让学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点:总结分数乘整数的计算方法。教学过程:

一、创设情境,提出学习目标。

1、创设情境:同学们,谁敢与老师比一比,看谁列式列得比较快?

比赛题目为:3个3/10相加的和是多少?6个3/10相加的和是多少?

师:同学们的表现真是太棒了?这节课我们就一起来研究有关《分数乘整数》的数学问题?

第1页/共5页2、提出学习目标。

让学生先说一说,再出示学习目标:(1)分数乘整数的计算方法。

学生独立自学课本89页例1、例2,完成做一做(教师相机进行指导,收集学生的学习信息,重在让学生展示不同的思维方法和错例,特别是引导小组内学生之间的交流与探讨)2、全班展示(1)算法展示。

生1:利用乘法与加法的关系进行计算。2/154=2/15+2/15+2/15+2/15=8/15生2:先计算出结果,再进行约分。5/128=58/12=40/12=10/3=生3:在计算过程中能约分的先约分,再计算。23/4=3/22与4先约分,再计算。(2)比较三种计算方法,选择最优算法。

通过对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。(3)错例展示:

错例1:学生把整数与分子进行约分。错例2:学生没把计。

第2页/共5页算结果约成最简分数。

3、学生质疑问难,激发知识冲突。

(1)针对同学的展示,学生自由质疑问难。

(2)教师引导学困生提出问题:同学们,你在学习中碰到困难了吗?能把你遇到的困难说给大家听吗?那你对同学的展示有什么想法与建议吗?4、引导归纳分数乘整数的计算法则。

1、完成课本12页练习二第1、2题。2、生活中的数学。

这个工作可让学生分组负责收集整理,登在小黑板上,每周一。

第3页/共5页换。要求学生抽空抄录并且阅读成诵。其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。如此下去,除假期外,一年便可以积累40多则材料。如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。2、智力冲浪:用12个边长都是dm的正方形硬纸板可以拼成多少种形状不同的长方形?它们周长分别是多少?(a类同学做)。

第4页/共5页习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。通过联想,幼儿能够生动形象地描述观察对象。

第5页/共5页。

人教版六年级上数学教学设计篇十二

班级姓名小组小组评价。

学习目标:

1、掌握用方程和算术方法解决稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题。学会运用线段图帮助分析数量关系。

2、在分析数量关系解决实际问题的过程中,提高学生分析问题和解决问题的能力。

3、极度热情,全力以赴,精彩展示,做最好的自己。

重点:掌握解决稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题的方法。

难点:学会分析题中数量之间的关系。

使用说明与学法指导:

先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够掌握用方程和算术方法解决稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题。学会运用线段图帮助分析数量关系。

并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,补充之后由老师进行点拨,最后巩固知识。

一、自主学习:

1、自学课本p39-p40页。

2、直接写出得数。

3、画线段图表示下面各数量关系,并写出等量关系式。

1)、杨树比柳树少。

2)、柳树比杨树多。

二、合作探究:

例1、美术小组有25人,美术小组的人比航模小组多,航模小组有多少人?

要求:1)、画线段图表示题中的数量关系。

2)、用方程和算术方法两种方法解答。

小结:解决稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题的解题关键是:

要点提示:解答分数应用题,在找准单位“1”的同时,还要看清所要求的问题与单位“1”的关系。

三、学以致用:

1、想一想,填一填。

商店运来彩电150台,(),运来空调多少台?

1)、空调比彩电少,列式是()。

2)、150除以(1-),条件是()。

3)、空调比彩电多,列式是()。

4)、彩电比空调多,列式是()。

2、列式计算。

1)、一个数的是的,求这个数。

2)、与的积再除以,商是多少?

3)、的倒数的3倍减去,差是多少?

四、解决问题:新课标第一网。

3)、一筐苹果的是16千克,吃去这筐苹果的,还剩多少千克?

