高中数学必修一函数的奇偶性教案(专业18篇)

格式:DOC 上传日期:2023-11-10 17:46:04
高中数学必修一函数的奇偶性教案(专业18篇)
时间:2023-11-10 17:46:04     小编:雅蕊

在编写教案时,应注重教学目标的明确和细化,确保学生能够达到预期的学习效果。教案的编写要考虑到学生的情感和心理发展特点,注重个性化教育。下面是一些编写教案的经验总结,供大家借鉴。

高中数学必修一函数的奇偶性教案篇一

【知识目标】:使学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.

【能力目标】通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.

【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性.由于判断或证明函数的单调性,常常要综合运用一些知识(如不等式、因式分解、配方及数形结合的思想方法等)所以判断或证明函数的单调性是本节课的难点.

【教材分析】函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起,所以本节课在教材中的作用如下(1)函数的单调性起着承前启后的作用。一方面,初中数学的许多内容在解决函数的某些问题中得到了充分运用,函数的单调性与前一节内容函数的概念和图像知识的延续有密切的联系;函数的单调性一节中的知识是它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础。

(2)函数的单调性是培养学生数学能力的良好题材,这节课通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确定义,明确指出函数的增减性是相对于某个区间来说的。教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格证明方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系。同时还要综合利用前面的知识解决函数单调性的一些问题,有利于学生数学能力的提高。

(3)函数的单调性有着广泛的实际应用。在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的'数形结合思想将贯穿于我们整个数学教学。因此“函数的单调性”在中学数学内容里占有十分重要的地位。它体现了函数的变化趋势和变化特点,在利用函数观点解决问题中起着十分重要的作用,为培养创新意识和实践能力提供了重要方式和途径。

【学情分析】从学生的知识上看,学生已经学过一次函数,二次函数,反比例函数等简单函数,函数的概念及函数的表示,能画出一些简单函数的图像,从图像的直观变化,学生能粗略的得到函数增减性的定义,所以引入函数的单调性的定义应该是顺理成章的。从学生现有的学习能力看,通过初中对函数的认识与实验,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生也容易产生共鸣,通过对比产生顿悟,渴望获得这种学习的积极心向是学生学好本节课的情感基础。但是如何运用数学符号将自然语言的描述提升为形式化的定义,学生接受起来比较困难?在教学中要多引导,让学生真正的理解函数单调性的定义。

【教学方法】教师是教学的主体、学生是学习的主体,通过双主体的教学模式方法:启发式教学法——以设问和疑问层层引导,激发学生,启发学生积极思考,逐步从常识走向科学,将感性认识提升到理性认识,培养和发展学生的抽象思维能力。探究教学法——引导学生去疑;鼓励学生去探;激励学生去思,培养学生的创造性思维和批判精神。合作学习——通过组织小组讨论达到探究、归纳的目的。【教学手段】计算机、投影仪.

【教学过程】一、创设情境,引入课题(利用电脑展示)1.如图为某市一天内的气温变化图:(1)观察这个气温变化图,说出气温在这一天内的变化情况.(2)怎样用数学语言刻画在这一天内“随着时间的增大,气温逐渐升高或下降”这一特征?引导学生识图,捕捉信息,启发学生思考.问题:观察图形,能得到什么信息?预案:(1)当天的最高温度、最低温度以及何时达到;(2)在某时刻的温度;(3)某些时段温度升高,某些时段温度降低.在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,是很有帮助的.问题:还能举出生活中其他的数据变化情况吗?预案:股票价格、水位变化、心电图等等春兰股份线性图.水位变化图归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.

〖设计意图〗由生活情境引入新课,激发兴趣.二、归纳探索,形成概念对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知问题1:分别作出函数的图象,并且观察自变量变化时,函数值有什么变化规律?(学生自己动手画,然后电脑显示下图)预案:生:函数在整个定义域内y随x的增大而增大;函数在整个定义域内y随x的增大而减小.师:函数的图像变化规律生:在y轴的的左侧y随x的增大而减小.在y轴的的右侧y随x的增大而增大。师:我们学过区间的表示方法,如何用区间的概念来表述图像的变化规律生:在上y随x的增大而增大,在上y随x的增大而减小.师:这样表述就比较严密了,很好。由上面的讨论可知,函数的单调性与自变量的范围有关,一个函数并不一定在整个正义域内是单调函数,但在定义城的某个子集上可以是单调函数。(3)函数的图像变化规律如何。

生:(1)定义域中的减函数。(2)在上y随x的增大而减小,在上y随x的增大而减小.师:对于两种答案,哪一种是正确的,为什么?学生分组讨论。从定义域,图像的角度考虑,也可以举反例引导学生进行分类描述(增函数、减函数).并引导学生用区间明确描述函数的单调性从而让学生明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.

问题2:能不能根据自己的理解说说什么是增函数、减函数?预案:如果函数在某个区间上随自变量x的增大,y也越来越大,我们说函数在该区间上为增函数;如果函数在某个区间上随自变量x的增大,y越来越小,我们说函数在该区间上为减函数.教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性的认识.

〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识.2.探究规律,理性认识问题1:下图是函数的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?(电脑显示,学生分组讨论)学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.

〖设计意图〗使学生体会到用数量大小关系严格表述函数单调性的必要性.问题2:如何从解析式的角度说明在为增函数?预案:生:在给定区间内取两个数,例如1和2,因为1222,所以在为增函数.生:仅仅两个数的大小关系不能说明函数y=x2在区间[0,+∞)上为单调递增函数,应该举出无数个。由于很多学生不能分清“无数”和“所有”的区别,所以许多学生对学生2的说法表示赞同。

生:函数)无数个如(2)中的实数,显然f(x)也随x的增大而增大,是不是也可以说函数在区间上是增函数?可这与图象矛盾啊?师:“无数个”能不能代表“所有”呢?比如:2、3、4、5……有无数个自然数都比大,那我们能不能说所有的自然数都比大呢?所以具体值取得再多,也不能代表所有的,思考如何体现区间上的所有值。引导学生利用字母表示数。生:任取且,因为,即,所以在为增函数.旧教材的定义在这里就可以归纳出来,但是人教b版新教材使用了自变量的增量和函数值的增量来表述,并为以后学习利用导数判断函数的单调性做准备,所以需进一步引导学生利用增量来定义函数的单调性。

(5)仿(4)且,由图象可知,即给自变量一个增量,,函数值的增量所以在为增函数。对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量进一步寻求自变量的增量与函数值的增量之间的变化规律,判断函数单调性。注意这里的“都有”是对应于“任意”的。

〖设计意图〗把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫.3.抽象思维,形成概念问题:你能用准确的数学符号语言表述出增函数的定义吗?师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.

(1)板书定义设函数的定义域为a,区间ma,如果取区间m中的任意两个值,当改变量时,都有,那么就称函数在区间m上是增函数,如图(1)当改变量时,都有,那么就称函数在区间m上是减函数,如图(2)。

高中数学必修一函数的奇偶性教案篇二

一、教学目标:

知识与技能:了解直线参数方程的条件及参数的意义。

过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义。

情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

二、重难点:

教学重点:曲线参数方程的定义及方法。

教学难点:选择适当的参数写出曲线的参数方程.

