工程问题教学设计(汇总19篇)

格式:DOC 上传日期:2023-11-10 09:44:09
工程问题教学设计(汇总19篇)
时间:2023-11-10 09:44:09     小编:GZ才子

总结能够让我们更好地发现问题并提出解决方案。写一篇完美的总结需要有充分的思考和准备。以下是小编为大家收集的相关资料,供大家参考和学习。

工程问题教学设计篇一

一、教学内容。

课标版小学数学第八册第四单元的例1、例2、例3及“做一做”。

二、教学目标。

(1)借助实物和直观图,使学生理解和掌握小数的性质,会应用小数的性质把一个小数化简和把一个数改写成指定位数的小数。

(2)通过小数性质的概括,培养学生的抽象、概括能力。通过应用小数性质,培养学生应用所学知识,解决实际问题的能力。

(3)通过理解小数的性质,渗透“变”与“不变”的辩证思想。

三、教学重点。

小数性质的推导和理解,真正掌握并正确运用这一性质解决相关问题。

四、教学难点。

掌握在小数部分什么位置添“0”去“0”,小数大小不变。

五、教具准备.三条米尺、题卡。

六、教学过程。

1、情景导入,激趣揭题。

同学们,你们喜欢听故事吗?今天老师给大家讲一个《西游记》唐僧师徒一起去西天取经的故事。有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0.l米、0.10米、0.100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿回了标有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位师弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话,微笑着点了点头。

同学们,你们知道为什么师傅对悟空的话点头微笑呢?这是因为大师兄悟空掌握了小数很重要的性质,学习了这节课,我们就知道其中的奥秘了”。(板书:小数的性质)。

工程问题教学设计篇二

教学内容:人教版第九册第四单元p95例9。

教学目标:使学生认识工程问题的结构特点,掌握它的数量关系,解题思路和解题方法,并能正确地解答工程问题的基本题。

教学过程。

一、创设情境,设疑激趣。

出示小黑板。

1、学生读题。

2、先让学生大胆猜想。

3、然后老师提出:

我们一起来探究这个问题好吗?

二、由浅入深,辅路搭桥。

出示小黑板:

让学生独立完成,然后指名回答,教师板书:

1、60/2=30(本)60/3=20(本)。

2、60/(30+20)=1.2(本)或者:设x分钟发完?

(30+20)x=60。

x=60/50。

x=1.2。

3、60/(60/2+60/3)或者:设两人合发需要x分钟。

x*(60/2+60/3)=60。

三、引导探究,挑战问答。

老师质疑:

假如上面三道题都隐去“60本作业本”这个条件,你们能探究出解决问题的办法吗?

1、要求学生分小组合作思考、探究。

2、让各小组组长把解决问题的办法讲出来,老师板书:

a、1/2=1/21/3=1/3。

b、1/(1/2+1/3)或者:设需要x分钟完成。

x*(1/2+1/3)=1。

在学生合作探究过程中,教师应参与其中一小组,并成为其中的一员,在恰当时机提问:

“你怎么知道这是对的.?”

“还有没有别的思路或可能性?”

“列式为1/(2+3)你们认为对吗?为什么?”

四、促进思维,拓展发散。

解决好“分发本子”问题后,我问学生:

你能利用今天所学的知识,解决实际生活中类似的“做套装衣服问题”、“相遇问题”吗?

五、反馈练习,以促双基。

1、p95“做一做”

2、练习二十五第1题。

3、指导学生自学例9。

六、总结。

1、今天学习了什么内容?

2、这节课你最大的收获是什么?哪些地方你还不太懂?

家庭作业:

练习二十五第2、3、4题。

工程问题教学设计篇三

1.在交际中能就自己的真实想法发表自己的建议,《语文园地六》教学设计(四年级上人教版)。

2.进一步培养学生的观察能力、想象能力。

3.习作内容具体,句子通顺。

二、教学重难点。

学会发表自己的建议,表达自己的真实想法。

三、教学过程。

(一)。

1.想一想。

生活中很多时候一定有人帮助过你,很多时候我们需要伸出双手帮助别人。向帮助过你的人表示感谢,向需要安慰的人说些安慰的话。想想该怎样说,想好后和同学分角色进行模拟对话。

提示:可从家人、同伴、邻居、福利院的孤儿、贫困地区的.儿童等方面去想。

2.说一说。

想想为什么接受帮助,你打算怎样表示感谢;想想怎样向需要安慰的人表示安慰,《语文园地六》教学设计(四年级上人教版)。在小组内跟同伴们说一说,然后再在班上说一说。

3.议一议。

在小组内商量,开展一次献爱心活动。就怎样帮助怎样安慰等问题发表自己的看法,听听同伴的意见。

4.演一演。

根据小组商量的方案,试着表演一下表示感谢或安慰的过程。

(二)。

1.观察《胜似亲人》这幅图,说说你都看到了什么。想想图中的人物的服饰有什么特点。

2.先在小组内说说他们可能是谁,她们之间可能发生了什么事。语言清晰,句子通顺,说详细一点。

3.在全班交流。

4.把你想到的写下来。内容具体,语句要通顺。

5.选择一个合适的题目。

6.如果不想写这幅图,也可以写现实生活中自己经历的事情。

7.写好后先自己读一读,听听同学或家长的意见,然后认真修改习作。

工程问题教学设计篇四

1、掌握工程问题的结构特征和解答方法,并能应用于解决实际问题,工程问题应用题教学设计。

2、培养学生的观察、分析及综合概括能力及抽象思维能力。

数量之间的对应关系。

1、谈话。张老师去新华书店买《三国演义》上下集,她所带的钱如果只买上集正好可买20本,只买下集正好可买30本,请问张老师所带的钱最多可买这种书多少套?猜一猜。

2、到底哪位同学猜得正确,通过今天这堂课的学习,我们就能解决这个问题。所以,今天我们继续学习应用题。(板书:应用题)。

1、出示准备。

(1)指名板演,集体练习。

(2)反馈、交流。

2、把300米改为600米、900米、1200米、若干米,分组计算。

(1)通过刚才的计算,我们发现什么变了,什么没有变?为什么?

(2)再观察一下,以上算式都是根据哪个数量关系来进行计算的呢?

(3)如果总米数没有,但还是求两队合修需多少天完成,又该怎么样列式计算呢?

(1)比较。

(2)思考:

a、这条公路的全长不知道怎么办?

b、甲队每天修了这条公路的几分之几?乙队呢?

c、(+)表示什么?

d、根据什么数量关系解答这类应用题的?

2、再比较:例题和准备题在解答方法上有什么相同点?有什么不同点?