新课标第一网。

人教版六年级上数学教学设计篇十三

一、教学背景分析:

1、教学内容分析:本课是苏教版国标本第十一册第五单元认识比的起始课,在遵循教材编写原理的基础上,对教学题材进行了重组,提供现实背景,改变呈现方式,让学生在充分参与解决问题的过程中,学会合作、学会表达、学会交流,更好地帮助学生理解知识,形成技能,发展思维。

2、学生情况分析:学生已经掌握了除法和分数的意义,在此基础上教学一些关于比的基础知识,能够发展学生对除法和分数的认识,进一步沟通知识间的联系。二、教学目标:

1.让学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。

2.使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。

3.让学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,在学习过程中领略到发现的乐趣与数学的美。三、教学重点:理解比的意义,理解比与分数、除法的联系。四、教学难点:经历建构比的意义的过程,形成初步的探究意识。五、教学过程:

(一)积累丰富的感性材料,帮助学生理解概念。

比的意义在教学中既是重点也是难点,同时这个意义概括得又比较抽象,学生很难用自己的语言表达出什么叫做比。为了让学生能真正体会到两个数的比表示两个数相除,在教学时,我设计了一些各有侧重点,同时又互相关联、循序渐进的例题。在学生对比有了丰富的感性认识后,再概括比的意义,这样有利于学生真正理解比的意义。

1.教学同类量的比,分四个层次进行。

首先利用学生感兴趣的动画片大头儿子和小头爸爸的身高,引导学生对两个同类量进行比较,学生通过已有知识与经验认识到,用减法可以表示两个数量的相差关系,用分数或除法可以表示两个数量之间的倍数关系,而这里认识的比则专门框定于后一种情况,这样可使教学建立在一个清晰的前提条件下。其次又重点引导学生认识比,使学生体会到比是对两个数量进行比较的又一种数学方法。在理解9比17和17比9的不同意义时,帮助学生明确比是一个有序的概念,这样的教学安排符合学生的认知规律,也显得层次清晰,条理有序。接着,我请学生利用课前谈话中提到的身高信息,结合卡通人物的身高,再来说说比。一是给学生说的机会,让他们会说谁与谁的比,二是引导学生发现,同类量的比较先要把单位统一以后才能比。

最后,让学生举一反三,列举生活中比的例子,通过交流,让学生感受比在实际生活中的运用。

2.教学不同类量的比。通过体重与身高的比来引入,让学生初步体会到两个不同类量间的关系也可以用比来表示,然后再举路程与时间的比,进一步完善对比的认识。最后通过观察板书,让学生概括出两个数的比表示两个数相除这一意义。

第1页。

(二)放手让学生自学,引导学生学以致用。

本节课的学习内容较多,不仅要让学生理解比的意义,还要学会比的读写、比各部分的名称、求比值的方法以及比、除法和分数之间的关系等,这么多的内容,如果全部由老师教给学生,就会显得多、杂,并且枯燥。考虑到这些内容的难度不大,学生能够通过看书自学解决问题,所以在教学完比的意义后放手让学生自学,让学生在小组里交流所学所想,这样不仅能培养学生的自学能力,而且能拓展课堂的宽度,同时也使教学重点得到强化。在交流时允许学生无序交流,但对应的练习要相机出示,让学生运用所学知识去解决问题,发展他们的能力。比与除法、分数的联系,我是引导学生通过回忆、观察、思考、讨论等活动来完成的,在交流完比的后项不能为0后,让学生分析一场足球比赛,两个队的比分为2比0。这个比与我们今天学的比相同吗?它的后项为什么可以是0?让学生从矛盾、冲突中领悟两者的差别。又如巩固练习第一题,书中将它放在例1的下面进行教学,目的是让学生初步体会到比与除法、分数之间的内在联系,但从学生的实际情况来分析,这是有一定难度的,所以此处进行了重组,将它放到交流完比、除法和分数的关系之后,这样处理既巩固了这三者的关系,又加深了学生对比的意义的认识。练习第2题,一方面巩固新知,另一方面在汇报过程中,发现比与比值的不同,引导学生寻找比值可以是分数、整数,也可以是小数。