三、教学方法:

启发、诱导发现教学.

四、教学过程。

(一)、复习引入:

1.写出圆方程的标准式和对应的参数方程。

圆参数方程(为参数)。

(2)圆参数方程为:(为参数)。

2.写出椭圆参数方程.

(二)、讲解新课:

如果已知直线l经过两个定点q(1,1),p(4,3),

那么又如何描述直线l上任意点的位置呢?

2、教师引导学生推导直线的参数方程:

(1)过定点倾斜角为的直线的。

参数方程。

(为参数)。

【辨析直线的参数方程】:设m(x,y)为直线上的任意一点,参数t的几何意义是指从点p到点m的位移,可以用有向线段数量来表示。带符号.

(2)、经过两个定点q,p(其中)的'直线的参数方程为。其中点m(x,y)为直线上的任意一点。这里参数的几何意义与参数方程(1)中的t显然不同,它所反映的是动点m分有向线段的数量比。当时,m为内分点;当且时,m为外分点;当时,点m与q重合。

(三)、直线的参数方程应用,强化理解。

1、例题:

学生练习,教师准对问题讲评。反思归纳:

1)求直线参数方程的方法;。

2)利用直线参数方程求交点。

2、巩固导练:

补充:

1)直线与圆相切,那么直线的倾斜角为(a)。

a.或b.或c.或d.或。

2)(坐标系与参数方程选做题)若直线与直线(为参数)垂直,则.

解:直线化为普通方程是,

该直线的斜率为,

直线(为参数)化为普通方程是,

该直线的斜率为,

则由两直线垂直的充要条件,得,。

(四)、小结:

(1)直线参数方程求法;。

(2)直线参数方程的特点;。

(3)根据已知条件和图形的几何性质,注意参数的意义。

(五)、作业:

补充:设直线的参数方程为(t为参数),直线的方程为y=3x+4则与的距离为。

【考点定位】本小题考查参数方程化为普通方程、两条平行线间的距离,基础题。

解析:由题直线的普通方程为,故它与与的距离为。

五、教学反思:

高中数学必修一函数的奇偶性教案篇三

【过程与方法】。

利用指数函数的图像和性质,及单调性来解决问题。

【情感态度与价值观】。

体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣。

【重点】。

【难点】。

(一)导入新课。

取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:

答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y轴对称;。

(二)新课教学。

(1)偶函数(evenfunction)。

(学生活动):仿照偶函数的定义给出奇函数的定义。

(2)奇函数(oddfunction)。

注意:

1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;。

2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。

2.具有奇偶性的函数的图象的特征。

偶函数的图象关于y轴对称;。

奇函数的图象关于原点对称。

3.典型例题。

例1.(教材p36例3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性(本例由学生讨论,师生共同总结具体方法步骤)。

解:(略)。

总结:利用定义判断函数奇偶性的格式步骤:

1首先确定函数的定义域,并判断其定义域是否关于原点对称;。

2确定f(-x)与f(x)的关系;。

3作出相应结论:

若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;。

若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数。

(三)巩固提高。

1.教材p46习题1.3b组每1题。

解:(略)。

(教材p41思考题)。

规律:

偶函数的图象关于y轴对称;。

奇函数的图象关于原点对称。

(四)小结作业。

课本p46习题1.3(a组)第9、10题,b组第2题。

三、规律:

偶函数的图象关于y轴对称;。

奇函数的`图象关于原点对称。

高中数学必修一函数的奇偶性教案篇四

初中新课程中数学知识点删了很多要求,如“立方和、立方差”公式,“韦达定理”,“十字相乘法分解因式”等。虽然初中新课程对这些知识点不作要求,但是从高中数学教学的实践来看,学生掌握了这些知识点对学习新的知识有一定的促进作用,因此,建议教师可根据学生和教学的实际情况,做适当的补充,同时,初中学习的有理数乘方及运算性质和二次函数,这些知识也要进行必要的复习等,这样有利于后期的教学。

2、思维能力和运算能力的进一步强化。

初中新课程的内容倾向于基础性、普及性、应用性和直观性,学生的实践能力很强,但学生的数学思维能力有所欠缺,尤其是抽象思维能力较弱,这对高中数学学习的影响很大。因此,教师要逐渐培养学生的抽象思维能力。同时,由于初中大量使用计算器,学生的计算能力很弱,这与高中数学要求学生要有较强的化简、变形、推理及运算能力有一定的差距,从教学的实践来看,学生作业中出现的大量错误与计算能力较弱有很大关系。因此,建议教师可根据学生的实际情况,从高一开始就要切实提高学生的运算能力。

3、抓住学科特点,做好顺利过渡。

高中数学知识量大,理论性、综合性强,同时高中课时少,学生基础差等,知识的难度和对学生能力的要求和初中相比都有较大的提高(如“集合”、“映射”、“函数”等都比较抽象,难度大,“函数”等知识综合性较强)。学好高中数学需要学生具有较强的阅读能力、运算能力、逻辑推理能力、抽象思维能力及分析问题、解决问题的综合能力,这与初中数学知识点较少,难度较低,形成较大的差距。因此,教师要能够根据实际情况及时调整教学方法和教学过程,使学生能顺利进入高中并能尽快适应高中的数学学习。

高中数学必修一函数的奇偶性教案篇五

熟练掌握三角函数式的求值。

教学重难点。

熟练掌握三角函数式的求值。

教学过程。

【知识点精讲】。

三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形。

三角函数式的求值的类型一般可分为:。

(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

三角函数式常用化简方法:切割化弦、高次化低次。

注意点:灵活角的变形和公式的变形。

重视角的范围对三角函数值的影响,对角的范围要讨论。

【例题选讲】。

课堂小结】。

三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形。

三角函数式的求值的类型一般可分为:。

(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

三角函数式常用化简方法:切割化弦、高次化低次。

注意点:灵活角的变形和公式的变形。

重视角的范围对三角函数值的影响,对角的范围要讨论。

【作业布置】。

p172能力提高5,6,7,8高考预测。

高中数学必修一函数的奇偶性教案篇六

在复习时,由于解题的量很大,就更要求我们将解题活动组织得生动活泼、情趣盎然。让学生领略到数学的优美、奇异和魅力,这样才能变苦役为享受,有效地防止智力疲劳,保持解题的“好胃口”。一道好的数学题,即便具有相当的难度,它却像一段引人入胜的故事,又像一部情节曲折的电视剧,那迭起的悬念、丛生的疑窦正是它的诱人之处。

“山重水复”的困惑被“柳暗花明”的喜悦取代之后,学生又怎能不赞叹自己智能的威力?我们要使学生由“要我学”转化为“我要学”,课堂上要想方设法调动学生的学习积极性,创设情境,激发热情,有这样一些比较成功的做法:一是运用情感原理,唤起学生学习数学的热情;二是运用成功原理,变苦学为乐学;三是在学法上教给学生“点金术”,等等。