3、归纳:象这类工作总量没有直接告诉我们,可用单位"1"表示,用表示工作交率,解答思路与工作问题一样,象这种分数应用题,教案《工程问题应用题教学设计》。我们把它叫做"工程问题"(完整板书)。

4、把工作总量看作"2、3"行不行?分组计算。发现计算结果是一样的。但为了计算简便,工程问题应用题中,我们常把工作总量看作单位"1"。

第一层次:试一试。

(1)指名板演,集体练习。

(2)据式说理。

(3)改变条件和问题。

两队合作4天后,完成这项工程的几分之几?

还剩下几分之几?

第二层次:

下列算式正确的是。

48÷(48÷6+48÷4)。

48÷(+)。

1÷(+)。

(2)只列式不计算。

加工一批零件,甲单独加工8小时完成,乙单独加工10小时完成。

(1)甲单独加工,每小时完成总工作量的。

(2)乙单独加工,每小时完成总工作量的。

(3)甲、乙合做,1小时完成了总工作量的。

(4)甲、乙合做,3小时完成了总工作量的。

(5)甲、乙合做3小时,还剩下总工作量的。

(6)这批零件,甲、乙合做小时完成。

(7)两人合打天才能完成这份稿件的。

第三层次:

工程问题不只限于上述三种量之间的关系,也适用于其他某些量之间的关系。

1、这节课,我们主要学习了什么内容?

3、解这类题的关键是什么?

工程问题教学设计篇五

教学内容:

教科书第112页到第113页例1。

教学目标:

1、初步掌握优化思想。

2、能够用优化思想解决生活中的问题。

3、感受数学的魅力。

教学重点及难点:

重点:能够用优化思想解决生活中的问题。

难点:在烙饼优化的过程中三张饼烙法。

学具准备:圆形纸片、多媒体课件。

教学过程:

一、引入。

师:同学们,你知道吗?我们的许多数学问题都来源于生活,今天我们就来研究一个生活中有趣的数学问题。(板书课题:烙饼问题)。

师:见过烙饼的吗?有同学可能说了不就是一口锅,放进饼去,把它烙熟吗?其实这里面有许多值得研究的数学问题呢!

二、新授。

生:6分钟。

师:为什么?

生:因为一张饼一面是3分钟,两面就是6分钟。

生:(提出疑问)不对,应该是6分钟。

师:为什么是6分钟呢?

生:因为里面两张饼都同时在烙。烙熟了这两个面用了3分钟之后,我再把饼翻过来又用了3分钟,所以一共是6分钟。

师:同意吗?很好。锅里两张饼同时在烙,可以同时烙熟两个面,所以两次一共用了6分钟。(注意强调同时,讲解的时候注意解释。)。

2、突破难点。

师:现在如果我想烙三张饼,你准备怎么个烙法?说说你的想法?

生:先烙两张,再烙一张,一共需要12分钟。

师:你们都的这样烙的吗?那还有没有更好的方法呢?

(若没有)下面,我们就来试一试,你可以选择喜欢的方法进行研究,也可以利用老师提供给你的圆形纸片,看谁还能想出好办法。

小组汇报:

师:谁想上来给大家汇报一下你们组讨论的结果。

生:汇报讨论结果。

师在表格内板书。

123。

第一次正正。

第二次反正。

第三次反反。

师:谁听明白了?

(生再讲一遍)。

此时教师用纸片往黑板上贴每次的情况。

师:大家觉得这种方法怎么样?

生:比上种方法节约时间,比较快。

师:同学现在根据老师在黑板上的板书想想,为什么这种方法会比上一种方法节约时间呢?(教师的提示语言:我们刚刚在烙第三张饼的时候,本来一次可以烙两张饼的锅却只烙了一张,这就可能浪费了时间。)。

师:那这样才能不浪费时间呢?

生:(如果锅里每次都是两张饼在烙,就不会浪费时间了。)。

师:所以说,我们平时在解决问题时,一定要开动脑筋,寻找出最科学、最合理的解决问题的方法。

三、拓展提高。

师:刚才我们研究了2张饼,3张饼的烙法。如果是4张饼、6张饼呢你觉得怎样烙最节省时间?下面你可以继续在小组里实验一下,你发现什么。

(生小组研究)。

生:把4看成2+2把6看成2+2。

(及时的表扬,学数习知识就是这样,当遇到新的问题时,可以先运用以前的知识来解决)。

聪明的同学可能发现了,刚才老师让大家研究的饼的张数都是什么样的数?

生:双数。

你现在能不能总结一下,当饼的张数是双数时,烙饼的好方法是什么?

生:可以用烙两张饼的方法,两张两张的烙。

板书:双数张饼:两张两张的烙。

师如果是单数张饼,5张、7张……有什么规律吗,讨论一下吧。

把5张饼烙两张,再把那3张按刚才的好办法烙。

把7张饼先两张两张两张的烙,剩下的那3张按刚才的好办法烙。

师:谁能概括的说一说你发现的规律。

生:如果烙单数张饼,可以先两张两张两张的烙,剩下的那3张按刚才的好办法烙。

师:刚才我们在研究时,按饼的张数分类研究的,其实我们有时在研究比较复杂的问题时,也可以把问题分一下类,这样会更便于进行研究。

四、师生交流,思维升华。

师:通过这节课的学习,你知道了什么?

师:其实,数学来源于我们的生活,又务于生活,许多生活中的问题,我们通过开动脑筋,都可以寻找到最好的解决方法。相信大家一定会成为有智慧的孩子,让我们的样才能最省时、又省力。只不过,学习数学,是没有简单的方法的,所以希望大家,今后再学数学都能认真学好数学,仔细用好数学。

工程问题教学设计篇六

先板书:张老师每分钟步行60米,陈老师每分钟步行90米。

演示,并板书算式,应用了我们以前学过的哪个数量关系式?板书速度×时间=路程。

那么每分钟最多能测量多少米?怎样来测量?

生……(谁想补充?谁能说得更清楚?)以下几个问题我们再明确一下:

1、两位老师谁先出发?(板书:两位老师从各自家中同时出发。)。

2、张老师向什么方向走?陈老师向什么方向走?(师边打手势,边和同学一起说3个词“向对方走去”、“相向而行”、“相对而行”)。

3、走到什么时候两位老师停下来?

完成板书:

7、演示后提问:走了几分钟后相遇?板书:6分钟。为什么仅用6分钟?(定格演示)。

8、板书:两家相距多少米?怎样根据刚才的测量方法列出综合算式呢?(生在练习本上列式,师巡视)。

师板书两个算式,问先求什么?再求什么?

师:这两个算式都用到速度×时间=路程这个数量关系式,怎样用的?你能发现吗?