(三)结合学生的生活实际,培养学生的应用意识。

抓住契机,结合学生身边的事物进行教学,有利于学生的发展。在最后的实践运用中,主要联系人身体上的数学问题来展开研究,让学生在观察、估计、实践中欣赏到数学的美,体会到数学的价值所在。这个过程既帮助学生加深了对比的意义的理解,又积累了丰富的数学活动经验,大大拓展了学生的知识面,提高了数学思考能力。我设计了以下四个环节:

1.读一读,了解人身体上的两个1比1,由于比较易懂,所以请学生自由读,借此机会活动一下。

2.体重与身高的比。在前面的新课教学中已经涉及这一知识,但前面只是初步理解体重与身高也能用比来表示,这时再次让学生计算体重与身高的比值,使学生深切感受到比和比值的意义。

3.头长与身高的比。先让学生看夸张的漫画,在笑的过程中回味、探索人体的比例,此时相机介绍不同时期人的头长与身高的比。

家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读能力提高很快。唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。“教授”和“助教”均原为学官称谓。前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。

第2页。

4.黄金比。借助多媒体的图、文、声、色来展示迷人的黄金比,令人赏心悦目。这个过程既加深了对比的意义的理解,又使学生积累了丰富的数学活动经验,大大拓展了学生的知识面,提高了数学思考能力。

我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。知道“是这样”,就是讲不出“为什么”。根本原因还是无“米”下“锅”。于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。所以,词汇贫乏、内容空洞、千篇1律便成了中学生作文的通病。要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。

第3页。

人教版六年级上数学教学设计篇十四

教学目标:

1、让学生在观察、操作等活动中感受并发现圆的有关特征,知道圆的各部分名称,发现同一圆内半径、直径的特征及关系,学会用圆规画圆。

2、培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念。

3、进一步提高学生与他人合作交流的能力,激发学生学习的热情,培养自主意识,增强学好数学的信心。

4、使学生初步学会用数学知识解释、解决生活中的实际问题,进一步体现数学的应用价值。

教学重点:

1、学会用圆规画圆。

2、在观察、操作等活动中感受并发现圆的有关特征。

教学难点:

引导学生归纳圆的特征。

教具准备:

自制多媒体课件、圆规、直尺。

学具准备:

1个圆形物体、圆规、白纸、直尺、图钉、线、2个大小不同的圆形纸片。

教学过程:

一、创设情景,初步感知圆的特征。

1、找一找(多媒体出示平面图形)。

师:同学们,这些平面图形大家还认识吗?在这些平面图形中,有一个图形与众不同,你能把它找出来吗?为什么?(学生说出弯曲的后多媒体演示)。

2、看一看。

师:古希腊有一位数学家曾经说过,在一切平面图形中,圆是最美的。下面请你欣赏。

2、说一说。

美不美啊?圆在我们的生活中随处可见,请你说说哪些地方还能看到圆。(学生举例)今天这一节课我们一起来进一步的认识圆(板书课题)。

二、实践操作,探索圆的特征。

1、画圆:同学们,圆这样美,想不想把它画下来?

师:请你借助老师提供的工具画一个圆。(小组合作)。

反馈:你是怎样画的?(学生回答后多媒体随即动画演示)。

(1)借助圆形实物画:你是这样画的吗?还有不同的画法吗?

(2)借助图钉和线段画:你是怎样画的?

(3)借助圆规画:你是怎样画的?

师:同学们,刚才我们用不同的方法画了圆,但是通常我们会借助圆规来画圆。请拿出圆规。师简单介绍:圆规有2只脚,一只脚是针尖,另一只脚是用来画圆的笔,两脚可以随意叉开。那怎样用圆规画圆呢?谁能说一说?(然后老师边示范边讲解)。

(4)请你用圆规画一个圆。

2、体验:在画圆的过程中,你觉得圆是怎样的一个平面图形?