在课堂教学结构上,更新教育观念,始终坚持以学生为主体,以教师为主导的教学原则。

教育家苏霍姆林斯基曾经告诫我们:“希望你们要警惕,在课堂上不要总是教师在讲,这种做法不好……让学生通过自己的努力去理解的东西,才能成为自己的东西,才是他真正掌握的东西。”按我们的说法就是:师傅的任务在于度,徒弟的任务在于悟。数学课堂教学必须废除“注入式”“满堂灌”的教法。复习课也不能由教师包讲,更不能成为教师展示自己解题“高难动作”的“绝活表演”,而要让学生成为学习的主人,让他们在主动积极的探索活动中实现创新、突破,展示自己的才华智慧,提高数学素养和悟性。

作为教学活动的组织者,教师的任务是点拨、启发、诱导、调控,而这些都应以学生为中心。复习课上有一个突出的矛盾,就是时间太紧,既要处理足量的题目,又要充分展示学生的思维过程,二者似乎是很难兼顾。我们可采用“焦点访谈”法较好地解决这个问题,因大多数题目是“入口宽,上手易”,但在连续探究的过程中,常在某一点或某几点上搁浅受阻,这些点被称为“焦点”,其余的则被称为“外围”。我们大可不必在外围处花精力去进行浅表性的启发诱导,好钢要用在刀刃上,而只要在焦点处发动学生探寻突破口,通过访谈,集中学生的智慧,让学生的思维在关键处闪光,能力在要害处增长,弱点在隐蔽处暴露,意志在细微处磨砺。通过访谈实现学生间、师生间智慧和能力的互补,促进相互的心灵和感情的沟通。

高中数学必修一函数的奇偶性教案篇七

掌握三角函数模型应用基本步骤:。

(1)根据图象建立解析式;。

(2)根据解析式作出图象;。

(3)将实际问题抽象为与三角函数有关的简单函数模型.

教学重难点。

利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。

教学过程。

一、练习讲解:《习案》作业十三的第3、4题。

(精确到0.001).

米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?

本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。

练习:教材p65面3题。

三、小结:1、三角函数模型应用基本步骤:。

(1)根据图象建立解析式;。

(2)根据解析式作出图象;。

(3)将实际问题抽象为与三角函数有关的简单函数模型.

2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.

四、作业《习案》作业十四及十五。

高中数学必修一函数的奇偶性教案篇八

集合这部分的主要内容是集合的概念、表示方法和集合之间的关系和运算。纵观近几年高考题,集合的考查以选择题、填空题为主要题型。集合的概念和基本运算是本章的重点内容,也是高考的必考内容。复习中首先要把握基础知识,深刻理解本章的基础知识点,重点掌握集合的概念和运算。本章常用的数学思想方法主要有:数形结合的思想,如常借助于维恩图、数轴解决问题;分类讨论的思想,如一元二次方程根的讨论、集合的包含关系等。复习时要重视对基本思想方法的渗透,逐步培养用数学思想方法来分析问题、解决问题的能力。

(二)规律方法总结。

1、集合中元素的互异性是集合概念的重点考查内容。一般给出两个集合,并告知两个集合之间的关系,求集合中某个参数的范围或值的时候,要特别验证是否符合元素之间互异性。2、考查集合的运算和包含关系,解题中常用到分类讨论思想,分类时注意不重不漏,尤其注意讨论集合为空集的情况。3、新定义的集合运算问题是以已知的集合或运算为背景,引出新的集合概念或运算,仔细审题,弄清新定义的意义才是关键。

基本初等函数。

基本初等函数的内容是函数的基础,也是研究其他较复杂函数的转化目标,掌握基本初等函数的图象和性质是学习函数知识的必要的一步。与指数函数、对数函数有关的试题,大多以考查基本初等函数的性质为依托,结合运算推理来解题。所以这部分内容更注重通过函数图象读取各种信息,从而研究函数的性质,熟练掌握函数图象的各种变换方式,培养运用数形结合思想来解题的能力。

(二)规律方法总结。

1、指数函数多与一次函数、二次函数、反比例函数等知识结合考查综合应用知识解决函数问题的能力。指数方程的求解常利用换元法转化为一元二次方程求解。由指数函数和二次函数、反比例函数结合成的函数的单调性的判定注意底数与1的关系的判定。

2、解对数方程(或不等式)就是将对数方程(或不等式)化为有理方程(或不等式)。要注意转化必须是等价的,特别要考虑到对数函数定义域。

高中数学必修一函数的奇偶性教案篇九

1、先做简单题,后做难题。

2、遇到较难的大题,把所有跟该题有关的知识点都写出来,要知道数学讲究步骤分。

3、若是证明题,万一不会,可以先写出已知条件,再写出要证明的最后一步,再一步一步往上推,中间步骤随便写点。(使用于粗心的教师,但我们不提倡,重点是要平时学好)。

一、整体把握、抓大放小。

拿到试卷后可以先快速浏览一下所有题目,根据积累的考试经验,大致估计一下每部分应该分配的时间。对于能够很快做出来的.题目,一定要拿到应得的分数。

二、确定每部分的答题时间。

1、考试时占用了很多时间却一点也没有做出来的题目。对于这类题目,你以后考试时就应该尽量减少时间,或者放弃,等以后学习进阶了再尝试着做。

2、考试时花了过多的时间才做出来的题目。对于这类题目,你以后平时做题时要尽量加快速度,或者通过“反复训练”等提高反应速度,这样,你下次考试时能用较少的时间做出来。

三、碰到难题时。

1、你可以先用“直觉”最快的找到解题思路;。

2、如果“直觉”不管用,你可以联想以前做过的类似的题目,从而找到解题思路;。

3、如果这样也不行,你可以猜测一下这道题目可能涉及到的知识点和解题技巧。

4、对于花了一定时间仍然不能做出来的题目,要勇于放弃。

四、卷面整洁、字迹清楚、注意小节。

做到卷面整洁、字迹清楚,把标点、符号、解题步骤等小的地方尽量做好,不要丢掉应得的每一分。

高中数学必修一函数的奇偶性教案篇十

数学教学的宗旨是让学生在主动参与中学会学习。中学生的身体、心理发展正趋于成熟期,对事物充满着好奇,又有自己的想法,有时想表达自己的想法但又不愿在公开场合表达。根据这些特点,教师应设置有效的三维目标激发提升,设置贴近学生的情境激发兴趣,设置有悬念的问题激发参与,设置开放的问题激发讨论,设置有挑战的问题激发独立思考,设置抽象的问题激发理解。

进行这些设置,教师必须了解学生的现有水平和可能的发展水平,准确定位有效的教学目标;精心设置导入,在尽量短的时间内吸引学生的注意力;正确把握问题的难度、坡度和密度,让学生努力后能接近或达成目标;以适当的调控营造和谐的课堂气氛,提高学生参与的积极性。

利用信息技术拓宽学习资源。

并善于独立思考,学会分析问题和创造性地解决问题”。例如,笔者在讲解解析几何内容时,就通过课件“奇妙的坐标系”向学生展示了坐标系的诞生、完善及应用过程,使数学教学成为了再创造、再发现的教学。

高中数学必修一函数的奇偶性教案篇十一

《考试说明》和《考纲》是每位考生必须熟悉的最权威最准确的高考信息,通过研究应明确“考什么”、“考多难”、“怎样考”这三个问题。

命题通常注意试题背景,强调数学思想,注重数学应用;试题强调问题性、启发性,突出基础性;重视通性通法,淡化特殊技巧,凸显数学的问题思考;强化主干知识;关注知识点的衔接,考察创新意识。