(渗透)指名说2人。板书:速度和。

练习1:先自己看屏幕弄清题意后师演示。指名汇报师板书答案并问先求什么,再求什么。

练习2:再做一个练习,同学们注意观察。

课件:刚才你看到了什么?

课件:(同)时出发(向相反的方向)走去(师边打手势,边和同学一起说2个词“向相反的方向走去”、“相背而行”)。

(课件:大括号)你能解决这个数学问题吗?

汇报说思路,课件用隐形按纽配合。

练习3(有不同方法吗?)(可视情况重复演示)。

开放题1:哪只小猫说得有道理?里填上什么语句最恰当?同桌说一说,指名说。

(师:大家的发言真精彩,想象合理,表达清晰)。

下面我们就以小乌龟和小蜗牛在向日葵下相背而行为开头,仔细观察,合理想象在括号里填上恰当的语句。

同桌互相说一说,指名说。(他的想象合理吗?刚才几位同学的想象中小乌龟和小蜗牛是同时出发的,你能在这一点上有创新吗?这位同学的想象真有特色,如果有时间:谁愿意来评价一下刚才发言同学的想象?)。

板书设计。

(60+90)×6=900(米)速度×时间=路程。

速度和60×15=900。

90×10=900。

60×6+90×6=900(米)。

答:两家相距900米。

工程问题教学设计篇七

教学目标:使学生认识工程问题的结构特点,掌握它的数量关系,解题思路和解题方法,并能正确地解答工程问题的基本题。

教学过程。

一、创设情境,设疑激趣。

出示小黑板。

1、学生读题。

2、先让学生大胆猜想。

3、然后老师提出:

我们一起来探究这个问题好吗?

二、由浅入深,辅路搭桥。

出示小黑板:

让学生独立完成,然后指名回答,教师板书:

1、60/2=30(本)60/3=20(本)。

2、60/(30+20)=1.2(本)或者:设x分钟发完?

(30+20)x=60。

x=60/50。

x=1.2。

3、60/(60/2+60/3)或者:设两人合发需要x分钟。

x(60/2+60/3)=60。

三、引导探究,挑战问答。

老师质疑:

假如上面三道题都隐去“60本作业本”这个条件,你们能探究出解决问题的办法吗?

1、要求学生分小组合作思考、探究。

2、让各小组组长把解决问题的办法讲出来,老师板书:

a、1/2=1/21/3=1/3。

b、1/(1/2+1/3)或者:设需要x分钟完成。

x(1/2+1/3)=1。

在学生合作探究过程中,教师应参与其中一小组,并成为其中的一员,在恰当时机提问:

“你怎么知道这是对的?”

“还有没有别的思路或可能性?”

“列式为1/(2+3)你们认为对吗?为什么?”

四、促进思维,拓展发散。

解决好“分发本子”问题后,我问学生:

你能利用今天所学的知识,解决实际生活中类似的“做套装衣服问题”、“相遇问题”吗?

五、反馈练习,以促双基。

1、p95“做一做”

2、练习二十五第1题。

3、指导学生自学例9。

六、总结。

1、今天学习了什么内容?

2、这节课你最大的收获是什么?哪些地方你还不太懂?

家庭作业:

练习二十五第2、3、4题。

工程问题教学设计篇八

工程问题是用分数解答有关工作总量、工作时间、工作效率的应用题。它的解题思路与整数应用题的解题思路基本相同,仍然是用工作总量除以工作效率等于工作时间,只是题中没有给出具体的工作总量。解答时,要把工作总量作为单位“1”,用单位时间内完成工作总量的几分之一来表示工作效率。这样,由于解题中遇到的不是具体数量,有的学生往往感到抽象,不易理解。

教学重点是:掌握工程问题的数量关系和解答方法。

难点是:如何分析分数工程问题的数量关系。关键是:正确分析题目中哪个量是工作总量、工作时间和工作效率。

二、说教法。

现代数学理论认为,小学数学课应增加学生的数学活动,依据本单元教材特点和学生认知规律,这节课我主要运用复习引入法、情境教学法、启发分析法等进行教学。并运用电化教学手段增加教学的新颖性,引导学生多种感官参与学习的全过程。

三、说学法。

教与学密不可分,教是为了更好地学。因此要做到“授人以鱼,不如授入以渔”。根据学生的学习规律,在教学过程中,主要指导学生掌握如下学习方法:转化迁移的方法、比较分析法、总结归纳法。

四、说教学过程。

根据教学大纲的要求,结合学生的实际,在分析教材,合理选择教法和学法的基础上,本课教学过程的设计分四个环节。

第一环节是复习铺垫。

由于用分数解工程问题与整数解工程问题的`思路基本相同,仍然是工作总量除以工作效率等于工作时间,只是题目中没有给出具体的工作总量,解答时要把总量作为单位“1”,用单位时间完成工作总量的几分之一来表示工作效率。所以我先让学生口答:(1)如果这项工程计划12天完成,平均每天修()。今天完成了工作的()还剩()。(2)如果这项工程每天完成,()天完成。巩固了旧知,为学习新知作好铺垫。

第二环节是学习新知识,分三步进行。

第一步:加深对整数解工程问题的数量关系的理解。

引导学习读题,明确已知、未知条件及怎样列式。学生列出正确算式之后引导学生说出这个算式每一步表示的意思,根据是什么,弄清题目中的数量关系。

第二步:探究用分数解工程问题。

这是本课的重点和难点。出示改变题目(即把上题中的“200米”去掉)。启发学生想:没有这个条件,这道题能不能解答?引导学生想:可以把这条跑道看作单位“1”,那么甲队每天修这条跑道的几分之几?乙队每天修这条跑道的几分这几?两队合修,每天可修这条跑道的几分之几?两队合修几天可以完成怎样求?根据是什么?通过这些问题,联系学过的工程问题的数量关系,逐一解决每个问题,也就突破了这节课的难点。

第三步,比较分数解和整数解工程问题,加深印象。

比较上下两道题,使学生认识到这两种解法在思路上是一致的,数量关系基本相同,都是用工作总量除以工作效率的和。只是在后一种解法中没有给出工作总量的具体数量,只给出“一段公路”,“一项工程”,“一件工作”,“修一条路”等,解答时把工作总量看作单位“1”,用工作总量的几分之一来表示工作效率。

第四环节是练习、巩固。

练习是使学生掌握知识、形成技能发展智力的重要手段,因此我在设计练习时尽量地做到科学、合理,体现一定的层次性,针对性,有坡度,难易适中。

工程问题教学设计篇九

1、使学生认识工程问题的特点,理解工程问题的数量关系,掌握解题方法。

2、会正确解答一般的工程问题,培养学生分析、解答应用题的能力。

3、加强数学和学生生活实际的联系,使学生感知数学就在身边,对数学产生亲切感。

使学生掌握工程问题的特点和解题方法。

工作总量是用单位“1”表示以及求工作效率所表示的含义。

谈话:我们现在合校已经五年了多了,为了使同学们能够健康的成长和学校的发展,学校领导决定修一条高档次的一级塑胶直行跑道。大家高不高兴?今天我们来研究修跑道的问题。

师:他们都承诺能保质保量完成任务,但甲工程队单独完成需4天,乙工程队单独完成需6天,(板书:修一段跑道,甲队单独修需4天,乙队单独修需6天,)。

师:同学们可以猜想一下,两个工程队共同加工需要的天数大概会是多少天?