3、认识圆心、半径、直径。

(1)结合圆规画的圆(屏幕),师介绍圆心、半径、直径的概念。并分别用字母表示。

半径有什么特点?直径呢?

(2)学生在自己的圆上画一条半径和直径,并分别用字母表示圆心、半径、直径。

看一看、比一比:圆规两脚间的距离和半径的长度(同样长)。

(3)画一个半径是2厘米的圆(圆规两脚间的距离是多少)。

师:刚才我们认识了圆心、半径、直径。下面我们一起来研究圆的特征。

4、探索圆的特征。

(1)小组合作探索。

出示例3:在圆形小纸片上画一画、量一量、比一比、折一折,思考下列问题。

在同一个圆里可以画多少条半径,多少条直径?

在同一个圆里,半径的长度都相等吗?直径呢?

同一个圆的半径和直径有什么关系?

圆是轴对称图形吗?它有几条对称轴?

(2)交流。

(3)电脑演示,加深理解。(多媒体将学生验证的圆的特征运用了旋转、重合等手段,进行动态演示)这些都是圆的特征。多媒体出示::所有的直径都相等,所有的半径都相等,d=2r,r=d/2)。

通过验证,你们发现的这些圆的特征正确吗?

质疑:那老师的圆的半径和你的圆的半径相等吗?(强调:在同一个圆内)。

(4)学生概括,总结特征。谁能把圆的特征用自己的语言来归纳概括一下。

三、巩固练习。

1、练一练第1题(指名说一说,说出理由)。

多媒体出示。

2、练习十七第1题:多媒体出示,学生口答。

3、判断题(指名说一说,说出理由)。

(1)圆的直径是半径的2倍。

(2)圆有无数条半径。

(3)通过圆心的线段是直径。

(4)画直径4厘米的圆,圆规两脚间的距离是4厘米。

(5)半径2厘米的圆比直径3厘米的圆小。

4、练习十七第2题。

四、实际应用。

1、体育老师要画一个半径是3米的圆,怎么办?(商量商量,帮老师出出点子)学生交流后看动画演示,说明和圆规画圆的道理是一样的。(固定点就是圆心,绳子长就是半径)。

2、师:同学们,圆不仅给我们的生活带来美,还给我们的生活带来方便,所以生活中的很多东西都设计成了圆形,比如:车轮为什么要设计成圆形,车轴应装在哪里?(学生讨论)。

(多媒体播放车轮是圆形的行进动画)。

人教版六年级上数学教学设计篇十五

教学目标:

1、使学生理解掌握比的基本性质,能应用比的基本性质进行比的化简。

2、培养学生类比、推理和概括思维能力。

教学重点:

1、理解比的基本性质。

2、运用比的基本性质进行化简比。

一、探究新知。

(一)比的基本性质。

1、前面我们认识了比,想一想2:4与6:12这两个比的大小是相等的吗?你能证明吗?----小研究(后附)。

(1)4人小组交流(2)全班交流。

(3)比值相等可以证明,还可以运用学过的哪个知识也可以证明呢?

(4)商不变的性质是不是对每个比都适用呢?自己举例试一试。

4、学生齐读,我们学习比的基本性质有什么作用呢?分数的性质可以使分数化简,比的性质同样可以使比化简,那么,什么样的比才是最简单的整数比呢?(比的前项和后项是互质数)最简单的整数比就简称为最简比。

5、你能举例说几个最简比吗?说得很好,在计算结果时,我们一般要得到最简比。

(二)化简比---完成练习题(后附)。

1、小组交流。

2、全班交流。

小结:化简比时,我们一般利用比的性质把比的前项和后项化成整数,再化简比较快。但在比的前项和后项都是分数时,用求比值的方法较快,只是注意最后结果要写成真分数、假分数或比的形式。

结合学生的汇报,引导学生注意化简比和求比值的区别。化简比:它是为了得到一个最简单的整数比。结果可以写成比的形式,也可以写成分数的形式,但不能写成带分数、小数获整数的形式。

二、巩固练习。

1、学校体育室有10个篮球,15个足球,篮球与足球的个数比是。

2、李师傅8小时生产了72个零件,李师傅生产零件总个数和时间的比是()。

3、拓展练习。

3:8=(3+6):(8+)。

(让学生分小组讨论方法)。

三、课堂总结。

这节课有哪些收获?师生共同总结。

()年()班姓名。

比的基本性质小研究。

你知道2:4与6:12这两个比的大小相等吗?你能证明吗?你有什么发现?