《考纲》明确指出“创新意识是理性思维的高层次表现”。因此试题都比较新颖活泼。所以复习中你就要加强对新题型的练习,揭示问题的本质,创造性地解决问题。

2.多维审视知识结构。

高考数学试题一直注重对思维方法的考查,数学思维和方法是数学知识在更高层次上的抽象和概括。知识是思维能力的载体,因此通过对知识的考察达到考察数学思维的目的。你需要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法。

3.把答案盖住看例题。

参考书上例题不能看一下就过去了,因为看时往往觉得什么都懂,其实自己并没有理解透彻。所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看,这时要想一想,自己做的与解答哪里不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。经过上面的`训练,自己的思维空间扩展了,看问题也全面了。如果把题目的来源搞清了,在题后加上几个批注,说明此题的“题眼”及巧妙之处,收益将更大。

4.研究每题都考什么。

数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,要通过一题联想到多题。你需要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建知识的横向联系又养成多角度思考问题的习惯。

与其一节课抓紧时间大汗淋淋地做二、三十道考查思路重复的题,不如深入透彻地掌握一道典型题。例如深入理解一个概念的多种内涵,对一个典型题,尽力做到从多条思路用多种方法处理,即一题多解;对具有共性的问题要努力摸索规律,即多题一解;不断改变题目的条件,从各个侧面去检验自己的知识,即一题多变。习题的价值不在于做对、做会,而在于你明白了这道题想考你什么。

5.答题少费时多办事。

解题上要抓好三个字:数,式,形;阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言)。要重视和加强选择题的训练和研究。不能仅仅满足于答案正确,还要学会优化解题过程,追求解题质量,少费时,多办事,以赢得足够的时间思考解答高档题。要不断积累解选择题的经验,尽可能小题小做,除直接法外,还要灵活运用特殊值法、排除法、检验法、数形结合法、估计法来解题。在做解答题时,书写要简明、扼要、规范,不要“小题大做”,只要写出“得分点”即可。

6.错一次反思一次。

每次考试或多或少会发生一些错误,这并不可怕,要紧的是避免类似的错误在今后的考试中重现。

因此平时要注意把错题记下来,做错题笔记包括三个方面:

(1)记下错误是什么,最好用红笔划出。

(2)错误原因是什么,从审题、题目归类、重现知识和找出答案四个环节来分析。

(3)错误纠正方法及注意事项。根据错误原因的分析提出纠正方法并提醒自己下次碰到类似的情况应注意些什么。你若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么在高考时发生错误的概率就会大大减少。

7.分析试卷总结经验。

每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。

(1)遗憾之错。就是分明会做,反而做错了的题。

(2)似非之错。记忆不准确,理解不够透彻,应用不够自如;回答不严密不完整等等。

(3)无为之错。由于不会答错了或猜错了,或者根本没有作答,这是无思路、不理解,更谈不上应用的问题。原因找到后就尽早消除遗憾、弄懂似非、力争有为。切实解决“会而不对、对而不全”的老大难问题。

8.优秀是一种习惯。

柏拉图说:“优秀是一种习惯”。好的习惯终生受益,不好的习惯终生后悔、吃亏。如“审题之错”是否出在急于求成?可采取“一慢一快”战术,即审题要慢,要看清楚,步骤要到位,动作要快,步步为营,稳中求快,立足于一次成功,不要养成唯恐做不完,匆匆忙忙抢着做,寄希望于检查的坏习惯。

高中数学必修一函数的奇偶性教案篇十二

一、内容与解析(一)内容:基本初等函数习题课(一)。

(二)解析:对数函数的性质的掌握,要先根据其图像来分析与记忆,这样更形像更直观,这是学习图像与性质的基本方法,在此基础上,我们要对对数函数的两种情况的性质做一个比较,使之更好的'掌握.

二、目标及其解析:

(一)教学目标。

(1)掌握指数函数、对数函数的概念,会作指数函数、对数函数的图象,并能根据图象说出指数函数、对数函数的性质,了解五个幂函数的图象及性质及其奇偶性.

(二)解析。

(1)基本初等函数的学习重要是学习其性质,要掌握好性质,从图像上来理解与掌握是一个很有效的办法.

(2)每类基本初类函数的性质差别比较大,学习时要有一个有效的区分.

三、问题诊断分析。

在本节课的教学中,学生可能遇到的问题是不易区分各函数的图像与性质,不容易抓住其各自的特点。

四、教学支持条件分析。

在本节课一次递推的教学中,准备使用p5。

高中数学必修一函数的奇偶性教案篇十三

一、教学目标:1.了解普查的意义.2.结合具体的实际问题情境,理解随机抽样的必要性和重要性.

二、重难点:结合具体的实际问题情境,理解随机抽样的必要性和重要性.

三、教学方法:阅读材料、思考与交流。

四、教学过程。

(一)、普查。

1、【问题提出】p7。

通过我国第五次人口普查的有关数据,让学生体会到统计对政府决策的重要作用――统计数据可以提供大量的信息,为国家的宏观决策提供有关的支持.教科书通过对人口普查的有关新闻报道,让学生体会人口普查的规模是何等的宏大与艰辛.

教科书提出了三个有代表性的问题.第一个问题主要是针对人口普查的作用,人口普查可以了解一个国家人口全面情况,比如,人口总数、男女性别比、受教育状况、增长趋势等.人口普查是对国家的政府决策实行情况的一个检验,比如,国家计划生育政策,经济发展战略,国家“普及九年义务教育”政策,人民群众的生活水平等.第二个问题是针对普查本身存在的问题提出的,以加深学生对于普查的理解.学生可能有一个误解,普查就是100%的准确,其实不然,即使是最周全的调查方案,在实际执行时都会产生一个误差.教科书通过这个问题,目的是让学生理解在人口普查中出现漏登是正常情况,调查方案的设计是尽可能让这个误差降低到最小.同时,也要让学生理解人口普查的工作,即使出现漏登现象,人口普查的数据对国家的宏观决策依然具有重要的作用.第三个问题是针对人口普查工作的艰辛而提出的,让学生体会人口普查数据得来不易,要尊重人口普查人员的劳动,对人口普查工作要大力支持.

2、【阅读材料】p4。

“阅读材料”是课堂阅读,目的是让学生了解普查工作的特点和重要性,以及我国目前主要的一些普查工作.进而,总结出普查的主要不足之处,这是从一个方面说明了抽样调查的必要性.

普查是指一个国家或一个地区专门组织的一次性大规模的全面调查,目的是为了详细地了解某项重要的国情、国力.

普查主要有两个特点:(1)所取得的资料更加全面、系统;(2)主要调查在特定时段的社会经济现象总体的数量.

普查是一项非常艰巨的工作,它要对所有的对象进行调查.当普查的对象很少时,普查无疑是一项非常好的调查方式.