师:现在就请同学们以小组为单位帮忙算一算需要几天能完成。想办法验证一下,自己的猜想是不是正确?(板书:两队合修需几天完成任务?)。

师:题目里没有具体的工作总量,怎么办?

生:我们可以假设这条直行跑道的实际长度,如24米,60米……。

师:可以,你们认为假设这条路的长度为多少米比较好?为什么?

生:4和6的最小公倍数比较好,计算方便。

师;下面我们分小组计算验证。

课件出示:

一队每天修多少千米:________________________。

二队每天修多少千米:________________________。

两队合修,每天修多少千米:________________________。

两队合修,需要多少天?________________________。

指2名学生板演,并说出算式中每一步表示的意思。

通过以上的列式计算,你们有什么疑问?

改变了工作总量,为什么合修的天数还是2、4天?

(1)讨论释疑。师:这个问题提的好,有价值。

学生讨论,小组汇报。

既然合作的工作时间与工作总量的具体数值没有关系,可以假设这条道路的长度为单位“1”,学生尝试解答:指名板演。

像这样把工作总量看作单位"1",而工作效率则用"单位时间完成的工作总量的几分之一"来表示,就是我们今天研究的工程问题、(板书课题:工程问题)。

怎样才知道以上的解决方法是正确的?把你的想法写下来,和同学交流一下。

学生汇报,教师板书:根据工作总量=工作效率×工作时间,可以验算答案是否正确。(1/4+1/6)×12/5=1,因为我们假设工作总量为单位“1”,所以答案正确。

师:不管假设这条道路有多长,答案都是相同的,把道路长度看成单位“1”,更简便。

师:同学们,同桌互相讨论一下,这两种解答方法有什么相同点和不同点?

师:谁能说说工程问题的特点是什么?

生:工作总量可用单位“1”来表示,工作效率用单位“1”的几分之一来表示。

师:像这种把工作总量看作单位“1”,而工作效率则用"单位时间完成的工作总量的几分之一"来表示,这种思想就是数学上“建模思想”,如行程问题等也可以用这种思想来解决。

1、完成教材第43页的“做一做”。

2、完成教材练习九第45页第7题。

通过这节课的探索,你有什么收获?

工程问题教学设计篇十

1、通过实践活动,使学生理解“一个数是另一个数的几倍”的含义,体会数量之间的关系。

2、让学生经历将“求一个数是另一个数的几倍是多少”的实际问题转化为“求一个数里含有几个另一个数”的数学问题的过程,初步学会用转化的方法来解决简单的实际问题。

3、让学生会用自己的语言表达解决问题的大致过程和结果。

4、让学生在活动中获得积极的体验,感受数学与生活的联系。

经历转化过程,初步学会用转化的方法来解决简单的实际问题。

让学生学会用转化的方法来解决简单的实际问题,会用自己的语言表达解决问题的大致过程和结果。

教具:课件、小棒若干根。

学具:每人小棒若干根,同桌两人一张练习纸、一支水彩笔。

设计理念:遵循《数学课程标准》的要求,从学生的认知水平和已有的知识经验出发,给学生提供愉快的学习环境,让学生通过学生动手操作、自主探索、思考交流,积极参与数学活动,在生动的教学情境中自主收集信息,提出问题,解决问题。教学中注重学生的情感体验,关注学生的学习过程,让学生在活动中获得积极的体验,感受数学与生活的联系。

(一)初步感知。

1、引入:小朋友们平时喜欢用小棒摆东西吗?会用小棒摆什么呢?然后教师展示自己摆的小花伞,得出摆一把小花伞用4根小棒。

2、动手:学生动手摆小花伞,指名一位学生在黑板上摆。

3、交流:(1)说说你摆了几把小花伞,用了几根小棒?你是怎么知道的?

(2)观察黑板上:×××用的小棒根数和老师用的小棒根数有什么关系呢?学生说出的关系可能有求和、比多少、还有倍数关系。如果没有倍数关系,可以引导学生:除了小朋友们说的求和、比多少,如果换一种说法,说说我们用的小棒根数的倍数关系,你会吗?得出:×××用的小棒根数是老师的3倍。

(3)你又是怎么知道×××用的小棒根数是老师的3倍的呢?有些学生可能是直接通过观察,有些学生还可能会将求12是4的几倍转化为12里面有几个4,并用除法计算。

(4)12÷4=3表示什么意思?单位怎么写?得出:12是4的3倍,说明倍表示的是两个数之间关系,不是单位名称,所以3后面什么也不用写。

(5)让学生说说自己用的小棒根数是老师的几倍。

4、引出课题:用倍的知识去解决问题。

(二)进一步感知。

1、引入:森林里正在举行动物运动会,一起去看看。

2、出示:跳远比。

松鼠:

袋鼠:

猜一猜:袋鼠跳的长度是松鼠的()倍。

3、出示数据,电脑验证。

1、引导学生收集信息并自主提出问题。

出示:爬行比赛。

蜗牛24只毛毛虫6只;乌龟4只。

学生提的问题能口答的直接口答。(如求和的或者比多少的)。

从学生的回答中摘录:“蜗牛的只数是毛毛虫的几倍?”或“蜗牛的只数是乌龟的几倍?”

3、比较两个问题,说说你有什么发现?

(四)灵活应用解决问题。

引入:闯关比赛。

1、第一关:估一估。

估一估,左边公鸡的只数是右边的几倍?

图片出示:左边20只公鸡右边5只。

2、第二关:“阳光伙伴”体育运动。

出示图(略)。

要求列式表示参加各项活动的人数之间有倍数关系。

3、第三关:开启智慧大门。

出示智慧大门图。

1、提示学生:智慧大门上方有12盏灯,小朋友必须开启一些灯,而且开启的盏数与关着的有倍数关系。如开启——10盏,关着——2盏。10是2的5倍。

要求同桌合作用彩色笔涂色,探究不同的涂色方法。

(五)、课堂总结深化主题。

说说这节课你有什么收获?