人教版六年级上数学教学设计篇十六

教学内容:

义务教育课程标准北京实验版教科书六年级上册《存款方案》。

教学目标:

1、了解储蓄的有关知识,能综合应用相关知识合理存款。

2、经历调查、解决问题的过程,体验合作探究的学习方法。

3、体会数学知识在日常生活中的广泛应用,培养学生的理财意识。

教学重点:

了解各种存款方式的利率和相关规定,设计合理的存款方案。

教学难点:

能综合应用条件灵活解决问题。

综合实践《合理存款》。

一、确定问题。

问题分析:根据自学导案,归纳要解决的问题:怎样存款收益最大。明确本活动中存款的本金、可存期限以及这笔存款的用途。明确需要收集与该问题相关的信息。(通过对问题的简单分析让学生初步了解存款的三种方式,为下一步学生收集信息做基础)。

二、收集信息。

课外调查:学生以小组合作学习的方式去银行调查不同的存款方式的利率等信息,学生可以利用网络,或者直接到银行到银行调查存款的方式和相关信息,并做好记录。

设计意图:这节课中教材主题图中所提供的存款利率是以前的利率,和现在的利率是不同的;国债利率也未明确给出。因此,通过课外调查让学生明确当前的存款利率等信息,并且,学生到银行调查是一次有价值的实践活动,是一个学习、体验的过程,可以有意识地体会数学与生活经验、社会现实和其他学科知识的联系。有了这样一个过程使这一实践活动更具有现实意义和实效性。

三、方案设计。

根据学生调查的信息设计存款方案。

学生以小组合作学习的方式共同设计方案,填写下表。

定期储蓄存款的方案可填在第第一张表格中。其他存款方案,如教育储蓄存款方案以及买国债的方案可填在第二张表格中。每一个具体方案都要求明确填出存期、到期利息、利息税以及到期收入等信息。

人教版六年级上数学教学设计篇十七

教学目标:

1.在理解圆锥体积公式的基础上,能运用公式解决有关实际问题,加深对知识的理解。

2.培养学生观察、实践能力。

3.使学生在解决实际问题中感受数学与生活的密切联系。

教学重、难点:结合实际问题运用所学的知识。

教学理念:

1.数学源于生活,高于生活。

2.学生动手实践,自主学习与合作交流相结合。

一回顾旧知:

1.圆锥的体积公式是什么?s、h各表示什么?

2.求圆锥的体积需要知道什么条件?

3.还知道哪些条件也能计算出圆锥的体积?怎样计算?

投影出示:

(1)s=10,h=6v=?

(2)r=3,h=10v=?

(3)v=9.42,h=3s=?

二运用知识,解决实际问题。

2.这些数据都是可以测量的。现在给你数据:高为1.2米,底面直径为4米。

(1)麦堆的底面积:__________________。

(2)麦堆的体积:____________________。

3.知道了体积,这堆小麦大约有多少重能知道吗?(每立方米小麦约735千克)(得数保留整千克数)。

4.一个圆锥形沙堆,占地面积为3.14平方米,高1.5米。(1)沙堆的体积是多少平方米?(2)如果每立方米沙约重1.6吨,这些沙子共重多少吨?(结果保留一位小数)。

(1)(出示图)什么情况下削出的圆锥是的?为什么?

(2)削去的木料占原来木料的几分之几?