(二)、抽样调查。

【例1和其后的“思考交流”】p8~9。

紧接着,教科书通过例1和“思考交流”的两个问题,让学生了解普查有时候难以实现.这主要有两个方面的原因,其一,被调查对象的量大;其二,普查对被调查对象本身具有一定的破坏性.这从另一个方面说明了抽样调查的必要性.然后,教科书通过抽象概括总结出抽样调查的两个主要优点.

【例2和其后的“思考交流”】p9~10。

主要是讨论在抽样调查时,什么样的样本才具有代表性.在抽样时,如果抽样不当,那么调查的结果可能会出现与实际情况不符,甚至是错误的结果,导致对决策的误导.在抽样调查时,一定要保证随机性原则,尽可能地避免人为因素的干扰;并且要保证每个个体以一定的概率被抽取到;同时,还要注意到要尽可能地控制抽样调查中的.误差.

由于检验对象的量很大,或检验对检验对象具有破坏性时,通常情况下,所以采用普查的方法有时是行不通的.通常情况下,从调查对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此调查对象的某项指标做出推断,这就是抽样调查.其中,调查对象的全体称为总体,被抽取的一部分称为样本.

抽样调查的优点:抽样调查与普查相比,有很多优点,最突出的有两点:(1)迅速、及时;(2)节约人力、物力和财力.

解:统计的总体是指该地10000名学生的体重;个体是指这10000名学生中每一名学生的体重;样本指这10000名学生中抽出的200名学生的体重;总体容量为10000;样本容量为200.若对每一个个体逐一进行“调查”,有时费时、费力,有时根本无法实现,一个行之有效的办法就是在每一个个体被抽取的机会均等的前提下从总体中抽取部分个体,进行抽样调查.

例2为了制定某市高一、高二、高三三个年级学生校服的生产计划,有关部门准备对180名初中男生的身高作调查,现有三种调查方案:

a.测量少年体校中180名男子篮球、排球队员的身高;。

b.查阅有关外地180名男生身高的统计资料;。

c.在本市的市区和郊县各任选一所完全中学,两所初级中学,在这六所学校有关年级的小班中,用抽签的方法分别选出10名男生,然后测量他们的身高.

解:选c方案.理由:方案c采取了随机抽样的方法,随机样本比较具有代表性、普遍性,可以被用来估计总体.

例3中央电视台希望在春节联欢晚会播出后一周内获得当年春节联欢晚会的收视率.下面三名同学为电视台设计的调查方案.

甲同学:我把这张《春节联欢晚会收视率调查表》放在互联网上,只要上网登录该网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快统计收视率了.

乙同学:我给我们居民小区的每一份住户发一个是否在除夕那天晚上看过中央电视台春节联欢晚会的调查表,只要一两天就可以统计出收视率.

丙同学:我在电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们是否收看了中央电视台春节联欢晚会,我不出家门就可以统计出中央电视台春节联欢晚会的收视率.

请问:上述三名同学设计的调查方案能够获得比较准确的收视率吗?为什么?

解:综上所述,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.

(三)、课堂小结:1、普查是一项非常艰巨的工作,它要对所有的对象进行调查.当普查的对象很少时,普查无疑是一项非常好的调查方式.普查主要有两个特点:(1)所取得的资料更加全面、系统;(2)主要调查在特定时段的社会经济现象总体的数量.2、通常情况下,从调查对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此调查对象的某项指标做出推断,这就是抽样调查.其中,调查对象的全体称为总体,被抽取的一部分称为样本.抽样调查的优点:抽样调查与普查相比,有很多优点,最突出的有两点:(1)迅速、及时;(2)节约人力、物力和财力.

(四)、作业:p10练习题;p10【习题1―2】。

五、教后反思:

高中数学必修一函数的奇偶性教案篇十四

要学好数学,最关键的是要有一个好的基础。只有打牢数学基础,才能够把高中数学好,同样只有打好基础,才能够数学取得高分。打好基础是最关键的!比如:建一栋大楼,如果地基不稳,不管大楼有多么豪华,都只是华而不实。

想学好数学,对数学感兴趣。

其实学好数学最好的办法就是发自内心由衷的想要学习,渴望学习,才能体会到从学习中所收获的乐趣。自己的成就感提升,对于学习数学的积极性也就提高了,觉得数学并没有那么难,就愿意去多接触了。

多做题反复做,有题感。

其实学好数学办法就是要大量做题,反复去做,题做多了就知道哪些方面需要自己去加强学习,还有就是同样做数学题做多了就会有题感。有些题,它的类型都是一样的,题做多了之后,即使你不会做,你也会找到一些解题的思路和技巧。

高中数学必修一函数的奇偶性教案篇十五

3、情感态度与价值观目标:感受代数与几何问题的相互转换。体会品面直角坐标系在解决实际问题的作用,培养数学学习兴趣。

重点:理解平面直角坐标中点与数的一一对应关系;

难点:根据坐标描出点的位置,以及坐标轴上的点的坐标特点。

教师准备四张大的纸质坐标格子。

一、温故知新,导入新课。

游戏导入:上一节课我们学习了有序数对,大家学习积极性很高,今天老师先考考你们, 看你们掌握了多少。

我们将教室里的座位分为八列七排。a排b号记做有序数对(a,b),同学们先找准自己的数对号。听老师报数对,若是你自己的数对号,就快速站起来。反应太慢和站错了都算失败,扣一分;反之加一分。最后以组为单位,比比哪组得分最高。

我们可以发现,通过教室平面内的有序数对,可以唯一的确定与之对应的同学。

二、新课教学

课本例子:我们知道数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。例如点a数轴上的坐标是-4,点b数轴上的坐标是2;我们说坐标是3.5的点,也可以在数轴上唯一确定。

学生活动:小a说可以像教室座位一样给任意点编一个横排纵排的号,小

b说我们可以每个点列一个数轴・・・

教师活动:引导学生思考,怎么才能用同一标准,方便的确定每一点的位置?

结合横纵排编号以及数轴,我们可以综合考虑,引出一个横纵的数轴?

得出结论:我们可以在平面内画两条相互垂直、原点重合的数轴,组成平面直角坐标系,水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上为正方向;两坐标轴的交点为平面直角坐标系的原点。

那有了这样的平面直角坐标系,平面内的点就可以用之前学的有序数对来表示了。例如:由a分别向x轴和y轴作垂线。垂足m在x轴上的`坐标是3,垂足n在y轴上的坐标是4,我们说a的坐标是3,纵坐标是4,有序数对(3,4)就叫做a的坐标,记作a(3,4)

教师提问2:同学们按照这种做法,在坐标纸上标出b、c、d的坐标。

教师活动:走下讲台,关注学生的汇坐标过程方法,指出学生出现问题的地方,并予以改正。

教师提问3:在横纵坐标轴上各标一点e、f,问:坐标原点以及这两点的坐标是什么?