工程问题教学设计篇十一

1、在摸一摸、摆一摆、想一想、说一说等实践活动中发现间隔数与植树棵数之间的关系。

2、在亲身体验、交流中,进一步理解间隔数与棵数之间规律,并解决生活中的植树问题。

3、在学习活动中,体会数学与生活的密切联系,锻炼数学思维能力,体验数学思想方法在解决问题上的应用,感受日常生活中处处有数学,进一步激发学生学习和探索的兴趣。

理解“植树问题(两端要种)”的特征,应用规律解决问题。

让学生发现植树的棵数和间隔数之间的关系。应用规律解决问题。

课件。

一、初步感知间隔的含义。

1、肢体体验:同学们都有一双灵巧的小手,它不但会写字、画画、干活,在它里面还蕴藏着有趣的数学知识,你想了解它吗?请举起你的右手,并将五指伸直、张开、用左手摸摸右手,数一数,五个手指有几个空格?(4个空格),师:在数学上,我们把这个空格叫“间隔”。也就是说,大小拇指在一只手的两端:5个手指之间有几个间隔?(4个间隔)。弯弯你的大拇指看:4个手指之间有几个间隔?(4个间隔);把大、小拇指一齐弯弯看:3个手指之间有几个间隔?(4个间隔),那么,将5个手指换成小树,5棵小树之间有几个间隔(4个)。

师:生活中的“间隔”到处可见,你知道生活中还有哪些间隔吗?(两棵树之间、两个同学之间、楼梯、锯木头、敲钟…都有间隔。)。

2、引入课题:师:树可以美化环境,清新空气,我们要多植树。在一条直线上种树,每两棵树之间相等的段数叫做间隔数,每个间隔的长度叫间距,也叫株距。间隔数与棵数的'关系,数学里统称植树问题,这就是我们今天要探究的内容——在一条不封闭的直路上的“植树问题”。(揭题,板书:植树问题)。

二、探究规律,解决问题。

1、找出两端都种树的规律。

植树问题情景1,师出示:例1、同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?师:请同学们默读题目,谁来分析一下这道题的条件、问题、关键词和单位?要求一共需多少棵树苗?先要知道两端都栽树,棵数与间隔数有什么关系?要解决这个问题,实践是检验真理的唯一标准,但是100米这个数字有点大,不好验证,在遇到比较复杂的问题时,我们可以先用比较简单的例子来验证。

师:现在我们用研究出的两端都栽树,棵数等于间隔数加1的规律来解决例1中的问题,在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?生:100÷5=20(个间隔)20+1=21(棵)。利用两端都栽树,棵数=间隔数+1”这个规律解决了两端都植树的问题。

走进生活:

(一)目标检测:

1、排列在同一条直线上的16棵树之间有()个间隔。2、从第1棵树到最后1棵树之间有30个间隔,一共有()棵树。

(二)闯关题。

2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?

3.5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

4、小明从1楼到3楼需走36级台阶,小明从1楼到6楼需走多少级台阶?

5.15个军人站成一列,每两个军人间距离为1米,这列队伍有多长?

实地考察。

两端要栽:棵数=间隔数+1;

工程问题教学设计篇十二

相遇问题是和人们生活、生产息息相关的数学的知识。本课研究两个物体在运动中的速度、时间和路程的数量关系。在这之前,学生已掌握的是关于一个物体运动的情况,了解了速度、时间、路程的相关概念,有一定的生活经验,但欠缺生活经验与所学知识之间的联系。

设计思想:

(1)注重生活资源与课堂资源的整合,为学生创新奠定必要的认知基础。

(2)注重数学素养和信息素养的整合,为学生创新提供另一条思考的路径。

理念:

(1)注重将已有的知识、经验与教师通过书本、网络所提供的资源进行整合,从而实现教学目的。

(1)知识与技能:

了解相遇问题的应用题的基本结构,掌握解题方法。

(2)过程与方法:

经历观察、分析、概括的过程,使学生逐步形成观察、分析、概括的能力。通过自主探索,动手实践,合作交流,培养学生解决实际问题的能力。

(3)情感态度与价值观:

a:激发学生主动参与活动的热情,培养人人参与学习和自觉把数学知识应用实际生活的意识。

b:培养学生在生活中提出数学问题的意识。

重点:了解相遇问题的应用题的基本结构,掌握解题方法。

难点:掌握相遇问题的出发时间、出发地点、运动方向、运动结果的知识要点及相互关系。

(一)创设情境

1、复习旧知,引发联想

画面演示,画外音叙述:

这是一列货车,每小时行50千米,照这样的速度,4小时能行多少千米?

这是一列客车,每小时行60千米,照这样的速度,4小时能行多少千米?

请学生谈谈对这两道题的想法。

2、学生表演,理解概念

刚才,大家对前面的知识掌握的很好,今天,我们就要在速度、时间、路程关系的基础上,研究稍复杂的行程问题(师板书课题)。在学习新课之前,有四个词,请同学们理解一下。可以一人单独思考,用双手演示进行理解,也可以两人配合表演。

屏幕上依次闪动出现:相对、同时、相遇、相距

(1)请学生用动作和语言把这四个词的意思表演出来。注意:相遇与相距的区分。

(2)老师叙述,学生表演。

两个小朋友从甲乙两地同时相对而行,5分钟时,两人相遇了。

提问:问这两位同学,每人走几分钟,再问大家,他们同时走了几分钟。

(二)尝试探索

1、出示例题

2、提出问题

看到例题,你会想到什么问题?

师生对问题进行筛选,重点解决下面几个问题:

(1)他们两1分钟走了多少路?2分钟呢?3分钟呢?

(2)4分钟的时候会出现什么情况?

(3)他们相遇时,小强和小丽所走的路程与他们两家相距多少米有什么关系?(让全班同学闭上眼睛思考)

3、列式讨论

(1)请同学用算式表达自己的思考过程。要能说出每一步的意思。

主要有两种思路:

第一种:65×4+70×4

第二种:(65+70)×4

4、认识速度和

5、质疑

“对这道题还有什么不同的想法或问题吗”

(三)巩固发展

1、基本练习

2、看图说题,列出综合算式。小组讨论,一人说题,其他人列式。

3、游戏

再请两位同学表演,并提问两人相对而行可能出现什么情况?