三综合练习。

1.一个圆柱的底面积为81平方厘米,高12厘米,和它等体积等底的圆锥高为()厘米;和它等体积等高的圆锥的底面积为()厘米。

人教版六年级上数学教学设计篇十八

苏教版义务教育教科书《数学》六年级上册第34~35页例4~5、试一试和练一练,第37页练习六第1~5题。

1、使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。

2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。

整数乘分数的计算法则。

教具:

长方形纸、水彩笔。

一、创设情境。

二、组织探究。

1、教学例4出现教材中的图形。

然后问:画斜线部分是的几分之几?又是这个长方形的几分之几?

由此明确:的是,的是。

启发学生进一步思考:求的是多少,可以怎样列式?

求的呢?

师问:你能列算式并看图填写出书中的结果吗?

打开书p34完成。

提示:根据填的结果各自想想怎样计算分数与分数相乘?

学生进行讨论得出:分数与分数相乘,分子相乘做分子,分母相乘做分母。

2、教学例5。

(1)让学生说说×和×分别表示的几分之几?

你能用前面得出的结论计算这两道题吗?

学生试做。

订正完后问:你能用什么方法来验证你的计算结果呢?

(2)验证比较。

让学生在自己准备的长方形纸上先涂色表示。

再画斜线表示的和的。

学生动手操作,教师巡视对学困生进行指导。

看看操作的结果与你计算的结果是否一致?

学生观察比较。

3、归纳总结。

比较刚才计算的每个积的分子、分母与它的因数的分子分母,讨论有什么发现?

得出分数乘分数的计算方法:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

三、练习。

1、完成的试一试。

提醒学生注意:计算分数与分数相乘时,能约分的要先约分在计算。

通过交流进一步明确计算分数与分数相乘的计算方法。

四、分数与分数相乘的计算方法的推广。

同学们,下面着几道题你回计算吗?

出示:

请同学们先完成p35的填空,提醒学生把整数看作分母是1的分数来计算。

讨论:分数与分数相乘的计算方法适用于分数和整数相乘吗?为什么?

学生分组讨论。

明确:(1)整数可以看作分母是1的分数,所以分数。

与分数相乘的计算方法也适用于分数和整数相乘。

(3)也可以整数与分数直接进行约分后再计算。这样更简便。

教师进行示范如p35。

2、练习。

完成p35的练一练。

引导学生用直接约分的方法进行计算。

五、综合练习。

1、做练习六的第1题。

先在图中画一画再列式计算。

2、做练习六的第3题。

说出错的原因。

3、做练习六的第4题。

看谁算的最快。

六、全课小结。

通过这节课的学习,你有什么收获?还有什么疑惑?

七、作业。

练习六的第2、5题。

人教版六年级上数学教学设计篇十九

教学目标:。

1、通过动手操作实验,推导出圆锥体体积的计算公式。

2、理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题。

3、通过学生动脑、动手,培养学生的观察、分析的综合能力。

教具准备:等底等高的圆柱体和圆锥体5套,大小不同的圆柱体和圆锥体5套、水槽5个,以及多媒体辅助教学课件。

一、复习旧知,做好铺垫。

1、认识圆柱(课件演示),并说出怎样计算圆柱的体积?(屏幕出示:圆柱体的体积=底面积×高)。

2、口算下列圆柱的体积。

(1)底面积是5平方厘米,高6厘米,体积=?

(2)底面半径是2分米,高10分米,体积=?

(3)底面直径是6分米,高10分米,体积=?

3、认识圆锥(课件演示),并说出有什么特征?