教师活动:引导学生思考归纳坐标轴上的点的坐标的特点。

得出结论:原点的坐标是(0,0),x轴上的点的坐标的纵坐标为0;y轴上的点的坐标的横坐标为0。

三、课程巩固

师生互动:与学生一起回忆平面直角坐标系的各部分的意义,平面内的点怎么对应坐标,以及坐标轴上的点的坐标特点。

“练一练”:

在黑板上贴出四张事先准备好的纸质坐标格子,在上面标出任意的abcdefg等点,每组我点一个按坐标序列对,对应的同学上黑板,来描出各点的坐标。对一个加一分,错一个扣一分,得分相同的看用时,时间短者胜,过程中下面的学生不能提示,提示一次扣2分。比赛看哪组学生代表得分最多。

(1,2)、(3,4)、(5,6)、(7,8)四位同学上黑板来描点。

教师活动:规范课堂气氛,公平的评判,对于表现好的小组代表予以表扬,表现稍逊的学生不要气馁,给予鼓励,争取下一次可以获胜。

四、小结作业:

思考平面直角坐标系中坐标与点的对应关系,如何由坐标值确定点的位置。下节课我们会探讨这个问题。

平面直角坐标系:平面内画两条相互垂直、原点重合的数轴组成

水平的数轴称为x轴或横轴,习惯上取向右为正方向;

竖直的数轴称为y轴或纵轴,取向上为正方向;

两坐标轴的交点为平面直角坐标系的原点。

高中数学必修一函数的奇偶性教案篇十六

1.把握写景抒情散文情景交融的特点,提高对情景交融意境的鉴赏能力。

2.学习作者运用语言的技巧:比喻、通感的巧妙运用,动词、叠词的精心选用。

3.训练整体感知、揣摩语言的能力。

过程与方法。

1.本文语言精美,写景状物传神,应加强朗读训练,让学生自然地受到感染,体会文章的韵味。

2.理解关键语句,提高对作者在文中表达的思想感情的领悟能力。

情感态度与价值观。

1.引导学生关注社会,追求理想。

2.培养学生健康的审美情趣。教学重点体味作品写景语言精练、优美的特点及其表达效果。教学难点品味、领悟课文情景交融,“景语”“情语”浑然一体的写作特点。

教学方法诵读法、感知法、品味法。

教具准备课文录音带、多媒体课件。

教学时间安排二个课时。

第一课时。

一、导语设计。

李白在《月下独酌》里说:“花间一壶酒,独酌无相亲。举杯邀明月,对影成三人。”——在这里,“月”成了诗人排遣内心深处孤独寂寞的一种载体。

二、文本解读。

(一)知识积累。

1、朱自清的生平和创作。朱自清,原名自华,字佩弦,号秋实。祖籍浙江绍兴,1898年生于江苏东海。1903年随家定居扬州。1916年中学毕业后,考入北京大学预科班,次年更名“自清”,考入本科哲学系。毕业后在江苏、浙江等地的中学任教。上大学时,朱自清开始创作新诗,1923年发表的长诗《毁灭》,震动了当时的诗坛。1924年出版诗与散文集《踪迹》,1925年任清华大学教授,创作转向散文,同时开始研究古典。1928年出版散文集《背影》,成了著名的散文家。1948年8月病逝于北京。他是诗人、散文家、学者,又是民主战士、爱国知识分子。毛泽东称他“表现了我们民族的英雄气概”。著作有《朱自清全集》。

3、借助注解和词典读懂《采莲赋》。

(二)信息筛选播放录音(或教师朗读)。

1、学生边听边思考如何划分层次,并归纳大意。

明确:全文分三部分:

第一部分(1):月夜漫步荷塘的缘由。(点明题旨)。

第二部分(2-6):荷塘月色的恬静迷人。(主体)。

第三部分(7-10):荷塘月色的美景引动乡思。(偏重抒情)。

(三)合作探究。

师生共同解析第四段,看作者是怎样从多角度来描摹荷塘美景的?明确:先写满眼茂密的荷叶,次写多姿多态的荷花、荷香,最后写叶子和花的一丝颤动以及流水。层次井然,形象精确。——这是按观察的角度,视线由近及远、由上而下的空间顺序来写的。以上是顺序特点,细分析,还可以看出作者的匠心:a.抓静态与动态的结合,把荷塘写“活”。而且,作者笔下的景物都是“动”的,“静”不过是“动”的瞬间表现,扬静而情动。

b.抓可见与可想的结合,写出了散文的神韵。所谓“可想”,是指由“可见”引起的合理联想,把不可见的景物写得很有风采。

(四)能力提升。

学生自己阅读第五段,合作讨论作者在这里是如何描写月色的。

明确:作者把荷叶和荷花放在月光下面,一个“泻”字,给人一种乳白色而又鲜艳欲滴的实感;一个“浮”字又表现出月光下荷叶、荷花那种缥缈轻柔的姿容。文章似乎仍在写荷叶、荷花,其实不然,作者是通过写叶、花的安谧、恬静,衬托出月色的朦胧柔和。又如文章写“黑影”和“倩影”,也是写月色,因为影是月光照射在物体上产生的。树影明暗掩映,错落有致,反衬月光轻盈荡漾。月色本是难以描摹的',所以作者透过不同的景物,从不同的角度去写月色,使难状之景如在眼前。

(五)分析鉴赏。

1、第五段“酣眠”“小睡”各指什么?有无深层含义?

明确:“酣眠”比喻朗照,“小睡”比喻被一层淡淡的云遮住的月光。至于它的深层含义应该联系作者的心态来看,他不希望过于激烈的行为,他喜欢一种平和的心态,正如我们前面分析的那样,他做不到投笔从戎,他要寻找安宁平和的生活。对景物的喜好折射出作者的心态。

2、课文第五段,写月光用“泻”不用“照”“铺”,其好处是什么?(解答这个问题,不妨请学生把“照”和“铺”字代入句中读一遍,学生就知道了。

明确:“泻”是承上面比喻句“如流水一般”而来的,“泻”字有向下倾的势态。“照”字和“铺”字就没有这个效果。

3、作者为什么会由光和影联想到名曲?

明确:这是使用通感的修辞手法,光与影是视觉形象,作者却用听觉形象来比喻,这就是通感的一种,其相似点就是和谐。第四段写荷花的缕缕清香,微风传送,像远方飘来歌声一样动人心怀,这幽雅淡远的感受也只有在月夜独处时才会有,这也是通感,把嗅觉形象转化为听觉形象,它们之间的相似点就是似有似无、时断时续、捉摸不定。

三、课堂小结。

所谓“意境”,指的是外界的人事景物(客观)与人的思想感情(主观)相融合而形成的一种天人合一、情景交融的境界。这种天人合一、情景交融越是天衣无缝、水乳交融,散文就越具有美感。《荷塘月色》做到了这一点,所以它具有一种意境美。

四、作业设计。

背诵第四、五、六段。

第二课时。

一、导语设计。

二、文本解读。

(一)合作探究指导学生理解“通感”的特点及其作用。明确:通感:就是人的各种感觉之间的交流、沟通、转移。钱钟书先生说过,“在日常经验里,视觉、听觉、触觉、嗅觉、味觉往往可以彼此打通或交通,眼、耳、舌、鼻、身,各个官能的领域可以不分界限。颜色似乎会有温度,声音似乎会有形象,冷暖似乎会有重量,气味似乎会有锋芒……”(《通感》。)例如:“微风过处,送来缕缕清香,仿佛远处高楼上渺茫的歌声似的。”

a.本体——花香(嗅觉)喻体——渺茫的歌声(听觉)b.作用:把花香的特点写清了,生动形象。

c.相似点:立于微风中嗅馨香(时有时无)——听远处高楼传来的歌声(时断时续)再如:“但光与影有着和谐的旋律,如梵婀玲上奏着的名曲。”

(二)能力提升。

1、文章抒情的语句主要有哪些?