(1)两人相遇;

(2)行走一段未相遇;

(3)相遇后继续行走。

给两位同学带上不同的头饰。头饰上标有65米、70米字样,分别表示速度。

教师一边叙述,一边出示5分钟时间的牌子。

工程问题教学设计篇十三

1、在搭配活动中,初步掌握搭配的规律,训练学生有序思考的能力。

2、通过观察、动手操作、合作交流等活动方式,掌握搭配的方法。

3、在活动中培养学生学习数学的兴趣和用数学的思维来解决问题的意识。

教学重点:结合具体情境,能够进行有序的思考,掌握搭配的方法。

教学难点:使学生有序的思考问题,做到即不重复又不遗漏。

教学过程:

同学们,搭配在我们的生活中有广泛的应用。其实还有很多的各种各样的数学问题每天都发生在我们的身边,只要我们留心观察,善于动脑筋,找规律,就能够解决生活当中的问题。

搭配中的学问,有序,不重复,不遗漏。

工程问题教学设计篇十四

教学内容:

教学来源:

人教版小学数学教材第九册第七单元《植树问题》。

五年级学生。

备课人:

张金玲。

基于标准:

数学广角的教学目标可概括为以下几点:

1、感悟重要的数学思想方法;。

2、运用数学的思维方式进行思考,增强分析和解决问题的能力;。

3、在参与观察、猜测、试验、推理等数学活动中发展合情推理,感悟演绎推理思想,学会独立思考。

教材分析:

《植树问题》是人教版义务教育课程标准实验教科书五数上册第七单元“数学广角”中的内容。“数学广角”是人教版中的一个亮点,它系统而有步骤地向学生渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。这一单元内容就是植树问题,教材将植树问题分为几个层次,有两端栽、两端不栽、一端栽一端不栽以及环形情况、方阵问题等。本节课例1是两端都栽树的情况。

学情分析:

学生已经学习了除法的含义、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

学习目标:

1.利用学生熟悉的生活素材、通过画线段图、填表格、讨论交流等活动,能化繁为简并说出两端都栽的情况下间隔数与棵数之间的关系。

2.能发现并理解植树问题(两端要栽)的一般解题规律,并能利用规律解决相关的实际问题。

评价任务:

任务一:通过猜谜活动,以及画线段图、做表格等活动,完成目标一。

任务二:通过课堂例题的理解分析,找到两端都栽的植树问题的一般解题规律,达成目标二前半部分。另外利用习题的解决,达成目标二的后半部分。

【学习重点】:发现棵数与间隔数的关系。

【学习难点】:理解两端都栽的植树问题的一般解题规律并能运用规律解决问题。

【教学准备】:课件、小组学习单。

【教学过程】:

一、导入新课。

1、猜谜语,直观认识间隔。

新课前老师给大家带来一个谜语,请看,“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。打一人体的组成部分。”它是什么呢?谁知道?(手)。

同意的举手?你们真会联想,它就是我们的手。我们的手作用可真大,能写会算还会画,而且我们的手上还有许多的数学奥秘,仔细看自己的手,你能看到数字吗?(5)。

哦,怎么看出5了?(表示手指的个数)谁还看到了数字5?真不错,除了用数字可以表示手指的个数,咱们的手上还有没有数字?(还能看到手指之间的间隔,两个手指之间的缝隙,教师说明,缝隙就称为间隔。)。

手指之间还有一个个的间隔。同学们,咱们手上五个手指之间到底有几个间隔呢?(4个)。

我们一起来数一数。还真有4个间隔。那四个手指之间有几个间隔?三个手指之间呢?两个手指之间呢?(生依次回答。)。

你发现什么了吗?(生说)。

的确,手指数和间隔数之间是有着一定的规律的,它们之间的这种规律最适合解决今天我们要研究的这类问题,这类问题的名字叫做植树问题。板书:植树问题。

二、探究规律实现目标。

1、例题探究。

说起植树问题我们就先从植树谈起吧。请看例题。

a、从题中你能知道哪些信息?谁来说一说?生说,师画。

师小结:

一边是小路的一侧,指左边或者右边,全长1000米是指小路的总长。每隔五米栽一棵是每两棵树之间的距离,简称间距。两端要栽指起点与终点处都要栽。

b、算一算,一共要栽多少棵树?反馈答案:

方法1:1000÷5=200(棵)。

方法2:1000÷5=200200+2=22(棵)。

方法3:1000÷5=200200+1=21(棵)。

疑问:现在出现了三种答案,到底哪种答案是正确的呢?下面我们一起来验证一下,你想用什么方法验证?(生说:画线段图的方法)。

三、自主探究,发现规律。

1、化繁为简探规律。

是个好办法!我们可以选择画线段图来验证。每隔5米栽一棵就画一段,再过5米再画一段,这样我们需要画多少段呢?好画吗?为什么呀?(数据太大了)。那怎么办呢?(选择简单的数据进行研究,得出规律再解决这道题)。

是呀,在遇到比较复杂的问题时,我们可以先用比较简单的例子来研究。你准备选用哪个数来研究?(生说)下面请大家自己选择简单的数据在练习本上试着进行验证,并把你试的结果汇报给组长填在表格中,之后观察表格中的数据,你发现了什么?把你的发现在小组内说一说。

工程问题教学设计篇十五

1、通过教学,引导学生认识“相遇问题(求相遇时间)”的特征,理解数量关系,并能解答求相遇时间问题应用题。

2、通过组织学生分组讨论,培养学生合作与交流的意识。

3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。

“求相遇时间问题”的.特征和解题方法。

“求相遇时间问题”的特征和解题方法。

多媒体课件一套。

1、小明家离学校1500米,小明每分钟行100米。从家到学校要用多少分钟?

2、口头列式1500/100=15分钟。

3、复习“速度”、“时间”、“路程”三者之的数量关系。

(板书:时间=路程/速度)。

1、例6教学。

读题分析。

思考:这里的460米是几个人走的?

两人是怎样走的?

一份钟两人一共行了多少米?

(第三问时:用课件演示帮助,学生理解)。

学生尝试练习。

评讲板演,理清解题思路,概括解题方法。

教师板书:60+55=115米。

460/115=4分钟。

综合算式:460/(60+55)=460/115=4分钟。

质凝:求相遇的时间应先求什么,再求什么?

你知道吗?相遇时他们各行了多少米?

揭示课题:求相遇时间。

2、试试。

1、对比练习。

比一比你能找到两题之间的联系吗?

2、变式应用。

今天这节课主要学习了什么内容?你获得什么本领?

五、课堂作业。

练一练的第2——5题。

60+55=115米。

460/115=4分钟。

综合算式:460/(60+55)=460/115=4分钟。

工程问题教学设计篇十六

苏教版小学六年级数学上册第四单元解决问题的策略第1课时,教材第68页—69页例2和练一练。

1、引导学生经历解决问题的过程,能有序、有效地思考、分析数量关系,初步学会用假设的策略解决含有两个未知数的实际问题。

2、能对解决问题的过程进行反思,初步感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。

3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

能有序、有效地思考、分析实际问题中的数量关系。

感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。

课件、导学单、教具。

一、复习铺垫。

1、出示下面的问题,让学生列式解答。

把720毫升果汁倒人9个同样的小杯子里,正好倒满。平均每个杯子的容量是多少毫升?