二、沟通知识、探索新知。

教师导入:同学们,我们已经认识了圆锥,掌握了它的特征,但是,对于圆锥的学习我们不能只停留在认识上,有关圆锥的知识还有很多有待于我们去学习、去探究。这节课我们就来研究“圆锥的体积”。(板书课题)。

1、探讨圆锥的体积计算公式。

学生回答,教师板书:

圆柱------(转化)------长方体。

圆柱体积计算公式--------(推导)长方体体积计算公式。

教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较后,再用课件演示。

(1)提问学生:你发现到什么?(圆柱和圆锥的底和高有什么关系?)。

(学生得出:底面积相等,高也相等。)。

教师:底面积相等,高也相等,用数学语言说就叫“等底等高”。

(板书:等底等高)。

(不行,因为圆锥体的体积小)。

教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)。

用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。

(3)学生分组做实验,并借助课件演示。

(教师深入小组中了解活动情况,对个别小组予以适当的帮助。)。

a、谁来汇报一下,你们组是怎样做实验的?

b、你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?

(学生发言:圆柱体的体积是圆锥体体积的3倍)。

教师:同学们得出这个结论非常重要,其他组也是这样的吗?

学生回答后,教师用教学课件演示实验的全过程,并启发学生在小组内有条理地表述圆锥体体积计算公式的推导过程。

(板书圆锥体体积计算公式)。

教师:我们学过用字母表示数,谁来把这个公式用字母表示一下?(指名发言,板书)。

学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。(教师拿起一个小圆锥、一个大圆柱)如果老师在这个大圆锥体里装满了水,往这个小圆柱体里倒,需要倒三次才能倒满吗?(不需要)。

为什么你们做实验的圆锥体里装满了水往圆柱体里倒,要倒三次才能倒满呢?(因为是等底等高的圆柱体和圆锥体。)。

(教师给体积公式与“等底等高”四个字上连线。)。

进一步完善体积计算公式:

圆锥的体积=等底等高的圆柱体体积×1/3。

=底面积×高×1/3。

v=1/3sh。

教师:现在我们得到的这个结论就更完整了。(指名反复叙述公式。)。

课件出示:

想一想,讨论一下:?

(1)通过刚才的实验,你发现了什么?

(2)要求圆锥的体积必须知道什么?

学生后讨论回答。

三、应用求体积、解决问题。

1、口答。

(1)有一个圆柱的体积是27立方分米,与它等底等高的圆锥体积是多少?

(2)有一个圆锥的体积是9立方分米,与它等底等高的圆柱体积是多少?

2、出示例题,学生读题,理解题意,自己解决问题。

a、学生完成后,进行小组交流。

b、你是怎样想的和怎样解决问题的。(提问学生多人)。

c、教师板书:。

1/3×19×12=76(立方厘米)。

答:它的体积是76立方厘米。

3、练习题。

一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)。

我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。

4、出示例2:要求学生自己读题,理解题意。

在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)。

(1)提问:从题目中你知道了什么?

(2)学生独立完成后教师提问,并回答学生的质疑:

3.14×(4÷2)2×1.2×1/3表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?….

5、比较:例1和例2有什么不同的地方?

(1)例1直接告诉了我们底面积,而例2没有直接告诉,要求我们先求出底面积,再求出圆锥体积;(2)例1是直接求体积,例2是求出体积后再求重量。

人教版六年级上数学教学设计篇二十

1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。

2、让学生切实体会到数学在体育等领域的广泛应用。

教学重点:

如何确定每一条跑道的起跑点。

确定每一条跑道的起跑点。

一、提出研究问题。(出示运动场运动员图片)。

1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)。

2、各条跑道的起跑线应该向差多少米?

二、收集数据。

1、看课本75页了解400m跑道的结果以及各部分的数据。

2、出示图片、投影片让学生明确数据是通过测量获取的。

直跑道的长度是85。96m,第一条半圆形跑道的直径为72。6m,每一条跑道宽1。25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)。

三、分析数据。

学生对于获取的数据进行整理,通过讨论明确一下信息。

1、两个半圆形跑道合在一起就是一个圆。

2、各条跑道直道长度相同。

3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。

四、得出结论。

1、看书p76页最后一图。

2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1。25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2。5m)。

3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2。5)。

五、课外延伸。

200m跑道如何确定起跑线?

【本文地址:http://www.xuefen.com.cn/zuowen/10356153.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档