明确:第一段:这几天心里颇不宁静。

第二段:没有月光的晚上,这路上阴森森的,有些怕人。今晚却很好,虽然月光也还是淡淡的。

第三段:我也像超出了平常的自己,到了另一世界里。我爱热闹,也爱冷静;爱群居,也爱独处……便觉是个自由的人。……我且受用这无边的荷香月色好了。

第六段:但热闹是它们的,我什么也没有。

第八段:这真是有趣的事,可惜我们现在早已无福消受了。

第十段:这令我到底惦着江南了。

2、作者的思想感情在文中是怎样变化的?

明确:因为这几天心里颇不宁静,忽然想起日日走过的荷塘,在满月的光里,总该另有一番样子,于是就想去看看,沿荷塘的路平常是有些怕人的,但今晚却很好,我可以享受这无边的荷香月色。荷塘月色的确很美,月光下的荷塘美景清幽淡雅,荷塘上的迷人月色朦胧和谐,令人心醉。荷塘四周非常幽静,只有树上的蝉声和水里的蛙声最热闹,而我什么也没有。忽然又想起采莲的事情来了,那真是有趣的事,可惜我们现在早已无福消受了。采莲令我惦着江南了,这样想着回到了家里。有人把这篇文章所表现的思想感情概括为“淡淡的喜悦,淡淡的哀愁”,是很贴切的,但作者的感情底色是“不宁静”。

(三)分析鉴赏。

1、第六段写“热闹是它们的,我什么也没有”,作者为什么会如此伤感?

明确:作者想寻找美景,使自己宁静,平息自己矛盾的心情而不得,当然伤感。

2、第七段采莲与文章主体有什么关系?为什么会想起采莲的事情?

明确:以采莲的热闹衬托自己的孤寂,且荷莲同物,作者又是扬州人,对江南习俗很了解。

明确:一方面有照应文章开头的作用,但主要目的还是以静写动,以静来反衬自己心里的极不宁静。心里的不宁静,是社会现实的剧烈动荡在作者心中引起的波澜。全篇充满着动与静的对立统一:社会的动荡与荷塘一隅的寂静,内心的动荡与内心的宁静形成对立统一,文章开头心里不宁静,在月夜荷塘幽美的景色的感染下趋于心静,走出荷塘又回到不宁静的现实中来,也形成对立、转化。

三、课堂小结。

这篇作品获得人们特别赞赏的原因,就在于它写景特别工细。朱自清在表现月色下的荷塘和荷塘上的月色这两个组成部分的时候,还进一步作更精细的分解剖析,把这两个部分再分解剖析成许多更小的部分,然后逐一描写并且从景物观赏者的视觉、嗅觉、听觉,以及景物的静态、动态等角度,写出它们的种种性状,从而把景物表现得格外细腻。

四、作业设计。

研究性学习参考论题。请你就以下论题中的一个或另拟论题,从网络上寻找有关资料,写出你的研究结果。

1、走近朱自清。

2、朱自清为什么“不宁静”?

3、谈《荷塘月色》的写景艺术。

4、谈《荷塘月色》的感情线索。

高中数学必修一函数的奇偶性教案篇十七

专题八当今世界经济的全球化趋势。

通史概要:

当今世界经济发展有两个明显的趋势:一是世界经济区域集团化,二是世界经济全球化。世界经济区域集团化是最终实现经济全球化的重要步骤和途径,经济全球化则是区域经济集团化的最终归宿。

世界经济区域集团化是生产力高度发展的必然产物,是生产国家化、国际分工向纵深发展需要加强合作的结果,也是世界经济竞争激烈的表现。它产生的原因有:现代科技的发展、国际间经济竞争和客观上存在的分工。区域集团化的发展分为三个阶段:第一阶段为五六十年代,世界经济集团化的趋势主要出现在欧洲,如欧洲煤炭共同体的出现。第二阶段为六七十年代,区域集团化成为一种世界经济现象。欧洲区域集团化趋势进一步发展,如欧共体的建立;一些发展中国家的地区性经济集团也纷纷出现,如东盟的出现。第三阶段为80年代至今,区域集团化掀起新的浪潮,进入了较高层次的经济一体化时期,出现了欧盟、北美自由贸易区和亚太经合组织三大区域经济集团。

世界经济全球化是世界生产力发展的要求和结果,是不以人的意志为转移的历史趋势。它突出的表现在国际贸易、国际投资、国际金融和跨国公司的发展。经济全球化的过程中的问题是:在经济全球化的过程中,不可避免地把资本主义固有的矛盾扩展到全球,造成南北矛盾、贫富分化、环境问题、能源危机、全球性的经济金融危机、恐怖组织活动猖獗等等,直接影响到人类的生存与发展。

我国在当今世界经济发展趋势中,作为发展中国家,应该如何面对机遇和挑战,成了新时期经济发展人们共同关心的话题。从中国加入亚太经合组织、加入世界贸易组织,加强同东盟的联系的史实中,我们的态度是:在坚持独立自主、自力更生的前提下,拥有“双赢”的思维,抱着开放的心态,加强国际的合作与交流,参与国际竞争,抓住机遇,接受挑战,在国际的竞争和合作中,提高我国的经济发展水平,跟随世界发展的潮流。概括而言,就是辩证地看待世界经济发展趋势这一经济现象,树立正确的.发展观。

一欧洲的联合。

课标要求:以欧洲联盟、北美自由贸易区及亚太经济合作组织为例,认识当今世界经济区域集团化发展趋势。

教学目标:

(1)知识与能力:分析第二次世界大战后西欧经济进入“黄金时代”的原因;简述欧洲国家从“欧共体”走向欧盟的历程,认识欧洲联盟成立对世界经济和政治格局的影响。

概述欧元产生的影响,培养多角度、多层次理解问题的能力。

(2)过程与方法:通过讨论西欧经济在二战后进入“黄金时代”的共同原因,进一步思考中国的社会主义建设应如何借鉴其合理的方法与正确的经验,学习用联系的方法看待问题,提高理论指导实践的能力;通过分组学习,搜集“欧共体”及“欧盟”成立的资料,了解整个欧洲走向联合的过程,认识当今世界经济区域集团化发展趋势。

(3)情感、态度与价值观:通过对欧洲走向联合这段历史的学习,认识当今国际社会国家间团结协作的重要性,树立国际意识;通过对欧洲走向联合的史实的归纳,得出一个别国家或地区怎样才能快速发展的一般规律;并结合我国的实际,进一步探讨一下我们可以借鉴哪些做法,从而树立为我国社会主义现代化建设而奋斗的责任感。

教学课时:1课时。

重点难点:

重点:欧洲走向联合过程及影响。

难点:欧洲走向联合的原因。

教学建议:

1、本课共有三个方面的内容,“西欧经济的'黄金时代'”主要讲述:二战后的20世纪50年代到60年代,西欧各国经济在恢复的基础上,进入调整增长期,被称为西欧经济的“黄金时代”;“从'欧共体到'欧洲联盟'”主要是欧洲从经济一体化到政治一体化的发展趋势;“货币王国的世界公民”主要以欧元的流通为例,进一步表明欧洲走向联合的趋势。

2、西欧经济高速发展的共同原因:第一,西欧各国进行社会改革和政策调整。进行社会改革,例如:推行福利制度,适当改善人民的生活条件,缓和社会矛盾,稳定社会秩序;进行政策调整,如:将一些私人垄断企业国有化,并建立有关国计民生的重要工业部门。这些政策的推行,促进了西欧经济的稳定持续高速发展,从而出现前所未有的繁荣。第二,马歇尔计划的实施,解决了西欧战后经济发展的启动资金,西欧重工业在短时期内完成了新的装备,并有能力购买足够的工业原料。第三,战后西欧广泛使用第三次科技革命的成果,并对产业部门进行了改造,使劳动生产率大大提高,从而有力地推动了经济的高速发展。

3、伴随着欧洲经济合作的成功,欧洲经济不断的恢复,要求在国际上发挥更重要的作用。因而要加强在政治领域的合作成为欧洲各国的一致要求。面对二战结束后以美苏为首的两极争霸的冷战格局,欧洲各国迫切要求组成一个更加强大的团体来维护自己的利益。于是在政治领域的合作很快便实施开来。

4、为进一步加强欧洲共同体之间的经济合作与交流,减少共同体内部成员国存在的贸易壁垒,用统一的货币在欧共体各国之间流通,实现经济的联合,从而进一步加强欧洲各国之间的政治合作。

二、发展的亚太。

课标要求:以欧洲联盟、北美自由贸易区及亚太经济合作组织为例,认识当今世界经济区域集团化发展趋势。

教学目标:

(1)知识与能力:了解东盟的发展历程,说说中国与东盟的交往情况;分析北美自由贸易区建立的原因和影响,比较北美自由贸易区与欧盟的异同;概述亚太经济合作组织建立的过程,探讨亚太国家加强合作的途径与方式。

(2)过程与方法:通过搜集中国与东盟交往的材料,了解东盟日益扩大及其影响;用列表等方式比较北美自由贸易区与欧盟的异同,学习用比较的方法认识历史问题;通过上网等途径搜集中国参加apec会议的资料,多渠道去了解和认识apec建立的史实及影响。

(3)情感、态度与价值观:通过对东盟、北美自由贸易区和亚太经合组织等区域经济一体化进程的学习和了解,体会当今世界国家间加强合作、竞争与发展的重要性,树立合作与竞争的意识。

教学课时:1课时。

重点难点:

重点:通过了解欧洲联盟、北美自由贸易区及亚太经济合作组织,认识当今世界经济区域集团化发展趋势。

难点:中国积极参与世界区域经济组织的意义。

教学建议:

1、在经济全球化的进程中,亚太地区的经济集团化也在不断深入发展。世界三大区域性经济集团有两个分别在该地区。这一地区成为当今世界上经济发展最活跃地区。课文分别以“东盟”、“北美自由贸易区”和“亚太经全组织”三个经济区域集团为例,介绍了当今世界经济区域集团化发展趋势。每个集团内部有着自身的规则的同时也不断与其它区域集团相联系,从而使世界经济形成了密不可分的一个整体。

2、东南亚国家联盟自1967成立以来,已经历时近三分之一世纪。东盟在维护和促进各成员国相互间的政治和经济合作,实现地区和平稳定,加快成员国经济增长,提高成员国人民生活水平等方面都取得了显著成绩。尤其是在国际政治方面,极大地增强了东盟的国际地位。东盟在由四大洲国家组成的apec中具有举足轻重的政治地位,又是由亚欧两大洲主要国家参加的亚欧会议的倡议者和发起者,在东亚乃至亚洲政治舞台上成为使日本、中国和印度等大国瞠乎其后的主角。

3、日本经济的崛起,特别是欧洲经济一体化实施的外在压力,美国、加拿大和墨西哥3国发展各自经济的内在动力,是北美自由贸易区成立的根本原因。美、加、墨3国又是山水相连的邻邦;语言文字、价值观念、风俗习惯等又颇相似;经济互补性强;相互贸易基础良好,美、加、墨3国具有实行经济一体化的必要性,又具有实行经济一体化的可能性。美国认为要取得世界经济的主导地位,只有建立以自己为中心经济区域集团,才能在经济全球化大潮中立于不败之地。

4、二十世纪七十年代后,亚太地区,特别是东亚各国和地区的对外开放经济政策和经济迅速发展为亚太区域经济合作创造了条件。东亚地区经济的发展,国际收支条件的改善,缓解亚太地区南北之间的矛盾,为亚太经济合作创造了条件。欧共体统一市场和美加自由贸易区的建立,刺激了亚太向区域经济合作的方向发展。亚太经合组织的主要活动,为各成员提供区域经济,科技,贸易和发展等方面多边合作的机会,交流各成员在这些领域内的经验,促进本区域的共同发展.它从产生、发展及运作模式均区别于欧盟和nafta,有自身的特点,这些特点适应了apec各成员国经济发展的状况和经济运行模式。

三、经济全球化的世界。

课标要求:

(1)以“布雷顿森林体系”建立为例,认识第二次世界大战后以美国为主导的资本主义世界经济体系的形成。

(2)了解世界贸易组织(wto)的由来和发展,认识它在世界经济全球化进程中的作用。了解中国参加世界贸易组织(wto)的史实,认识其影响和作用。

(3)了解经济全球化的发展趋势,探讨经济全球化进程中的问题。

教学目标:

(1)知识与能力:了解“布雷顿森林体系”建立的基本史实,分析其影响;简述世界贸易组织(wto)的由来和发展,认识它在世界经济全球化进程中的作用;了解中国参加世界贸易组织(wto)的史实,认识其影响和作用;概述经济全球化的发展趋势,探讨经济全球化进程中的问题。

(2)过程与方法:阅读课文和查找中国加入世贸组织谈判的历程等,了解“从gatt到wto”的过程,围绕世界贸易组织建立的必要性并对中国加入wto的利与弊等问题展开讨论;开展课堂讨论或辩论:经济全球化对本地区的影响是利大于弊还是弊大于利?如何解决经济全球化出现的问题?从多角度去分析历史问题。

高中数学必修一函数的奇偶性教案篇十八

本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标:

(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。

数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。

本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。

教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”设置这些问题,都是为了加强数学思想方法的教学。

加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。

本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”这样,从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。

《课程标准》和教科书把“解三角形”这部分内容安排在数学五的第一部分内容,

位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,这使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁。比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对于三角形进行讨论,方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力。

在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的'关系?”,并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.”

学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。

1.1正弦定理和余弦定理(约3课时)

1.2应用举例(约4课时)

1.3实习作业(约1课时)

1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。如对于正弦定理,可以启发得到有应用向量方法的证明,对于余弦定理则可以启发得到三角方法和解析的方法。在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较。对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。

2.适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题的解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学实践能力。教师要注意对于学生实习作业的指导,包括对于实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题。

【本文地址:http://www.xuefen.com.cn/zuowen/10335411.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档