数量关系:()个小杯的容量=720毫升。

口头列式解答。

提问:和第1题相比,这道题难在哪里?(第1题是把720毫升果汁倒入一种杯子里,可以直接用除法计,这一道题是把720毫升果汁倒入两种杯子里,题中有两个未知数量。)。

3、揭示课题:这道题可以怎样解答呢?今天我们就来研究解决这样的实际问题的策略。(板书课题:解决问题的策略)。

二、探索策略。

1、教学例1。

(1)理解题意。

谈话:请同学们先观察题中的条件和问题,想一想,根据题意,你。

能找到怎样的数量关系,和小组里的同学说说你是怎样理解这些数量关系的。

揭示:6个小杯的容量+1个大杯的容证=720毫升。

大杯的容量x=小杯的容量小杯的容量x3=大杯的容量。

(2)确定思路。

谈话:我们知道,在遇到比较复杂的问题时,要想办法把复杂的问题转化成简单的问题。你有办法把这个问题变得简单吗?请先联系刚才理解数量关系式想一想,再和同学说说你准备怎样解决这个问题。

反馈:请把你的解题思路分享给大家。

学生想到的思路可能有以下几种,结合学生的交流,分别作如下引导:

思路一:假设把720毫升果汁全部倒入小杯。

问:把720毫升果计全部倒入小杯,1个大杯要换成几个小杯?把大杯换成小杯后,正好倒满多少个小杯?先画线段图分析。

思路二:假设把720毫升果汁全部倒入大杯,6个小杯换成几个大杯?把小杯换成大杯后,正好倒满多少个大杯?先画线段图分析。

思路三:列方程解。

小结:根据题中的数量关系,同学们想到了解决问题的不同思路。上面的几种思路都是抓住哪一个数量关系展开思考的?像这样通过假设把复杂问题转化为简单问题的方法,也是常用的解决问题的策略。(板书:假设)。

(3)列式解答并检验。

谈话:选择一种方法完成解答,并检验解题的过程和结果。

完成解答后,让学生说说列式、检验的方法和结果。

(4)回顾反思。

(5)教学第二种思路。

学生独立思考,列式计算,教师巡视。

指名交流解题时的思考过程,以及列式计算的过程和结果。

(6)比较和回顾。

提回:通过解答上面的问题,你有哪些收获和体会?

让学生先在小组里说一说,再组织全班交流。

2、完成“练一练”。

(1)出示题目,提问:要求桌子和椅子的单价、可以怎样进行假设?让学生按自己的思路完成解答,教师巡视。

(2)让不同思路的学生展示自己解题的过程。

三、巩固练习。

完成练习十一第1—3题。

四、课堂总结。

今天这节课我们学了什么?你有哪些收获和体会?还有什么疑问?

工程问题教学设计篇十七

数学广角——优化(沏茶问题)。

主备人。

赵越。

课型。

新授。

时间。

2016.11.11。

教学目标。

1.学生通过简单的实例,初步体会合理安排时间在解决实际问题中的应用,认识解决问题策略的多样性,形成寻找解决问题最优方案的意识。

2.通过自主探索、合作交流,让学生经历解决问题的过程,初步培养学生的应用意识和解决实际问题的能力。

3.让学生感受到合理安排时间的重要性,体会数学在日常生活中的广泛应用。

重点。

使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的良好意识和能力。

难点。

引导学生从优化的角度在解决问题的多种方案中寻找最优方案。

内容。

环节。

学习流程。

学生活动。

一、联系实际,谈话导入。

二、创设情境。

三、

自主学习,交流展示。

四、知识应用,扩展提升。

五、当堂达标。

六、畅谈收获,寄语。

总结。

老师每天做家务要用20分钟,听音乐10分钟,做完这两件事情需要多少分钟?

在生活中如果我们能够合理安排,不仅能节省时间,还能大大提高我们做事的效率。那今天我们就用同样的方法来学习《沏茶问题》。

1.出示数学书104页例1的情境图。

2.出示沏茶的工序。

怎样才能最快让客人喝上茶呢?

1.出示学习要求。

(1)独立思考,设计方案,完成学习单的内容。

(2)小组交流讨论自己的设计思路。

(3)选择最优方案摆在黑板上,准备展示。

2.小组展示。

3.师生共同总结合理安排时间的窍门。

4.讲解流程图。

5.总结。

1.学生独自完成练习。

2.小对子互相说一说。

3.集体订正。

独立完成,集体订正,统计结果。

通过这节课的学习,你有什么收获吗?请把你的收获分享给大家!

学生自由回答。

引出“同时”

学生自由回答。

引出沏茶的工序。

学生独立用工序图摆一摆,说一说,并用自己喜欢的方式表示出来。

小组交流自己的设计思路,选择即合理又省时的方案进行预展。

总结合理安排时间的窍门。

学生说自己的想法。

学生自由发言。

学生练习。

用“先……再……然后……最后……”表述。

学生畅谈收获。

顺序。

同时。

时间。

工程问题教学设计篇十八

苏教版五年级上册第63—64以及相应的练习。

1、从解决简单的实际问题的过程中,体会用“一一列举”策略的特点和价值,能不遗漏,不重复找到符合要求的所有答案。

2、通过反思和交流,进一步积累解决问题的经验,发展思维的条理性和严密性,从而使学生获得解决问题的成功体验,树立学好数学的自信心。

体会策略的价值,感受策略带来的好处,使学生能主动运用所学的策略解决问题。

在学习过程中,能主动反思自己的解题过程提升对策略的认识。

一、导入。

出示草原牛羊成群图。

二、探究策略。

1、初次探究。

小黑板出示:用18根1米长的栅栏围成一个长方形的羊圈。

问:根据这句话的信息你想采用什么方法来帮牧民叔叔呢?

2、进一步探究。

问:你能把符合要求的长和宽可能性一一列举出来吗?

学生填写第63页的表格。

3、体会列表的特点。

问:反思一下刚才的思考过程,你有什么体会?

板书:有序(有条理)一一列举不遗漏不重复。

让学生再次说说应该怎样有条理地思考。

出示:像这样有条理的把可能性一一列举出来,从而找到问题的答案,这种解决问题的策略就叫列举。在列举时要注意按照一定的顺序,这样才能做到不重复、不遗漏。

4、进一步引导。

这几种围法中牧民叔叔会喜欢那种呢?为什么呢?

出示:周长相等的长方形,长和宽的差越大,面积就越小;长和宽的差越小,面积就越大。

三、体会策略中的技巧。

出示例题2。

读题后问:“最少订阅1本,最多订阅3本”是什么意思?

小组讨论并集体交流。

3+3+1=7种。

(有一定的规律列举,不重复,不遗漏。)。

四、巩固练习。

问:根据题意你想到了什么?用什么策略解决这个问题?

交流,说出列举思考的过程。

五、交流中总结收获。

这节课你最大的收获是什么?“一一列举”对我们解决生活问题有什么好处?

六、课堂练习。

做练习十一的第1—3题。

解决问题的策略这一单元是采用列表的方法收集,整理信息,并在列表的过程中寻求解决实际生活问题的有效方法。体会解决问题的策略常常是多样的,同一个问题可以用不同的策略,从不同的角度去分析。例1利用学生对长方形与它的长和宽关系的已有认识,要求学生找出用18根1米的栅栏围成长方形的各种方法,在寻找策略中体会“一一列举”的特点和价值。例2是在例1的基础上启发学生用“一一列举”的策略解决实际问题时,要不重复、不遗漏地进行思考过程。在探讨中让学生积极参与,感受解决问题的策略是在具体生活中的运用,从而激发学生主动运用所学到的策略解决简单的实际问题的兴趣。

工程问题教学设计篇十九

1、使学生了解生活中的一些简单搭配现象,通过操作提出不同的搭配方案。

2、使学生在探索不同搭配方案的过程中发现一些简单的规律,初步体会有序思想和符号化思想。

3、使学生在活动中增强探索数学规律的兴趣,积累积极的数学学习情感。

4、引导学生使用数学方法解决实际生活中的问题,学会表达解决问题的大致过程;培养学生的合作意识和人际交往能力。

自主探究,掌握有序搭配方法,并用所学知识解决实际生活的问题。

怎样搭配可以不重复、不遗漏。

课件、小衣服的学具图片、记录纸、作业纸。

“石头,剪子,布”游戏。

一、创设情境,初步感知搭配。

(多媒体显示无锡的风景图片)无锡有许多的旅游景点,吸引着越来越多的中外游客。小红和爸爸妈妈也想来无锡玩。

为了这次旅游,妈妈给小红准备了2件上衣:(出示学具)一件绿色的和一件黄色的,还准备了3条裙子:粉红色的,蓝色的和大红色的。

用什么颜色的上衣配什么颜色的裙子呢?请同学们给她提些建议吧。

学生口述,教师操作。

小结:像这样,一件上衣配一条裙子,就是把上衣和裙子进行搭配。(板书:搭配。)。

二、合作探究,体会有序思想。

1、合作探究。

同桌合作,把所有的搭配情况都找出来,让小红自己挑。

合作要求:同桌两人,一人拿学具进行搭配,另外一人把搭配的情况记录在表格中。

2、汇报过程。

请同学汇报搭配过程,教师演示过程。

小结:同学们都找到了六种不同的搭配方法。

3、比较方法。

通过刚才的仔细观察,你觉得你更喜欢哪一组同学搭配的方法呢?为什么呢?

学生交流,体会有序的好处。

小结:有序地搭配可以做到既不重复也不遗漏。

(板书:有序,不重复,不遗漏。)。

4、理解不同的搭配方法。

(1)谁能具体地说说看,这一组是怎样有序搭配的呢?

学生交流。

小结:这组同学是先拿上衣有序搭配的。

(2)除了先拿上衣有序地搭配,还有其他的方法吗?

学生讨论,发现也可以先拿裙子进行有序搭配。

请两位学生合作完成先拿裙子的有序搭配。

5、小结。

(电脑演示)把2件上衣和3条裙子进行搭配,可以先拿上衣有序搭配,也可以先拿裙子有序搭配。

三、创新表示,体会符号思想。

小红的爸爸为了这次旅游,准备了3条领带和3件衬衫。

1、讨论表示方法。

同桌讨论。全班交流,教师提示连线的方法。

2、在作业纸上表示。

请同学们用自己喜欢的方法在作业纸上有序地表示出这些搭配的方法。

汇报展示学生作业,简要评析。

小结:同学们想到的方法真多,有画实物的,有画简单图形的,还有用字母或数字表示的。

3、比较方法。

这么多的表示方法,你更喜欢哪一种呢?为什么呢?

小结:看来,用简单的图形、字母或数字等符号表示的方法更简洁明了。

4、小结。

(电脑演示)电脑小博士就是用简单图形表示的,它用梯形表示领带,用长方形表示衬衫。把3条领带和3件衬衫进行搭配,可以先拿领带有序搭配(电脑连线),也可以先拿衬衫进行有序搭配(电脑连线)。

四、通过变化,体会搭配规律。

1、如果领带的条数不变,衬衫减少一件,搭配的总数是多少呢?

交流。(板书:3×2=6。)。

2、如果衬衫的件数不变,领带增加一条,搭配的总数又是多少呢?

交流。(板书:4×3=12。)。

3、通过刚才的变化,你有没有发现,搭配的总数和什么有关系?有什么样的关系呢?

讨论交流。

小结:领带条数与衬衫件数的乘积就是搭配的方法数,这就是搭配的规律。(板书完成课题:搭配的规律。)。

五、尝试运用规律,解决生活中的问题。

(电脑演示)穿上漂亮的衣服,小红和爸爸、妈妈高高兴兴地来到了无锡。

打开地图,他们准备从火车站出发,经过五爱广场,到锡惠公园去玩。

(1)从火车站到锡惠公园,一共有多少种不同的走法呢?

学生交流。

(2)这么多的走法,选哪一种呢?

学生交流。

小结:当搭配的结果很多时,要注意选择最合适的搭配。

xx公园里有许多的有奖游戏,小红的运气真不错,她得奖了。来到领奖处,让我们听听领奖处的叔叔跟她说了什么。

(电脑录音)“小朋友,恭喜你得奖。你可以选一个木偶,配上一顶帽子,或者配上一条围巾作为奖品。领奖之前我可要先考考你喔。现在有三种木偶,二种帽子,三条围巾,你一共有多少种选择呢?”

学生交流不同的算法。

在同学们的帮助下,小红拿到了喜爱的奖品。小红一家人继续在xx公园快乐地游玩。

同桌商量,试着玩一玩。

汇报:请一组来玩。

交流玩法:一位同学连续出三次石头、石头、石头,另一位同学依次出石头、剪子、布。就这样连续地玩下去。

同桌两人玩一玩,然后交换一下角色,再玩一玩。

小结:原来游戏中也有数学问题,在这个游戏中一共有9种不同的搭配。

六、全课小结,引导延伸。

今天,我们一起寻找了搭配的规律。通过学习,你有什么收获与体会呢?

小结:只要我们时常能用数学的眼光观察生活、思考问题,就会有更多新发现。

【本文地址:http://www.xuefen.com.cn/zuowen/10168572.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档